Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
Se estudian las propiedades estructurales, electrónicas y la estabilidad energética de los dióxidos VO2, CrO2, MoO2 y WO2 en la fase estructural 2H en volumen y de las monocapas ternarias basadas en dióxidos de metales de transición MTxV1-xO2 (con MT=Cr, Mo y W; x= 0, 0.25, 0.50, 0.75 y 1) en estruc...
- Autores:
-
Humánez Tobar, Ángel
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/3454
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/3454
- Palabra clave:
- Aleaciones
Monocapas
Propiedades electrónicas
Estabilidad energética
DFT
Alloys
Monolayers
Electronic properties
Energy stability
DFT
- Rights
- restrictedAccess
- License
- Copyright Universidad de Córdoba, 2020
id |
UCORDOBA2_903aac368cf472077a955003c8bff6ff |
---|---|
oai_identifier_str |
oai:repositorio.unicordoba.edu.co:ucordoba/3454 |
network_acronym_str |
UCORDOBA2 |
network_name_str |
Repositorio Institucional Unicórdoba |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición |
title |
Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición |
spellingShingle |
Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición Aleaciones Monocapas Propiedades electrónicas Estabilidad energética DFT Alloys Monolayers Electronic properties Energy stability DFT |
title_short |
Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición |
title_full |
Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición |
title_fullStr |
Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición |
title_full_unstemmed |
Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición |
title_sort |
Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición |
dc.creator.fl_str_mv |
Humánez Tobar, Ángel |
dc.contributor.advisor.spa.fl_str_mv |
Ortega López, Cesar Murillo García, Jean Fred |
dc.contributor.author.spa.fl_str_mv |
Humánez Tobar, Ángel |
dc.subject.proposal.spa.fl_str_mv |
Aleaciones Monocapas Propiedades electrónicas Estabilidad energética DFT |
topic |
Aleaciones Monocapas Propiedades electrónicas Estabilidad energética DFT Alloys Monolayers Electronic properties Energy stability DFT |
dc.subject.keywords.eng.fl_str_mv |
Alloys Monolayers Electronic properties Energy stability DFT |
description |
Se estudian las propiedades estructurales, electrónicas y la estabilidad energética de los dióxidos VO2, CrO2, MoO2 y WO2 en la fase estructural 2H en volumen y de las monocapas ternarias basadas en dióxidos de metales de transición MTxV1-xO2 (con MT=Cr, Mo y W; x= 0, 0.25, 0.50, 0.75 y 1) en estructura H, mediante la Teoría del Funcional de la Densidad (Density Functional Theory: DFT) usando pseudopotenciales ultrasuaves y una base de ondas planas como se implementa en el paquete Quantum-ESPRESSO. Para la interacción electrón-electrón se usó la aproximación de Gradiente Generalizado (GGA) de Perdew-Burke-Ernzerhof (PBE). Se determina, que tanto los sistemas volumétricos como las aleaciones bidimensionales son energéticamente estables, siendo los volumétricos más estables que sus monocapas correspondientes, como era de esperarse. A través de la densidad de estados y el diagrama de bandas electrónicas, se establece que: a) la monocapa original o pura (prístina) VO2 es metálica y magnética, mientras que las monocapas originales CrO2, MoO2 y WO2 son semiconductoras y no magnéticas; b) Las aleaciones Mo0.25V0.75O2 y W0.25V0.75O2 son metálicas y magnéticas, mientras que la aleación Cr0.25V0.75O2 es semimetálico (half-metallic) y magnética. Esta magnetización débil, con valores de 0.08µB/átomo, 0.03 µB/átomo, y 0.09 µB/átomo para el Cr0.25V0.75O2, el Mo0.25V0.75O2 y el W0.25V0.75O2 respectivamente, se debe principalmente a la hibridación de los orbitales p-O y d-V (o más preciso, a la interacción de intercambio entre los momentos magnéticos atómicos vecinos para alinearse paralelamente entre sí: ferromagnetismo) en las aleaciones precitadas, respectivamente. Las aleaciones con concentraciones x=0.50 y 0.75 muestran magnetización nula, debido a la compensación de los orbitales arriba (up) y abajo (down) para condiciones ricas en Cr, Mo, W y moderadas en V. El comportamiento metálico de las aleaciones, es causado, principalmente, por los orbitales p del Oxígeno (p-O), y por el orbital d del vanadio, cromo, molibdeno y tungsteno, es decir, d-V, d-Cr, d-Mo y d-W, en cada aleación respectiva. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-10-20T21:28:51Z |
dc.date.available.spa.fl_str_mv |
2020-10-20T21:28:51Z |
dc.date.issued.spa.fl_str_mv |
2020-06-21 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.spa.fl_str_mv |
https://repositorio.unicordoba.edu.co/handle/ucordoba/3454 |
url |
https://repositorio.unicordoba.edu.co/handle/ucordoba/3454 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] Jie Dang, Yijie Wu, Zepeng Lv, Xuewei Lv. Preparation of tungsten carbides by reducing and carbonizing WO 2 with CO. Journal of Alloys and Compounds 745 (2018) 421e429 DOI: https://doi.org/10.1016/j.jallcom.2018.02.224 [2] Zeng Fan, Zhang Wei-Bing, and Tang Bi-Yu. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX 2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin. Phys. B Vol. 24, No. 9 (2015) 097103 DOI: 10.1088/1674-1056/24/9/097103 [3] Z. Chen, J. Cao, L. Yang, W. Yin and X. Wei. The unique photocatalysis properties of 2D vertical MoO 2 /WO 2 heterostructure: A first-principles study. Journal of Physics D: Applied Physics, 51, 26 (2018) https://doi.org/10.1088/1361-6463/aac7d5 [4] N. Dukstiene, D. Sinkeviciute, A. Guobiene. Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2∣glass plate. Cent. Eur. J. Chem. 10(4) (2012) 1106-1118 DOI: 10.2478/s11532-012-0012-7 [5] Jingyan NIAN, Liwei CHEN, Zhiguang GUO, Weimin LIU. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction 5(1): 23–31 (2017). DOI 10.1007/s40544-016-0128-4 [6] A. Anguelouch, A. Gupta, Xiao Gang, D.W. Abraham, Y. Ji, S. Ingvarsson, C. L. Chien. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys Rev B 2001, 64:180408R. DOI: https://doi.org/10.1103/PhysRevB.64.180408 [7] V. Srivastava, S. Sanyal, M. Rajagopalan. First principles study of pressure induced magnetic trasition in CrO2. Indian Journal of Pure & Applied Physics. 46. 2008. 397-399. [8] K. Suzuki and P. M. Tedrow. Resistivity and magnetotransport in CrO2 films. Phys. Rev. B 58, (1998) 11597 DOI: https://doi.org/10.1103/PhysRevB.58.11597 [9] M. Soltani, A. B. Kaye. Chapter 13. Properties and Applications of Thermochromic Vanadium Dioxide Smart Coating. Intelligent Coatings for Corrosion Control, pp.461-490 (2015) DOI: 10.1016/B978-0-12-411467-8.00013-1 [10] M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri. Optical switching in VO2 films by below-gap excitation. Appl. Phys. Lett. 92, 181904 (2008); https://doi.org/10.1063/1.2921784 [11] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 306 (5696) : 666-9. (2004). DOI:10.1126/science.1102896 [12] M. A. K. L. Dissanayake and L. L. Chase. Optical properties of CrO2, MoO2, and WO2 in the range 0.2-6 eV. Phys. Rev. B 18, 6872 (1978) DOI https://doi.org/10.1103/PhysRevB.18.6872 [13] R.S. Patil, M.D. Uplane and P.S. Patil. Structural and optical properties of electrodeposited molybdenum oxide thin films. Applied Surface Science 252, 8050–8056. (2006) DOI: https://doi.org/10.1016/j.apsusc.2005.10.016 [14] R. Prakash, D. M. Phase, R. J. Choudhary and R. Kumar. Structural, electrical, and magnetic properties of Mo1−xFexO2 (x=0–0.05) thin films grown by pulsed laser ablation. Journal of Applied Physics 103, 043712 (2008) DOI: https://doi.org/10.1063/1.2885143 [15] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, and J. Miao. Ultrathin MoO 2 nanosheets with good thermal stability and high conductivity. AIP Advances 7, 025015 (2017) DOI: https://doi.org/10.1063/1.4977543 [16] H. Zhang, L. Zeng, X. Wu, L. Lian, M. Wei. Synthesis of MoO 2 nanosheets by an ionic liquid route and its electrochemical properties. Journal of Alloys and Compounds 580, 358–362 (2013). DOI: http://dx.doi.org/10.1016/j.jallcom.2013.06.100 [17] J. Ni, Y. Zhao, L. Li, L. Mai. Ultrathin MoO 2 nanosheets for superior lithium storage. Nano Energy 11, 129–135 (2015). Doi: http://dx.doi.org/10.1016/j.nanoen.2014.10.027 [18] D. Çakr, F. M. Peeters, and C. Sevik. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Applied Physics Letters 104, 203110 (2014); DOI: https://aip.scitation.org/doi/10.1063/1.4879543 [19] M. Menderes, Y. Aierken, Deniz Çakır, Francois M. Peeters, and Cem Sevik. Promising Piezoelectric Performance of Single Layer Transition- Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015, 119, 23231−23237. DOI: 10.1021/acs.jpcc.5b06428 [20] J. A. Reyes and F. Cervantes. Spin-orbital effects in metal- dichalcogenide semiconducting monolayers. Scientific RepoRts, 6:24093, (2016) DOI: 10.1038/srep24093 [21] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu and J. Aarts. Long-range supercurrents through half-metallic ferromagnetic CrO2. Physical review B 82, 100501 (R) (2010) DOI: https://doi.org/10.1103/PhysRevB.82.100501 [22] G. X. Miao, P. LeClair and A. Gupta. Magnetic tunnel junctions based on CrO2/SnO2 epitaxial bilayers. APPLIED PHYSICS LETTERS 89, 022511 (2006) DOI: http://dx.doi.org/10.1063/1.2216109 [23] S. Choudhary and M. Varshney. First-Principles Study of Spin Transport in CrO 2 –CNT–CrO 2 Magnetic Tunnel Junction. J. Supercond Nov Magn 28:3141–3145 (2015). DOI: https://doi.org/10.1007/s10948-015-3142-2 [24] R. B. Rakhi, D. H. Nagaraju, P. Beaujuge and H. N. Alshareef. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte, Electrochimica Acta, 220, 601-608 (2016). DOI: http://dx.doi.org/10.1016/j.electacta.2016.10.109 [25] K. G. West, J. W. Lu, L. He, D. Kirkwood, W. Chen, T. P. Adl, M. S. Osofsky, S. B. Qadri, R. Hull and S. A. Wolf. Ferromagnetism in rutile structure Cr doped VO 2 thin films prepared by reactive bias target ion beam deposition. J Superconductivity Novel Magn 21 : 87–92 (2008). DOI: https://doi.org/10.1007/s10948-007-0303-y [26] B. L. Brown, M. Lee, P. G. Clem, C. D. Nordquist, T. S. Jordan, S. L. Wolfley, D. Leonhardt, C. Edney, and J. A. Custer. Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films. Journal of Applied Physics 113, 173704 (2013) DOI: http://dx.doi.org/10.1063/1.4803551 [27] G. R. Khan, K. Asokan and B. Ahmad. Room temperature tunability of Mo-doped VO 2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 625, 155–162 (2017). DOI: http://dx.doi.org/10.1016/j.tsf.2017.02.006 [28] P. Phoempoon and L. Sikong. Synthesis of Thermochromic Mo-Doped VO 2 Particles. Materials Science Forum. ISSN: 1662-9752, Vol. 867, pp 88-92 (2016) DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.867.88 [29] D. Liu, H. Cheng, X. Xing, C. Zhang and W. Zheng. Thermochromic properties of W-doped VO 2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Physics & Technology 77, 339–343 (2016). DOI: http://dx.doi.org/10.1016/j.infrared.2016.06.019 [30] G. Pan, J. Yin, K. Ji, X. Li, X. Cheng, H. Jin and J. Liu. Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method. Scientific Reports 7: 6132 (2017). DOI: 10.1038/s41598-017-05229-9 [31] J. Zou, X. Chen and L. Xiao. Phase transition performance recovery of W-doped VO2 by annealing treatment. Mater. Res. Express 5, 065055 (2018). DOI: https://doi.org/10.1088/2053-1591/aacd8c [32] C. Ataca, H. Şahin, and S. Ciraci. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure . J. Phys. Chem. C, 116, 8983−8999 (2012). DOI: dx.doi.org/10.1021/jp212558p [33] F. A. Rasmussen and K. S. Thygesen. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. Phys. Chem. C (2015).119:13169-13183 DOI: 10.1021/acs.jpcc.5b02950 [34] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev, 136(3B): B 864, (1964) DOI: https://doi.org/10.1103/PhysRev.136.B864 [35] W. Kohn and L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev, 140 (4A): A1133, (1965) DOI: https://doi.org/10.1103/PhysRev.140.A1133 [36] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21 395502 (2009); http://www.quantum-espresso.org, doi:10.1088/0953-8984/21/39/395502 [37] M. Born; J. R. Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457–484. doi:10.1002/andp.19273892002 [38] K. Burke and Friends. The ABC of DFT. Department of Chemistry, University of California, Irvine, CA 92697 (2007) Recuperado de: http://dft.uci.edu/doc/g1.pdf [39] J. P. Perdew, a. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B Volume 23, number 10 -15 (1981) DOI: https://doi.org/10.1103/PhysRevB.23.5048 [40] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 18, 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865 [41] D. R. Hamann, M. Schlüter and C. Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43: 1194, (1979) DOI: https://doi.org/10.1103/PhysRevLett.43.1494 [42] G. B. Bachelet, D. R. Hamann and M. Schlüter. Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26: 4199, (1982) DOI: https://doi.org/10.1103/PhysRevB.26.4199 [43] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, (1990). DOI: https://doi.org/10.1103/PhysRevB.41.7892 [44] K. Laasonen, R. Car, C. Lee and D. Vanderbilt. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, (1991) DOI: https://doi.org/10.1103/PhysRevB.43.6796 [45] K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, (1993) DOI:https://doi.org/10.1103/PhysRevB.47.10142 [46] C. Ortega López, Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN, Tesis Doctoral, Universidad Nacional de Colombia, Departamento de Física, Sede Bogotá, 2009. [47] M. Methfessel and A.T. Paxton, Ibid., 40, No. 6, 3616 (1989).Google Scholar. 8. R. N. Silver and H. Röder, Int. J. Mod. Phys. C, 5, 735 (1994). [48] P. E. Blöchl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 – Published 15 June 1994 [49] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, ``A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu'', J. Chem. Phys. 132, 154104 (2010). [50] Charles Kittel. (2005) Introduction to Solid State Physics, Jhon Wiley & Sons, Inc. 8th Edition, ISBN: 978-0-471-41526-8 pg. 50 [51] M. Javaid, S. P. Russo, K. Kalantar, A. D. Greentree, and D. W. Drumm. Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electron. Struct. 1 (2019) 015005 DOI: https://doi.org/10.1088/2516-1075/aadf44 [52] Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. (1990). "Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3". Physical Review B. 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. doi:10.1103/physrevb.41.4993. [53] G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger. "Chromium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. p-168-169, doi:10.1002/14356007.a07_067. [54] A. Bolzan, B. Kennedy and C. Howard. Neutron Powder Diffraction Study of Molybdenum and Tungsten Dioxides. Australian Journal of Chemistry 48(8) 1473 - 1477 (1995) DOI: https://doi.org/10.1071/CH9951473 [55] J. Jung, C. H. Park, J. Ihm. A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Lett., 18, 5, 2759-2765 (2018) DOI: 10.1021/acs.nanolett.7b04201 [56] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao Chen, Lain-Jong, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei Chen & Andrew T.S. Wee. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications 6:6298 · February 2015 DOI: 10.1038/ncomms7298 [57] Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2 . Phys. Rev. B 83, 245213 (2011). DOI: https://doi.org/10.1103/PhysRevB.83.245213 [58] P. Manchanda and R. Skomski. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism. (2016) J. Phys.: Condens. Matter 28 064002. DOI: 10.1088/0953-8984/28/6/064002 [59] N.F. Andriambelaza, R.E. Mapasha, N. Chetty. Band Gap Engineering of a MoS 2 Monolayer through Oxygen Alloying: an Ab-Initio Study. Nanotechnology, 29: 50 (2018) DOI:10.1088/1361-6528/aae1e4 [60] Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, Volume 5, Issue 1, pp.17-26 (1921) DOI: 10.1007/BF01349680 [61] Denton, A.R. and Ashcroft, N.W. Vegard’s Law. Physical Review A, 43, 3161-3164. (1991) http://dx.doi.org/10.1103/PhysRevA.43.3161 [62] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 47, 1300 (1967); doi: 10.1063/1.1712084 |
dc.rights.spa.fl_str_mv |
Copyright Universidad de Córdoba, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
rights_invalid_str_mv |
Copyright Universidad de Córdoba, 2020 https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Montería, Córdoba |
dc.publisher.none.fl_str_mv |
Universidad de Córdoba |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.program.spa.fl_str_mv |
Maestría en Ciencias Físicas |
publisher.none.fl_str_mv |
Universidad de Córdoba |
institution |
Universidad de Córdoba |
bitstream.url.fl_str_mv |
https://repositorio.unicordoba.edu.co/bitstreams/3b19550d-e8f9-47dd-892c-5b0c4bda6338/download https://repositorio.unicordoba.edu.co/bitstreams/07997454-a145-48ea-a3f4-1525c4ab5531/download https://repositorio.unicordoba.edu.co/bitstreams/0955530d-c5a3-427c-9075-baeeec5507de/download https://repositorio.unicordoba.edu.co/bitstreams/31e0c22b-f820-42bf-9f61-33ed60901fd5/download https://repositorio.unicordoba.edu.co/bitstreams/b4828856-add8-4f02-b5d4-5591d34139ef/download https://repositorio.unicordoba.edu.co/bitstreams/7cc4cf41-091d-4fb9-9e5b-57e0670b4849/download https://repositorio.unicordoba.edu.co/bitstreams/8dd88624-1d0d-4cf8-984a-b18f25f44b20/download |
bitstream.checksum.fl_str_mv |
9f880083259fb0b079295bc52e43a8f2 c5a98e88cbbc3bac8c7761311c77ed90 2f9959eaf5b71fae44bbf9ec84150c7a 7407ac561e0b83307d8f5b4d52ffd118 19fade9b43bb9282a36b5671cbd3a0e5 fee2414be70a88149c863227aae3ee62 e63b23d7643bd81a8ed0ff859aa1e61e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Córdoba |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1839636195553837056 |
spelling |
Ortega López, Cesar31f464ec-e77f-4e98-a7e6-00f948ccc3b2-1Murillo García, Jean Fredbf362242-ed94-481b-be6f-3debc5e9bb7e-1Humánez Tobar, Ángela015fe4b-45db-4deb-bf5d-8dc0df60dc86-1Montería, Córdoba2020-10-20T21:28:51Z2020-10-20T21:28:51Z2020-06-21https://repositorio.unicordoba.edu.co/handle/ucordoba/3454Se estudian las propiedades estructurales, electrónicas y la estabilidad energética de los dióxidos VO2, CrO2, MoO2 y WO2 en la fase estructural 2H en volumen y de las monocapas ternarias basadas en dióxidos de metales de transición MTxV1-xO2 (con MT=Cr, Mo y W; x= 0, 0.25, 0.50, 0.75 y 1) en estructura H, mediante la Teoría del Funcional de la Densidad (Density Functional Theory: DFT) usando pseudopotenciales ultrasuaves y una base de ondas planas como se implementa en el paquete Quantum-ESPRESSO. Para la interacción electrón-electrón se usó la aproximación de Gradiente Generalizado (GGA) de Perdew-Burke-Ernzerhof (PBE). Se determina, que tanto los sistemas volumétricos como las aleaciones bidimensionales son energéticamente estables, siendo los volumétricos más estables que sus monocapas correspondientes, como era de esperarse. A través de la densidad de estados y el diagrama de bandas electrónicas, se establece que: a) la monocapa original o pura (prístina) VO2 es metálica y magnética, mientras que las monocapas originales CrO2, MoO2 y WO2 son semiconductoras y no magnéticas; b) Las aleaciones Mo0.25V0.75O2 y W0.25V0.75O2 son metálicas y magnéticas, mientras que la aleación Cr0.25V0.75O2 es semimetálico (half-metallic) y magnética. Esta magnetización débil, con valores de 0.08µB/átomo, 0.03 µB/átomo, y 0.09 µB/átomo para el Cr0.25V0.75O2, el Mo0.25V0.75O2 y el W0.25V0.75O2 respectivamente, se debe principalmente a la hibridación de los orbitales p-O y d-V (o más preciso, a la interacción de intercambio entre los momentos magnéticos atómicos vecinos para alinearse paralelamente entre sí: ferromagnetismo) en las aleaciones precitadas, respectivamente. Las aleaciones con concentraciones x=0.50 y 0.75 muestran magnetización nula, debido a la compensación de los orbitales arriba (up) y abajo (down) para condiciones ricas en Cr, Mo, W y moderadas en V. El comportamiento metálico de las aleaciones, es causado, principalmente, por los orbitales p del Oxígeno (p-O), y por el orbital d del vanadio, cromo, molibdeno y tungsteno, es decir, d-V, d-Cr, d-Mo y d-W, en cada aleación respectiva.Resumen ...............................................................................................................................................91. Introducción ...............................................................................................................................102. Antecedentes ..............................................................................................................................113. Justificación ...............................................................................................................................134. Planteamiento del problema .......................................................................................................155. Objetivos ....................................................................................................................................165.1. Objetivo general .................................................................................................................165.2. Objetivos específicos .........................................................................................................166. Referente teórico ........................................................................................................................176.1. Hamiltoniano del problema ................................................................................................176.2. Teoría del funcional de la densidad (DFT) ........................................................................186.2.1. Aproximación de densidad local (LDA) ..........................................................................196.2.2. Aproximación de gradiente generalizado (GGA) ...............................196.3. Pseudopotenciales y Ondas Planas ....................................................................................206.3.1. Pseudopotenciales que conservan la norma .............................206.3.2. Pseudopotenciales ultrasuaves .........................................................................................206.4. Ciclo de autoconsistencia ...................................................................................................217. Metodología ...............................................................................................................................238. Análisis de los resultados ...........................................................................................................258.1. Dióxidos VO2, CrO2, MoO2 y WO2 en el volumen ............................................................258.1.1. Resultados estructurales y estabilidad energética en el volumen .....................................268.1.2. Carácter electrónico en el volumen ..................................................................................298.2. Monocapas prístinas VO2, CrO2, MoO2 y WO2 ................................................................338.2.1. Resultados estructurales y estabilidad energética monocapas prístinas ...........................348.2.2. Carácter electrónico de las monocapas prístinas .................368.3. Aleaciones 2D MTxV1-xO2 con MT: Cr, Mo y W; x: 0.25, 0.50 y 0.75 ......388.3.1. Resultados estructurales de las aleaciones ..............388.3.2. Carácter electrónico de las aleaciones..............................................................................449. Conclusiones ..............................................................................................................................53Anexos ...............................................................................................................................................55Anexo A: Los grupos espaciales considerados ....................................55A1. Grupo espacial P-6m2 (#187) .............................................................................................55A2. Grupo espacial P63/mmc (#194) .........................................................................................55Anexo B: Optimizaciones ..............................................................................................................56Anexo C: Archivos de entrada .......................................................................................................59Referencias bibliográficas ..................................................................................................................71MaestríaMagíster en Ciencias FísicasTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMaestría en Ciencias FísicasCopyright Universidad de Córdoba, 2020https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_16ecNuevas aleaciones ternarias 2D basadas en dióxidos de metales de transiciónTrabajo de grado - Maestríainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTexthttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85[1] Jie Dang, Yijie Wu, Zepeng Lv, Xuewei Lv. Preparation of tungsten carbides by reducing and carbonizing WO 2 with CO. Journal of Alloys and Compounds 745 (2018) 421e429 DOI: https://doi.org/10.1016/j.jallcom.2018.02.224[2] Zeng Fan, Zhang Wei-Bing, and Tang Bi-Yu. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX 2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin. Phys. B Vol. 24, No. 9 (2015) 097103 DOI: 10.1088/1674-1056/24/9/097103[3] Z. Chen, J. Cao, L. Yang, W. Yin and X. Wei. The unique photocatalysis properties of 2D vertical MoO 2 /WO 2 heterostructure: A first-principles study. Journal of Physics D: Applied Physics, 51, 26 (2018) https://doi.org/10.1088/1361-6463/aac7d5[4] N. Dukstiene, D. Sinkeviciute, A. Guobiene. Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2∣glass plate. Cent. Eur. J. Chem. 10(4) (2012) 1106-1118 DOI: 10.2478/s11532-012-0012-7[5] Jingyan NIAN, Liwei CHEN, Zhiguang GUO, Weimin LIU. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction 5(1): 23–31 (2017). DOI 10.1007/s40544-016-0128-4[6] A. Anguelouch, A. Gupta, Xiao Gang, D.W. Abraham, Y. Ji, S. Ingvarsson, C. L. Chien. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys Rev B 2001, 64:180408R. DOI: https://doi.org/10.1103/PhysRevB.64.180408[7] V. Srivastava, S. Sanyal, M. Rajagopalan. First principles study of pressure induced magnetic trasition in CrO2. Indian Journal of Pure & Applied Physics. 46. 2008. 397-399.[8] K. Suzuki and P. M. Tedrow. Resistivity and magnetotransport in CrO2 films. Phys. Rev. B 58, (1998) 11597 DOI: https://doi.org/10.1103/PhysRevB.58.11597[9] M. Soltani, A. B. Kaye. Chapter 13. Properties and Applications of Thermochromic Vanadium Dioxide Smart Coating. Intelligent Coatings for Corrosion Control, pp.461-490 (2015) DOI: 10.1016/B978-0-12-411467-8.00013-1[10] M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri. Optical switching in VO2 films by below-gap excitation. Appl. Phys. Lett. 92, 181904 (2008); https://doi.org/10.1063/1.2921784[11] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 306 (5696) : 666-9. (2004). DOI:10.1126/science.1102896[12] M. A. K. L. Dissanayake and L. L. Chase. Optical properties of CrO2, MoO2, and WO2 in the range 0.2-6 eV. Phys. Rev. B 18, 6872 (1978) DOI https://doi.org/10.1103/PhysRevB.18.6872[13] R.S. Patil, M.D. Uplane and P.S. Patil. Structural and optical properties of electrodeposited molybdenum oxide thin films. Applied Surface Science 252, 8050–8056. (2006) DOI: https://doi.org/10.1016/j.apsusc.2005.10.016[14] R. Prakash, D. M. Phase, R. J. Choudhary and R. Kumar. Structural, electrical, and magnetic properties of Mo1−xFexO2 (x=0–0.05) thin films grown by pulsed laser ablation. Journal of Applied Physics 103, 043712 (2008) DOI: https://doi.org/10.1063/1.2885143[15] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, and J. Miao. Ultrathin MoO 2 nanosheets with good thermal stability and high conductivity. AIP Advances 7, 025015 (2017) DOI: https://doi.org/10.1063/1.4977543[16] H. Zhang, L. Zeng, X. Wu, L. Lian, M. Wei. Synthesis of MoO 2 nanosheets by an ionic liquid route and its electrochemical properties. Journal of Alloys and Compounds 580, 358–362 (2013). DOI: http://dx.doi.org/10.1016/j.jallcom.2013.06.100[17] J. Ni, Y. Zhao, L. Li, L. Mai. Ultrathin MoO 2 nanosheets for superior lithium storage. Nano Energy 11, 129–135 (2015). Doi: http://dx.doi.org/10.1016/j.nanoen.2014.10.027[18] D. Çakr, F. M. Peeters, and C. Sevik. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Applied Physics Letters 104, 203110 (2014); DOI: https://aip.scitation.org/doi/10.1063/1.4879543[19] M. Menderes, Y. Aierken, Deniz Çakır, Francois M. Peeters, and Cem Sevik. Promising Piezoelectric Performance of Single Layer Transition- Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015, 119, 23231−23237. DOI: 10.1021/acs.jpcc.5b06428[20] J. A. Reyes and F. Cervantes. Spin-orbital effects in metal- dichalcogenide semiconducting monolayers. Scientific RepoRts, 6:24093, (2016) DOI: 10.1038/srep24093[21] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu and J. Aarts. Long-range supercurrents through half-metallic ferromagnetic CrO2. Physical review B 82, 100501 (R) (2010) DOI: https://doi.org/10.1103/PhysRevB.82.100501[22] G. X. Miao, P. LeClair and A. Gupta. Magnetic tunnel junctions based on CrO2/SnO2 epitaxial bilayers. APPLIED PHYSICS LETTERS 89, 022511 (2006) DOI: http://dx.doi.org/10.1063/1.2216109[23] S. Choudhary and M. Varshney. First-Principles Study of Spin Transport in CrO 2 –CNT–CrO 2 Magnetic Tunnel Junction. J. Supercond Nov Magn 28:3141–3145 (2015). DOI: https://doi.org/10.1007/s10948-015-3142-2[24] R. B. Rakhi, D. H. Nagaraju, P. Beaujuge and H. N. Alshareef. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte, Electrochimica Acta, 220, 601-608 (2016). DOI: http://dx.doi.org/10.1016/j.electacta.2016.10.109[25] K. G. West, J. W. Lu, L. He, D. Kirkwood, W. Chen, T. P. Adl, M. S. Osofsky, S. B. Qadri, R. Hull and S. A. Wolf. Ferromagnetism in rutile structure Cr doped VO 2 thin films prepared by reactive bias target ion beam deposition. J Superconductivity Novel Magn 21 : 87–92 (2008). DOI: https://doi.org/10.1007/s10948-007-0303-y[26] B. L. Brown, M. Lee, P. G. Clem, C. D. Nordquist, T. S. Jordan, S. L. Wolfley, D. Leonhardt, C. Edney, and J. A. Custer. Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films. Journal of Applied Physics 113, 173704 (2013) DOI: http://dx.doi.org/10.1063/1.4803551[27] G. R. Khan, K. Asokan and B. Ahmad. Room temperature tunability of Mo-doped VO 2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 625, 155–162 (2017). DOI: http://dx.doi.org/10.1016/j.tsf.2017.02.006[28] P. Phoempoon and L. Sikong. Synthesis of Thermochromic Mo-Doped VO 2 Particles. Materials Science Forum. ISSN: 1662-9752, Vol. 867, pp 88-92 (2016) DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.867.88[29] D. Liu, H. Cheng, X. Xing, C. Zhang and W. Zheng. Thermochromic properties of W-doped VO 2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Physics & Technology 77, 339–343 (2016). DOI: http://dx.doi.org/10.1016/j.infrared.2016.06.019[30] G. Pan, J. Yin, K. Ji, X. Li, X. Cheng, H. Jin and J. Liu. Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method. Scientific Reports 7: 6132 (2017). DOI: 10.1038/s41598-017-05229-9[31] J. Zou, X. Chen and L. Xiao. Phase transition performance recovery of W-doped VO2 by annealing treatment. Mater. Res. Express 5, 065055 (2018). DOI: https://doi.org/10.1088/2053-1591/aacd8c[32] C. Ataca, H. Şahin, and S. Ciraci. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure . J. Phys. Chem. C, 116, 8983−8999 (2012). DOI: dx.doi.org/10.1021/jp212558p[33] F. A. Rasmussen and K. S. Thygesen. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. Phys. Chem. C (2015).119:13169-13183 DOI: 10.1021/acs.jpcc.5b02950[34] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev, 136(3B): B 864, (1964) DOI: https://doi.org/10.1103/PhysRev.136.B864[35] W. Kohn and L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev, 140 (4A): A1133, (1965) DOI: https://doi.org/10.1103/PhysRev.140.A1133[36] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21 395502 (2009); http://www.quantum-espresso.org, doi:10.1088/0953-8984/21/39/395502[37] M. Born; J. R. Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457–484. doi:10.1002/andp.19273892002[38] K. Burke and Friends. The ABC of DFT. Department of Chemistry, University of California, Irvine, CA 92697 (2007) Recuperado de: http://dft.uci.edu/doc/g1.pdf[39] J. P. Perdew, a. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B Volume 23, number 10 -15 (1981) DOI: https://doi.org/10.1103/PhysRevB.23.5048[40] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 18, 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865[41] D. R. Hamann, M. Schlüter and C. Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43: 1194, (1979) DOI: https://doi.org/10.1103/PhysRevLett.43.1494[42] G. B. Bachelet, D. R. Hamann and M. Schlüter. Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26: 4199, (1982) DOI: https://doi.org/10.1103/PhysRevB.26.4199[43] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, (1990). DOI: https://doi.org/10.1103/PhysRevB.41.7892[44] K. Laasonen, R. Car, C. Lee and D. Vanderbilt. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, (1991) DOI: https://doi.org/10.1103/PhysRevB.43.6796[45] K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, (1993) DOI:https://doi.org/10.1103/PhysRevB.47.10142[46] C. Ortega López, Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN, Tesis Doctoral, Universidad Nacional de Colombia, Departamento de Física, Sede Bogotá, 2009.[47] M. Methfessel and A.T. Paxton, Ibid., 40, No. 6, 3616 (1989).Google Scholar. 8. R. N. Silver and H. Röder, Int. J. Mod. Phys. C, 5, 735 (1994).[48] P. E. Blöchl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 – Published 15 June 1994[49] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, ``A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu'', J. Chem. Phys. 132, 154104 (2010).[50] Charles Kittel. (2005) Introduction to Solid State Physics, Jhon Wiley & Sons, Inc. 8th Edition, ISBN: 978-0-471-41526-8 pg. 50[51] M. Javaid, S. P. Russo, K. Kalantar, A. D. Greentree, and D. W. Drumm. Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electron. Struct. 1 (2019) 015005 DOI: https://doi.org/10.1088/2516-1075/aadf44[52] Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. (1990). "Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3". Physical Review B. 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. doi:10.1103/physrevb.41.4993.[53] G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger. "Chromium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. p-168-169, doi:10.1002/14356007.a07_067.[54] A. Bolzan, B. Kennedy and C. Howard. Neutron Powder Diffraction Study of Molybdenum and Tungsten Dioxides. Australian Journal of Chemistry 48(8) 1473 - 1477 (1995) DOI: https://doi.org/10.1071/CH9951473[55] J. Jung, C. H. Park, J. Ihm. A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Lett., 18, 5, 2759-2765 (2018) DOI: 10.1021/acs.nanolett.7b04201[56] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao Chen, Lain-Jong, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei Chen & Andrew T.S. Wee. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications 6:6298 · February 2015 DOI: 10.1038/ncomms7298[57] Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2 . Phys. Rev. B 83, 245213 (2011). DOI: https://doi.org/10.1103/PhysRevB.83.245213[58] P. Manchanda and R. Skomski. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism. (2016) J. Phys.: Condens. Matter 28 064002. DOI: 10.1088/0953-8984/28/6/064002[59] N.F. Andriambelaza, R.E. Mapasha, N. Chetty. Band Gap Engineering of a MoS 2 Monolayer through Oxygen Alloying: an Ab-Initio Study. Nanotechnology, 29: 50 (2018) DOI:10.1088/1361-6528/aae1e4[60] Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, Volume 5, Issue 1, pp.17-26 (1921) DOI: 10.1007/BF01349680[61] Denton, A.R. and Ashcroft, N.W. Vegard’s Law. Physical Review A, 43, 3161-3164. (1991) http://dx.doi.org/10.1103/PhysRevA.43.3161[62] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 47, 1300 (1967); doi: 10.1063/1.1712084AleacionesMonocapasPropiedades electrónicasEstabilidad energéticaDFTAlloysMonolayersElectronic propertiesEnergy stabilityDFTPublicationORIGINALHumanezTobarÁngel.pdfHumanezTobarÁngel.pdfTrabajo de grado de Maestría en Ciencias Físicas basado en la Teoría del Funcional de la Densidadapplication/pdf4425292https://repositorio.unicordoba.edu.co/bitstreams/3b19550d-e8f9-47dd-892c-5b0c4bda6338/download9f880083259fb0b079295bc52e43a8f2MD51Formato de Autorización Publicación en Repositorio.pdfFormato de Autorización Publicación en Repositorio.pdfapplication/pdf501716https://repositorio.unicordoba.edu.co/bitstreams/07997454-a145-48ea-a3f4-1525c4ab5531/downloadc5a98e88cbbc3bac8c7761311c77ed90MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicordoba.edu.co/bitstreams/0955530d-c5a3-427c-9075-baeeec5507de/download2f9959eaf5b71fae44bbf9ec84150c7aMD53TEXTHumanezTobarÁngel.pdf.txtHumanezTobarÁngel.pdf.txtExtracted texttext/plain123516https://repositorio.unicordoba.edu.co/bitstreams/31e0c22b-f820-42bf-9f61-33ed60901fd5/download7407ac561e0b83307d8f5b4d52ffd118MD54Formato de Autorización Publicación en Repositorio.pdf.txtFormato de Autorización Publicación en Repositorio.pdf.txtExtracted texttext/plain3830https://repositorio.unicordoba.edu.co/bitstreams/b4828856-add8-4f02-b5d4-5591d34139ef/download19fade9b43bb9282a36b5671cbd3a0e5MD56THUMBNAILHumanezTobarÁngel.pdf.jpgHumanezTobarÁngel.pdf.jpgGenerated Thumbnailimage/jpeg4277https://repositorio.unicordoba.edu.co/bitstreams/7cc4cf41-091d-4fb9-9e5b-57e0670b4849/downloadfee2414be70a88149c863227aae3ee62MD55Formato de Autorización Publicación en Repositorio.pdf.jpgFormato de Autorización Publicación en Repositorio.pdf.jpgGenerated Thumbnailimage/jpeg9663https://repositorio.unicordoba.edu.co/bitstreams/8dd88624-1d0d-4cf8-984a-b18f25f44b20/downloade63b23d7643bd81a8ed0ff859aa1e61eMD57ucordoba/3454oai:repositorio.unicordoba.edu.co:ucordoba/34542024-06-20 10:57:02.5https://creativecommons.org/licenses/by-nc/4.0/Copyright Universidad de Córdoba, 2020open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |