Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición

Se estudian las propiedades estructurales, electrónicas y la estabilidad energética de los dióxidos VO2, CrO2, MoO2 y WO2 en la fase estructural 2H en volumen y de las monocapas ternarias basadas en dióxidos de metales de transición MTxV1-xO2 (con MT=Cr, Mo y W; x= 0, 0.25, 0.50, 0.75 y 1) en estruc...

Full description

Autores:
Humánez Tobar, Ángel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/3454
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/3454
Palabra clave:
Aleaciones
Monocapas
Propiedades electrónicas
Estabilidad energética
DFT
Alloys
Monolayers
Electronic properties
Energy stability
DFT
Rights
restrictedAccess
License
Copyright Universidad de Córdoba, 2020
id UCORDOBA2_903aac368cf472077a955003c8bff6ff
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/3454
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
title Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
spellingShingle Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
Aleaciones
Monocapas
Propiedades electrónicas
Estabilidad energética
DFT
Alloys
Monolayers
Electronic properties
Energy stability
DFT
title_short Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
title_full Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
title_fullStr Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
title_full_unstemmed Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
title_sort Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
dc.creator.fl_str_mv Humánez Tobar, Ángel
dc.contributor.advisor.spa.fl_str_mv Ortega López, Cesar
Murillo García, Jean Fred
dc.contributor.author.spa.fl_str_mv Humánez Tobar, Ángel
dc.subject.proposal.spa.fl_str_mv Aleaciones
Monocapas
Propiedades electrónicas
Estabilidad energética
DFT
topic Aleaciones
Monocapas
Propiedades electrónicas
Estabilidad energética
DFT
Alloys
Monolayers
Electronic properties
Energy stability
DFT
dc.subject.keywords.eng.fl_str_mv Alloys
Monolayers
Electronic properties
Energy stability
DFT
description Se estudian las propiedades estructurales, electrónicas y la estabilidad energética de los dióxidos VO2, CrO2, MoO2 y WO2 en la fase estructural 2H en volumen y de las monocapas ternarias basadas en dióxidos de metales de transición MTxV1-xO2 (con MT=Cr, Mo y W; x= 0, 0.25, 0.50, 0.75 y 1) en estructura H, mediante la Teoría del Funcional de la Densidad (Density Functional Theory: DFT) usando pseudopotenciales ultrasuaves y una base de ondas planas como se implementa en el paquete Quantum-ESPRESSO. Para la interacción electrón-electrón se usó la aproximación de Gradiente Generalizado (GGA) de Perdew-Burke-Ernzerhof (PBE). Se determina, que tanto los sistemas volumétricos como las aleaciones bidimensionales son energéticamente estables, siendo los volumétricos más estables que sus monocapas correspondientes, como era de esperarse. A través de la densidad de estados y el diagrama de bandas electrónicas, se establece que: a) la monocapa original o pura (prístina) VO2 es metálica y magnética, mientras que las monocapas originales CrO2, MoO2 y WO2 son semiconductoras y no magnéticas; b) Las aleaciones Mo0.25V0.75O2 y W0.25V0.75O2 son metálicas y magnéticas, mientras que la aleación Cr0.25V0.75O2 es semimetálico (half-metallic) y magnética. Esta magnetización débil, con valores de 0.08µB/átomo, 0.03 µB/átomo, y 0.09 µB/átomo para el Cr0.25V0.75O2, el Mo0.25V0.75O2 y el W0.25V0.75O2 respectivamente, se debe principalmente a la hibridación de los orbitales p-O y d-V (o más preciso, a la interacción de intercambio entre los momentos magnéticos atómicos vecinos para alinearse paralelamente entre sí: ferromagnetismo) en las aleaciones precitadas, respectivamente. Las aleaciones con concentraciones x=0.50 y 0.75 muestran magnetización nula, debido a la compensación de los orbitales arriba (up) y abajo (down) para condiciones ricas en Cr, Mo, W y moderadas en V. El comportamiento metálico de las aleaciones, es causado, principalmente, por los orbitales p del Oxígeno (p-O), y por el orbital d del vanadio, cromo, molibdeno y tungsteno, es decir, d-V, d-Cr, d-Mo y d-W, en cada aleación respectiva.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-10-20T21:28:51Z
dc.date.available.spa.fl_str_mv 2020-10-20T21:28:51Z
dc.date.issued.spa.fl_str_mv 2020-06-21
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.spa.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/3454
url https://repositorio.unicordoba.edu.co/handle/ucordoba/3454
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] Jie Dang, Yijie Wu, Zepeng Lv, Xuewei Lv. Preparation of tungsten carbides by reducing and carbonizing WO 2 with CO. Journal of Alloys and Compounds 745 (2018) 421e429 DOI: https://doi.org/10.1016/j.jallcom.2018.02.224
[2] Zeng Fan, Zhang Wei-Bing, and Tang Bi-Yu. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX 2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin. Phys. B Vol. 24, No. 9 (2015) 097103 DOI: 10.1088/1674-1056/24/9/097103
[3] Z. Chen, J. Cao, L. Yang, W. Yin and X. Wei. The unique photocatalysis properties of 2D vertical MoO 2 /WO 2 heterostructure: A first-principles study. Journal of Physics D: Applied Physics, 51, 26 (2018) https://doi.org/10.1088/1361-6463/aac7d5
[4] N. Dukstiene, D. Sinkeviciute, A. Guobiene. Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2∣glass plate. Cent. Eur. J. Chem. 10(4) (2012) 1106-1118 DOI: 10.2478/s11532-012-0012-7
[5] Jingyan NIAN, Liwei CHEN, Zhiguang GUO, Weimin LIU. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction 5(1): 23–31 (2017). DOI 10.1007/s40544-016-0128-4
[6] A. Anguelouch, A. Gupta, Xiao Gang, D.W. Abraham, Y. Ji, S. Ingvarsson, C. L. Chien. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys Rev B 2001, 64:180408R. DOI: https://doi.org/10.1103/PhysRevB.64.180408
[7] V. Srivastava, S. Sanyal, M. Rajagopalan. First principles study of pressure induced magnetic trasition in CrO2. Indian Journal of Pure & Applied Physics. 46. 2008. 397-399.
[8] K. Suzuki and P. M. Tedrow. Resistivity and magnetotransport in CrO2 films. Phys. Rev. B 58, (1998) 11597 DOI: https://doi.org/10.1103/PhysRevB.58.11597
[9] M. Soltani, A. B. Kaye. Chapter 13. Properties and Applications of Thermochromic Vanadium Dioxide Smart Coating. Intelligent Coatings for Corrosion Control, pp.461-490 (2015) DOI: 10.1016/B978-0-12-411467-8.00013-1
[10] M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri. Optical switching in VO2 films by below-gap excitation. Appl. Phys. Lett. 92, 181904 (2008); https://doi.org/10.1063/1.2921784
[11] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 306 (5696) : 666-9. (2004). DOI:10.1126/science.1102896
[12] M. A. K. L. Dissanayake and L. L. Chase. Optical properties of CrO2, MoO2, and WO2 in the range 0.2-6 eV. Phys. Rev. B 18, 6872 (1978) DOI https://doi.org/10.1103/PhysRevB.18.6872
[13] R.S. Patil, M.D. Uplane and P.S. Patil. Structural and optical properties of electrodeposited molybdenum oxide thin films. Applied Surface Science 252, 8050–8056. (2006) DOI: https://doi.org/10.1016/j.apsusc.2005.10.016
[14] R. Prakash, D. M. Phase, R. J. Choudhary and R. Kumar. Structural, electrical, and magnetic properties of Mo1−xFexO2 (x=0–0.05) thin films grown by pulsed laser ablation. Journal of Applied Physics 103, 043712 (2008) DOI: https://doi.org/10.1063/1.2885143
[15] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, and J. Miao. Ultrathin MoO 2 nanosheets with good thermal stability and high conductivity. AIP Advances 7, 025015 (2017) DOI: https://doi.org/10.1063/1.4977543
[16] H. Zhang, L. Zeng, X. Wu, L. Lian, M. Wei. Synthesis of MoO 2 nanosheets by an ionic liquid route and its electrochemical properties. Journal of Alloys and Compounds 580, 358–362 (2013). DOI: http://dx.doi.org/10.1016/j.jallcom.2013.06.100
[17] J. Ni, Y. Zhao, L. Li, L. Mai. Ultrathin MoO 2 nanosheets for superior lithium storage. Nano Energy 11, 129–135 (2015). Doi: http://dx.doi.org/10.1016/j.nanoen.2014.10.027
[18] D. Çakr, F. M. Peeters, and C. Sevik. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Applied Physics Letters 104, 203110 (2014); DOI: https://aip.scitation.org/doi/10.1063/1.4879543
[19] M. Menderes, Y. Aierken, Deniz Çakır, Francois M. Peeters, and Cem Sevik. Promising Piezoelectric Performance of Single Layer Transition- Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015, 119, 23231−23237. DOI: 10.1021/acs.jpcc.5b06428
[20] J. A. Reyes and F. Cervantes. Spin-orbital effects in metal- dichalcogenide semiconducting monolayers. Scientific RepoRts, 6:24093, (2016) DOI: 10.1038/srep24093
[21] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu and J. Aarts. Long-range supercurrents through half-metallic ferromagnetic CrO2. Physical review B 82, 100501 (R) (2010) DOI: https://doi.org/10.1103/PhysRevB.82.100501
[22] G. X. Miao, P. LeClair and A. Gupta. Magnetic tunnel junctions based on CrO2/SnO2 epitaxial bilayers. APPLIED PHYSICS LETTERS 89, 022511 (2006) DOI: http://dx.doi.org/10.1063/1.2216109
[23] S. Choudhary and M. Varshney. First-Principles Study of Spin Transport in CrO 2 –CNT–CrO 2 Magnetic Tunnel Junction. J. Supercond Nov Magn 28:3141–3145 (2015). DOI: https://doi.org/10.1007/s10948-015-3142-2
[24] R. B. Rakhi, D. H. Nagaraju, P. Beaujuge and H. N. Alshareef. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte, Electrochimica Acta, 220, 601-608 (2016). DOI: http://dx.doi.org/10.1016/j.electacta.2016.10.109
[25] K. G. West, J. W. Lu, L. He, D. Kirkwood, W. Chen, T. P. Adl, M. S. Osofsky, S. B. Qadri, R. Hull and S. A. Wolf. Ferromagnetism in rutile structure Cr doped VO 2 thin films prepared by reactive bias target ion beam deposition. J Superconductivity Novel Magn 21 : 87–92 (2008). DOI: https://doi.org/10.1007/s10948-007-0303-y
[26] B. L. Brown, M. Lee, P. G. Clem, C. D. Nordquist, T. S. Jordan, S. L. Wolfley, D. Leonhardt, C. Edney, and J. A. Custer. Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films. Journal of Applied Physics 113, 173704 (2013) DOI: http://dx.doi.org/10.1063/1.4803551
[27] G. R. Khan, K. Asokan and B. Ahmad. Room temperature tunability of Mo-doped VO 2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 625, 155–162 (2017). DOI: http://dx.doi.org/10.1016/j.tsf.2017.02.006
[28] P. Phoempoon and L. Sikong. Synthesis of Thermochromic Mo-Doped VO 2 Particles. Materials Science Forum. ISSN: 1662-9752, Vol. 867, pp 88-92 (2016) DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.867.88
[29] D. Liu, H. Cheng, X. Xing, C. Zhang and W. Zheng. Thermochromic properties of W-doped VO 2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Physics & Technology 77, 339–343 (2016). DOI: http://dx.doi.org/10.1016/j.infrared.2016.06.019
[30] G. Pan, J. Yin, K. Ji, X. Li, X. Cheng, H. Jin and J. Liu. Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method. Scientific Reports 7: 6132 (2017). DOI: 10.1038/s41598-017-05229-9
[31] J. Zou, X. Chen and L. Xiao. Phase transition performance recovery of W-doped VO2 by annealing treatment. Mater. Res. Express 5, 065055 (2018). DOI: https://doi.org/10.1088/2053-1591/aacd8c
[32] C. Ataca, H. Şahin, and S. Ciraci. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure . J. Phys. Chem. C, 116, 8983−8999 (2012). DOI: dx.doi.org/10.1021/jp212558p
[33] F. A. Rasmussen and K. S. Thygesen. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. Phys. Chem. C (2015).119:13169-13183 DOI: 10.1021/acs.jpcc.5b02950
[34] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev, 136(3B): B 864, (1964) DOI: https://doi.org/10.1103/PhysRev.136.B864
[35] W. Kohn and L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev, 140 (4A): A1133, (1965) DOI: https://doi.org/10.1103/PhysRev.140.A1133
[36] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21 395502 (2009); http://www.quantum-espresso.org, doi:10.1088/0953-8984/21/39/395502
[37] M. Born; J. R. Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457–484. doi:10.1002/andp.19273892002
[38] K. Burke and Friends. The ABC of DFT. Department of Chemistry, University of California, Irvine, CA 92697 (2007) Recuperado de: http://dft.uci.edu/doc/g1.pdf
[39] J. P. Perdew, a. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B Volume 23, number 10 -15 (1981) DOI: https://doi.org/10.1103/PhysRevB.23.5048
[40] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 18, 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865
[41] D. R. Hamann, M. Schlüter and C. Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43: 1194, (1979) DOI: https://doi.org/10.1103/PhysRevLett.43.1494
[42] G. B. Bachelet, D. R. Hamann and M. Schlüter. Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26: 4199, (1982) DOI: https://doi.org/10.1103/PhysRevB.26.4199
[43] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, (1990). DOI: https://doi.org/10.1103/PhysRevB.41.7892
[44] K. Laasonen, R. Car, C. Lee and D. Vanderbilt. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, (1991) DOI: https://doi.org/10.1103/PhysRevB.43.6796
[45] K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, (1993) DOI:https://doi.org/10.1103/PhysRevB.47.10142
[46] C. Ortega López, Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN, Tesis Doctoral, Universidad Nacional de Colombia, Departamento de Física, Sede Bogotá, 2009.
[47] M. Methfessel and A.T. Paxton, Ibid., 40, No. 6, 3616 (1989).Google Scholar. 8. R. N. Silver and H. Röder, Int. J. Mod. Phys. C, 5, 735 (1994).
[48] P. E. Blöchl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 – Published 15 June 1994
[49] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, ``A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu'', J. Chem. Phys. 132, 154104 (2010).
[50] Charles Kittel. (2005) Introduction to Solid State Physics, Jhon Wiley & Sons, Inc. 8th Edition, ISBN: 978-0-471-41526-8 pg. 50
[51] M. Javaid, S. P. Russo, K. Kalantar, A. D. Greentree, and D. W. Drumm. Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electron. Struct. 1 (2019) 015005 DOI: https://doi.org/10.1088/2516-1075/aadf44
[52] Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. (1990). "Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3". Physical Review B. 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. doi:10.1103/physrevb.41.4993.
[53] G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger. "Chromium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. p-168-169, doi:10.1002/14356007.a07_067.
[54] A. Bolzan, B. Kennedy and C. Howard. Neutron Powder Diffraction Study of Molybdenum and Tungsten Dioxides. Australian Journal of Chemistry 48(8) 1473 - 1477 (1995) DOI: https://doi.org/10.1071/CH9951473
[55] J. Jung, C. H. Park, J. Ihm. A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Lett., 18, 5, 2759-2765 (2018) DOI: 10.1021/acs.nanolett.7b04201
[56] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao Chen, Lain-Jong, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei Chen & Andrew T.S. Wee. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications 6:6298 · February 2015 DOI: 10.1038/ncomms7298
[57] Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2 . Phys. Rev. B 83, 245213 (2011). DOI: https://doi.org/10.1103/PhysRevB.83.245213
[58] P. Manchanda and R. Skomski. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism. (2016) J. Phys.: Condens. Matter 28 064002. DOI: 10.1088/0953-8984/28/6/064002
[59] N.F. Andriambelaza, R.E. Mapasha, N. Chetty. Band Gap Engineering of a MoS 2 Monolayer through Oxygen Alloying: an Ab-Initio Study. Nanotechnology, 29: 50 (2018) DOI:10.1088/1361-6528/aae1e4
[60] Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, Volume 5, Issue 1, pp.17-26 (1921) DOI: 10.1007/BF01349680
[61] Denton, A.R. and Ashcroft, N.W. Vegard’s Law. Physical Review A, 43, 3161-3164. (1991) http://dx.doi.org/10.1103/PhysRevA.43.3161
[62] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 47, 1300 (1967); doi: 10.1063/1.1712084
dc.rights.spa.fl_str_mv Copyright Universidad de Córdoba, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
rights_invalid_str_mv Copyright Universidad de Córdoba, 2020
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Montería, Córdoba
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.program.spa.fl_str_mv Maestría en Ciencias Físicas
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/3b19550d-e8f9-47dd-892c-5b0c4bda6338/download
https://repositorio.unicordoba.edu.co/bitstreams/07997454-a145-48ea-a3f4-1525c4ab5531/download
https://repositorio.unicordoba.edu.co/bitstreams/0955530d-c5a3-427c-9075-baeeec5507de/download
https://repositorio.unicordoba.edu.co/bitstreams/31e0c22b-f820-42bf-9f61-33ed60901fd5/download
https://repositorio.unicordoba.edu.co/bitstreams/b4828856-add8-4f02-b5d4-5591d34139ef/download
https://repositorio.unicordoba.edu.co/bitstreams/7cc4cf41-091d-4fb9-9e5b-57e0670b4849/download
https://repositorio.unicordoba.edu.co/bitstreams/8dd88624-1d0d-4cf8-984a-b18f25f44b20/download
bitstream.checksum.fl_str_mv 9f880083259fb0b079295bc52e43a8f2
c5a98e88cbbc3bac8c7761311c77ed90
2f9959eaf5b71fae44bbf9ec84150c7a
7407ac561e0b83307d8f5b4d52ffd118
19fade9b43bb9282a36b5671cbd3a0e5
fee2414be70a88149c863227aae3ee62
e63b23d7643bd81a8ed0ff859aa1e61e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636195553837056
spelling Ortega López, Cesar31f464ec-e77f-4e98-a7e6-00f948ccc3b2-1Murillo García, Jean Fredbf362242-ed94-481b-be6f-3debc5e9bb7e-1Humánez Tobar, Ángela015fe4b-45db-4deb-bf5d-8dc0df60dc86-1Montería, Córdoba2020-10-20T21:28:51Z2020-10-20T21:28:51Z2020-06-21https://repositorio.unicordoba.edu.co/handle/ucordoba/3454Se estudian las propiedades estructurales, electrónicas y la estabilidad energética de los dióxidos VO2, CrO2, MoO2 y WO2 en la fase estructural 2H en volumen y de las monocapas ternarias basadas en dióxidos de metales de transición MTxV1-xO2 (con MT=Cr, Mo y W; x= 0, 0.25, 0.50, 0.75 y 1) en estructura H, mediante la Teoría del Funcional de la Densidad (Density Functional Theory: DFT) usando pseudopotenciales ultrasuaves y una base de ondas planas como se implementa en el paquete Quantum-ESPRESSO. Para la interacción electrón-electrón se usó la aproximación de Gradiente Generalizado (GGA) de Perdew-Burke-Ernzerhof (PBE). Se determina, que tanto los sistemas volumétricos como las aleaciones bidimensionales son energéticamente estables, siendo los volumétricos más estables que sus monocapas correspondientes, como era de esperarse. A través de la densidad de estados y el diagrama de bandas electrónicas, se establece que: a) la monocapa original o pura (prístina) VO2 es metálica y magnética, mientras que las monocapas originales CrO2, MoO2 y WO2 son semiconductoras y no magnéticas; b) Las aleaciones Mo0.25V0.75O2 y W0.25V0.75O2 son metálicas y magnéticas, mientras que la aleación Cr0.25V0.75O2 es semimetálico (half-metallic) y magnética. Esta magnetización débil, con valores de 0.08µB/átomo, 0.03 µB/átomo, y 0.09 µB/átomo para el Cr0.25V0.75O2, el Mo0.25V0.75O2 y el W0.25V0.75O2 respectivamente, se debe principalmente a la hibridación de los orbitales p-O y d-V (o más preciso, a la interacción de intercambio entre los momentos magnéticos atómicos vecinos para alinearse paralelamente entre sí: ferromagnetismo) en las aleaciones precitadas, respectivamente. Las aleaciones con concentraciones x=0.50 y 0.75 muestran magnetización nula, debido a la compensación de los orbitales arriba (up) y abajo (down) para condiciones ricas en Cr, Mo, W y moderadas en V. El comportamiento metálico de las aleaciones, es causado, principalmente, por los orbitales p del Oxígeno (p-O), y por el orbital d del vanadio, cromo, molibdeno y tungsteno, es decir, d-V, d-Cr, d-Mo y d-W, en cada aleación respectiva.Resumen ...............................................................................................................................................91. Introducción ...............................................................................................................................102. Antecedentes ..............................................................................................................................113. Justificación ...............................................................................................................................134. Planteamiento del problema .......................................................................................................155. Objetivos ....................................................................................................................................165.1. Objetivo general .................................................................................................................165.2. Objetivos específicos .........................................................................................................166. Referente teórico ........................................................................................................................176.1. Hamiltoniano del problema ................................................................................................176.2. Teoría del funcional de la densidad (DFT) ........................................................................186.2.1. Aproximación de densidad local (LDA) ..........................................................................196.2.2. Aproximación de gradiente generalizado (GGA) ...............................196.3. Pseudopotenciales y Ondas Planas ....................................................................................206.3.1. Pseudopotenciales que conservan la norma .............................206.3.2. Pseudopotenciales ultrasuaves .........................................................................................206.4. Ciclo de autoconsistencia ...................................................................................................217. Metodología ...............................................................................................................................238. Análisis de los resultados ...........................................................................................................258.1. Dióxidos VO2, CrO2, MoO2 y WO2 en el volumen ............................................................258.1.1. Resultados estructurales y estabilidad energética en el volumen .....................................268.1.2. Carácter electrónico en el volumen ..................................................................................298.2. Monocapas prístinas VO2, CrO2, MoO2 y WO2 ................................................................338.2.1. Resultados estructurales y estabilidad energética monocapas prístinas ...........................348.2.2. Carácter electrónico de las monocapas prístinas .................368.3. Aleaciones 2D MTxV1-xO2 con MT: Cr, Mo y W; x: 0.25, 0.50 y 0.75 ......388.3.1. Resultados estructurales de las aleaciones ..............388.3.2. Carácter electrónico de las aleaciones..............................................................................449. Conclusiones ..............................................................................................................................53Anexos ...............................................................................................................................................55Anexo A: Los grupos espaciales considerados ....................................55A1. Grupo espacial P-6m2 (#187) .............................................................................................55A2. Grupo espacial P63/mmc (#194) .........................................................................................55Anexo B: Optimizaciones ..............................................................................................................56Anexo C: Archivos de entrada .......................................................................................................59Referencias bibliográficas ..................................................................................................................71MaestríaMagíster en Ciencias FísicasTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMaestría en Ciencias FísicasCopyright Universidad de Córdoba, 2020https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_16ecNuevas aleaciones ternarias 2D basadas en dióxidos de metales de transiciónTrabajo de grado - Maestríainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTexthttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85[1] Jie Dang, Yijie Wu, Zepeng Lv, Xuewei Lv. Preparation of tungsten carbides by reducing and carbonizing WO 2 with CO. Journal of Alloys and Compounds 745 (2018) 421e429 DOI: https://doi.org/10.1016/j.jallcom.2018.02.224[2] Zeng Fan, Zhang Wei-Bing, and Tang Bi-Yu. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX 2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin. Phys. B Vol. 24, No. 9 (2015) 097103 DOI: 10.1088/1674-1056/24/9/097103[3] Z. Chen, J. Cao, L. Yang, W. Yin and X. Wei. The unique photocatalysis properties of 2D vertical MoO 2 /WO 2 heterostructure: A first-principles study. Journal of Physics D: Applied Physics, 51, 26 (2018) https://doi.org/10.1088/1361-6463/aac7d5[4] N. Dukstiene, D. Sinkeviciute, A. Guobiene. Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2∣glass plate. Cent. Eur. J. Chem. 10(4) (2012) 1106-1118 DOI: 10.2478/s11532-012-0012-7[5] Jingyan NIAN, Liwei CHEN, Zhiguang GUO, Weimin LIU. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction 5(1): 23–31 (2017). DOI 10.1007/s40544-016-0128-4[6] A. Anguelouch, A. Gupta, Xiao Gang, D.W. Abraham, Y. Ji, S. Ingvarsson, C. L. Chien. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys Rev B 2001, 64:180408R. DOI: https://doi.org/10.1103/PhysRevB.64.180408[7] V. Srivastava, S. Sanyal, M. Rajagopalan. First principles study of pressure induced magnetic trasition in CrO2. Indian Journal of Pure & Applied Physics. 46. 2008. 397-399.[8] K. Suzuki and P. M. Tedrow. Resistivity and magnetotransport in CrO2 films. Phys. Rev. B 58, (1998) 11597 DOI: https://doi.org/10.1103/PhysRevB.58.11597[9] M. Soltani, A. B. Kaye. Chapter 13. Properties and Applications of Thermochromic Vanadium Dioxide Smart Coating. Intelligent Coatings for Corrosion Control, pp.461-490 (2015) DOI: 10.1016/B978-0-12-411467-8.00013-1[10] M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri. Optical switching in VO2 films by below-gap excitation. Appl. Phys. Lett. 92, 181904 (2008); https://doi.org/10.1063/1.2921784[11] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 306 (5696) : 666-9. (2004). DOI:10.1126/science.1102896[12] M. A. K. L. Dissanayake and L. L. Chase. Optical properties of CrO2, MoO2, and WO2 in the range 0.2-6 eV. Phys. Rev. B 18, 6872 (1978) DOI https://doi.org/10.1103/PhysRevB.18.6872[13] R.S. Patil, M.D. Uplane and P.S. Patil. Structural and optical properties of electrodeposited molybdenum oxide thin films. Applied Surface Science 252, 8050–8056. (2006) DOI: https://doi.org/10.1016/j.apsusc.2005.10.016[14] R. Prakash, D. M. Phase, R. J. Choudhary and R. Kumar. Structural, electrical, and magnetic properties of Mo1−xFexO2 (x=0–0.05) thin films grown by pulsed laser ablation. Journal of Applied Physics 103, 043712 (2008) DOI: https://doi.org/10.1063/1.2885143[15] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, and J. Miao. Ultrathin MoO 2 nanosheets with good thermal stability and high conductivity. AIP Advances 7, 025015 (2017) DOI: https://doi.org/10.1063/1.4977543[16] H. Zhang, L. Zeng, X. Wu, L. Lian, M. Wei. Synthesis of MoO 2 nanosheets by an ionic liquid route and its electrochemical properties. Journal of Alloys and Compounds 580, 358–362 (2013). DOI: http://dx.doi.org/10.1016/j.jallcom.2013.06.100[17] J. Ni, Y. Zhao, L. Li, L. Mai. Ultrathin MoO 2 nanosheets for superior lithium storage. Nano Energy 11, 129–135 (2015). Doi: http://dx.doi.org/10.1016/j.nanoen.2014.10.027[18] D. Çakr, F. M. Peeters, and C. Sevik. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Applied Physics Letters 104, 203110 (2014); DOI: https://aip.scitation.org/doi/10.1063/1.4879543[19] M. Menderes, Y. Aierken, Deniz Çakır, Francois M. Peeters, and Cem Sevik. Promising Piezoelectric Performance of Single Layer Transition- Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015, 119, 23231−23237. DOI: 10.1021/acs.jpcc.5b06428[20] J. A. Reyes and F. Cervantes. Spin-orbital effects in metal- dichalcogenide semiconducting monolayers. Scientific RepoRts, 6:24093, (2016) DOI: 10.1038/srep24093[21] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu and J. Aarts. Long-range supercurrents through half-metallic ferromagnetic CrO2. Physical review B 82, 100501 (R) (2010) DOI: https://doi.org/10.1103/PhysRevB.82.100501[22] G. X. Miao, P. LeClair and A. Gupta. Magnetic tunnel junctions based on CrO2/SnO2 epitaxial bilayers. APPLIED PHYSICS LETTERS 89, 022511 (2006) DOI: http://dx.doi.org/10.1063/1.2216109[23] S. Choudhary and M. Varshney. First-Principles Study of Spin Transport in CrO 2 –CNT–CrO 2 Magnetic Tunnel Junction. J. Supercond Nov Magn 28:3141–3145 (2015). DOI: https://doi.org/10.1007/s10948-015-3142-2[24] R. B. Rakhi, D. H. Nagaraju, P. Beaujuge and H. N. Alshareef. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte, Electrochimica Acta, 220, 601-608 (2016). DOI: http://dx.doi.org/10.1016/j.electacta.2016.10.109[25] K. G. West, J. W. Lu, L. He, D. Kirkwood, W. Chen, T. P. Adl, M. S. Osofsky, S. B. Qadri, R. Hull and S. A. Wolf. Ferromagnetism in rutile structure Cr doped VO 2 thin films prepared by reactive bias target ion beam deposition. J Superconductivity Novel Magn 21 : 87–92 (2008). DOI: https://doi.org/10.1007/s10948-007-0303-y[26] B. L. Brown, M. Lee, P. G. Clem, C. D. Nordquist, T. S. Jordan, S. L. Wolfley, D. Leonhardt, C. Edney, and J. A. Custer. Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films. Journal of Applied Physics 113, 173704 (2013) DOI: http://dx.doi.org/10.1063/1.4803551[27] G. R. Khan, K. Asokan and B. Ahmad. Room temperature tunability of Mo-doped VO 2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 625, 155–162 (2017). DOI: http://dx.doi.org/10.1016/j.tsf.2017.02.006[28] P. Phoempoon and L. Sikong. Synthesis of Thermochromic Mo-Doped VO 2 Particles. Materials Science Forum. ISSN: 1662-9752, Vol. 867, pp 88-92 (2016) DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.867.88[29] D. Liu, H. Cheng, X. Xing, C. Zhang and W. Zheng. Thermochromic properties of W-doped VO 2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Physics & Technology 77, 339–343 (2016). DOI: http://dx.doi.org/10.1016/j.infrared.2016.06.019[30] G. Pan, J. Yin, K. Ji, X. Li, X. Cheng, H. Jin and J. Liu. Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method. Scientific Reports 7: 6132 (2017). DOI: 10.1038/s41598-017-05229-9[31] J. Zou, X. Chen and L. Xiao. Phase transition performance recovery of W-doped VO2 by annealing treatment. Mater. Res. Express 5, 065055 (2018). DOI: https://doi.org/10.1088/2053-1591/aacd8c[32] C. Ataca, H. Şahin, and S. Ciraci. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure . J. Phys. Chem. C, 116, 8983−8999 (2012). DOI: dx.doi.org/10.1021/jp212558p[33] F. A. Rasmussen and K. S. Thygesen. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. Phys. Chem. C (2015).119:13169-13183 DOI: 10.1021/acs.jpcc.5b02950[34] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev, 136(3B): B 864, (1964) DOI: https://doi.org/10.1103/PhysRev.136.B864[35] W. Kohn and L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev, 140 (4A): A1133, (1965) DOI: https://doi.org/10.1103/PhysRev.140.A1133[36] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21 395502 (2009); http://www.quantum-espresso.org, doi:10.1088/0953-8984/21/39/395502[37] M. Born; J. R. Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457–484. doi:10.1002/andp.19273892002[38] K. Burke and Friends. The ABC of DFT. Department of Chemistry, University of California, Irvine, CA 92697 (2007) Recuperado de: http://dft.uci.edu/doc/g1.pdf[39] J. P. Perdew, a. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B Volume 23, number 10 -15 (1981) DOI: https://doi.org/10.1103/PhysRevB.23.5048[40] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 18, 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865[41] D. R. Hamann, M. Schlüter and C. Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43: 1194, (1979) DOI: https://doi.org/10.1103/PhysRevLett.43.1494[42] G. B. Bachelet, D. R. Hamann and M. Schlüter. Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26: 4199, (1982) DOI: https://doi.org/10.1103/PhysRevB.26.4199[43] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, (1990). DOI: https://doi.org/10.1103/PhysRevB.41.7892[44] K. Laasonen, R. Car, C. Lee and D. Vanderbilt. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, (1991) DOI: https://doi.org/10.1103/PhysRevB.43.6796[45] K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, (1993) DOI:https://doi.org/10.1103/PhysRevB.47.10142[46] C. Ortega López, Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN, Tesis Doctoral, Universidad Nacional de Colombia, Departamento de Física, Sede Bogotá, 2009.[47] M. Methfessel and A.T. Paxton, Ibid., 40, No. 6, 3616 (1989).Google Scholar. 8. R. N. Silver and H. Röder, Int. J. Mod. Phys. C, 5, 735 (1994).[48] P. E. Blöchl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 – Published 15 June 1994[49] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, ``A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu'', J. Chem. Phys. 132, 154104 (2010).[50] Charles Kittel. (2005) Introduction to Solid State Physics, Jhon Wiley & Sons, Inc. 8th Edition, ISBN: 978-0-471-41526-8 pg. 50[51] M. Javaid, S. P. Russo, K. Kalantar, A. D. Greentree, and D. W. Drumm. Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electron. Struct. 1 (2019) 015005 DOI: https://doi.org/10.1088/2516-1075/aadf44[52] Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. (1990). "Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3". Physical Review B. 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. doi:10.1103/physrevb.41.4993.[53] G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger. "Chromium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. p-168-169, doi:10.1002/14356007.a07_067.[54] A. Bolzan, B. Kennedy and C. Howard. Neutron Powder Diffraction Study of Molybdenum and Tungsten Dioxides. Australian Journal of Chemistry 48(8) 1473 - 1477 (1995) DOI: https://doi.org/10.1071/CH9951473[55] J. Jung, C. H. Park, J. Ihm. A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Lett., 18, 5, 2759-2765 (2018) DOI: 10.1021/acs.nanolett.7b04201[56] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao Chen, Lain-Jong, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei Chen & Andrew T.S. Wee. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications 6:6298 · February 2015 DOI: 10.1038/ncomms7298[57] Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2 . Phys. Rev. B 83, 245213 (2011). DOI: https://doi.org/10.1103/PhysRevB.83.245213[58] P. Manchanda and R. Skomski. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism. (2016) J. Phys.: Condens. Matter 28 064002. DOI: 10.1088/0953-8984/28/6/064002[59] N.F. Andriambelaza, R.E. Mapasha, N. Chetty. Band Gap Engineering of a MoS 2 Monolayer through Oxygen Alloying: an Ab-Initio Study. Nanotechnology, 29: 50 (2018) DOI:10.1088/1361-6528/aae1e4[60] Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, Volume 5, Issue 1, pp.17-26 (1921) DOI: 10.1007/BF01349680[61] Denton, A.R. and Ashcroft, N.W. Vegard’s Law. Physical Review A, 43, 3161-3164. (1991) http://dx.doi.org/10.1103/PhysRevA.43.3161[62] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 47, 1300 (1967); doi: 10.1063/1.1712084AleacionesMonocapasPropiedades electrónicasEstabilidad energéticaDFTAlloysMonolayersElectronic propertiesEnergy stabilityDFTPublicationORIGINALHumanezTobarÁngel.pdfHumanezTobarÁngel.pdfTrabajo de grado de Maestría en Ciencias Físicas basado en la Teoría del Funcional de la Densidadapplication/pdf4425292https://repositorio.unicordoba.edu.co/bitstreams/3b19550d-e8f9-47dd-892c-5b0c4bda6338/download9f880083259fb0b079295bc52e43a8f2MD51Formato de Autorización Publicación en Repositorio.pdfFormato de Autorización Publicación en Repositorio.pdfapplication/pdf501716https://repositorio.unicordoba.edu.co/bitstreams/07997454-a145-48ea-a3f4-1525c4ab5531/downloadc5a98e88cbbc3bac8c7761311c77ed90MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicordoba.edu.co/bitstreams/0955530d-c5a3-427c-9075-baeeec5507de/download2f9959eaf5b71fae44bbf9ec84150c7aMD53TEXTHumanezTobarÁngel.pdf.txtHumanezTobarÁngel.pdf.txtExtracted texttext/plain123516https://repositorio.unicordoba.edu.co/bitstreams/31e0c22b-f820-42bf-9f61-33ed60901fd5/download7407ac561e0b83307d8f5b4d52ffd118MD54Formato de Autorización Publicación en Repositorio.pdf.txtFormato de Autorización Publicación en Repositorio.pdf.txtExtracted texttext/plain3830https://repositorio.unicordoba.edu.co/bitstreams/b4828856-add8-4f02-b5d4-5591d34139ef/download19fade9b43bb9282a36b5671cbd3a0e5MD56THUMBNAILHumanezTobarÁngel.pdf.jpgHumanezTobarÁngel.pdf.jpgGenerated Thumbnailimage/jpeg4277https://repositorio.unicordoba.edu.co/bitstreams/7cc4cf41-091d-4fb9-9e5b-57e0670b4849/downloadfee2414be70a88149c863227aae3ee62MD55Formato de Autorización Publicación en Repositorio.pdf.jpgFormato de Autorización Publicación en Repositorio.pdf.jpgGenerated Thumbnailimage/jpeg9663https://repositorio.unicordoba.edu.co/bitstreams/8dd88624-1d0d-4cf8-984a-b18f25f44b20/downloade63b23d7643bd81a8ed0ff859aa1e61eMD57ucordoba/3454oai:repositorio.unicordoba.edu.co:ucordoba/34542024-06-20 10:57:02.5https://creativecommons.org/licenses/by-nc/4.0/Copyright Universidad de Córdoba, 2020open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=