CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética

El CuO es un material semiconductor tipo p con propiedades destacadas como una estrecha banda prohibida (~1.2 eV, en bulk), alta conductividad eléctrica y térmica, estabilidad química y aplicaciones multifuncionales que van desde la catálisis hasta sensores y espintrónica. El potencial de sus aplica...

Full description

Autores:
Osorno Bolívar, Carlos Eduardo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9029
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9029
https://repositorio.unicordoba.edu.co
Palabra clave:
Cu1-xCoxO (0.00 Síntesis asistida por microondas
Influencia del dopaje con Co
Nanoláminas
Brecha de banda
Ferromagnetismo a temperatura ambiente
Cu1-xCoxO (0.00 Microwave assisted synthesis
Cobalt doping influence
Band gap
Ferromagnetism at room temperature
Rights
embargoedAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_7cbf7d927f82f9b2f1b515e1ac36e0e1
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9029
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética
title CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética
spellingShingle CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética
Cu1-xCoxO (0.00<x<0.08)
Síntesis asistida por microondas
Influencia del dopaje con Co
Nanoláminas
Brecha de banda
Ferromagnetismo a temperatura ambiente
Cu1-xCoxO (0.00<x<0.08)
Microwave assisted synthesis
Cobalt doping influence
Band gap
Ferromagnetism at room temperature
title_short CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética
title_full CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética
title_fullStr CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética
title_full_unstemmed CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética
title_sort CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética
dc.creator.fl_str_mv Osorno Bolívar, Carlos Eduardo
dc.contributor.advisor.none.fl_str_mv Beltrán Jiménez, Jailes Joaquín
dc.contributor.author.none.fl_str_mv Osorno Bolívar, Carlos Eduardo
dc.contributor.educationalvalidator.none.fl_str_mv Beltrán Jiménez Jailes Joaquín
dc.contributor.jury.none.fl_str_mv Sánchez Pacheco, Luis Carlos
García Negrete, Carlos
dc.subject.proposal.none.fl_str_mv Cu1-xCoxO (0.00<x<0.08)
Síntesis asistida por microondas
Influencia del dopaje con Co
Nanoláminas
Brecha de banda
Ferromagnetismo a temperatura ambiente
topic Cu1-xCoxO (0.00<x<0.08)
Síntesis asistida por microondas
Influencia del dopaje con Co
Nanoláminas
Brecha de banda
Ferromagnetismo a temperatura ambiente
Cu1-xCoxO (0.00<x<0.08)
Microwave assisted synthesis
Cobalt doping influence
Band gap
Ferromagnetism at room temperature
dc.subject.keywords.none.fl_str_mv Cu1-xCoxO (0.00<x<0.08)
Microwave assisted synthesis
Cobalt doping influence
Band gap
Ferromagnetism at room temperature
description El CuO es un material semiconductor tipo p con propiedades destacadas como una estrecha banda prohibida (~1.2 eV, en bulk), alta conductividad eléctrica y térmica, estabilidad química y aplicaciones multifuncionales que van desde la catálisis hasta sensores y espintrónica. El potencial de sus aplicaciones puede mejorarse mediante el dopaje con metales de transición, lo que permite modificar su estructura cristalina, propiedades ópticas y comportamiento magnético. En este trabajo de grado se estudia los efectos del dopaje con Co en nanopartículas de CuO, investigando de manera integral sus propiedades morfológicas, vibracionales, estructurales, ópticas y magnéticas. La síntesis de las nanopartículas de CuO y Cu_(1-x) Co_x O con diferentes concentraciones de Co (x = 0.01 a 0.08), se realizó mediante el método de co-precipitación asistida por microondas. Los resultados de FTIR-ATR, RAMAN y DRX indicaron que el dopante se introdujo homogéneamente en la matriz del CuO hasta x = 0.05. Los resultados por difracción de rayos X confirmaron la formación de la fase monoclínica del CuO y evidenciaron la incorporación del Co en su red cristalina, formando una solución sólida sin presencia de fases impuras en las muestras de concentración menor igual al 6 % mol. Adicionalmente, las técnicas de microscopía electrónica (FIB-FESEM y espectroscopía Uv-Vis) revelaron un cambio en la morfología de 2D para la muestra pura y 3D, para la muestra con 5 % mol del dopante.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-07T13:25:28Z
dc.date.available.none.fl_str_mv 2025-02-07T13:25:28Z
dc.date.issued.none.fl_str_mv 2025-02-05
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9029
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Institucional Unicórdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9029
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Institucional Unicórdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abdullahi, S. S., Güner, S., Koseoglu, Y., Musa, I. M., Adamu, B. I., & Abdulhamid, M. I. (2016). Sımple Method For The Determınatıon of Band Gap of a Nanopowdered Sample Usıng Kubelka Munk Theory. In Journal of the Nigerian Association of Mathematical Physics (Vol. 35).
Alburaih, H. A., Aadil, M., Ejaz, S. R., Hassan, W., Anwar, A., Anjum, S., Aman, S., Al-Buriahi, M. S., Alrowaili, Z. A., & Trukhanov, A. V. (2022). Wet-chemical synthesis of urchin-like Co-doped CuO: A visible light trigger photocatalyst for water remediation and antimicrobial applications. Ceramics International, 48(15), 21804–21813. https://doi.org/10.1016/j.ceramint.2022.04.159
Anu Prathap, M. U., Kaur, B., & Srivastava, R. (2012). Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. Journal of Colloid and Interface Science, 370(1), 144–154. https://doi.org/10.1016/j.jcis.2011.12.074
Aromaa, J., Kekkonen, M., Mousapour, M., Jokilaakso, A., & Lundström, M. (2021). The Oxidation of Copper in Air at Temperatures up to 100 °C. Corrosion and Materials Degradation, 2(4), 625–640. https://doi.org/10.3390/cmd2040033
Arun, L., Karthikeyan, C., Philip, D., Dhayanithi, D., Giridharan, N. V., & Unni, C. (2018). Influence of transition metal ion Ni2+ on optical, electrical, magnetic and antibacterial properties of phyto-synthesized CuO nanostructure. Optical and Quantum Electronics, 50(12), 414. https://doi.org/10.1007/s11082-018-1684-9
Atchaya, S., & Meena Devi, J. (2024). Experimental Investigation on Structural, Optical, Electrical and Magnetic Properties of Copper Oxide Nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 94(1), 153–160. https://doi.org/10.1007/s40010-023-00855-7
Aharoni. A. (1996). Introduction to the theory of ferromagnetism (pp. 45-67). Oxford University Press.
Andrew. E. R. (1955). Nuclear Magnetic Resonance. Physical Review. 98(3). 703-707.
A. El-Trass, H. ElShamy, I. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci. 258, 2997 (2012), doi: 10.1016/j.apsusc.2011.11.025. 42.
Baghbanzadeh, M., Carbone, L., Cozzoli, P. D., & Kappe, C. O. (2011). Microwave‐Assisted Synthesis of Colloidal Inorganic Nanocrystals. Angewandte Chemie International Edition, 50(48), 11312–11359. https://doi.org/10.1002/anie.201101274
Baghurst, D. R., & Mingos, D. M. P. (1992). A new reaction vessel for accelerated syntheses using microwave dielectric super-heating effects. Journal of the Chemical Society, Dalton Transactions, 7, 1151. https://doi.org/10.1039/dt9920001151
Basith, N. M., Vijaya, J. J., Kennedy, L. J., Bououdina, M., & Hussain, S. (2014a). Optical and magnetic properties of Co-doped CuO flower/plates/particles- like nanostructures. Journal of Nanoscience and Nanotechnology, 14(3), 2577–2583. https://doi.org/10.1166/jnn.2014.8514
Bayansal, F., Taşköprü, T., Şahin, B., & Çetinkara, H. A. (2014). Effect of Cobalt Doping on Nanostructured CuO Thin Films. Metallurgical and Materials Transactions A, 45(8), 3670–3674. https://doi.org/10.1007/s11661-014-2306-1
Beltrán, J. J., Barrero, C. A., & Punnoose, A. (2016). Identifying the sources of ferromagnetism in sol-gel synthesized Zn1−xCoxO (0≤x≤0.10) nanoparticles. Journal of Solid State Chemistry, 240, 30–42. https://doi.org/10.1016/j.jssc.2016.05.013
Beltrán, J. J., Barrero, C. A., & Punnoose, A. (2019). Relationship between ferromagnetism and formation of complex carbon bonds in carbon doped ZnO powders. Physical Chemistry Chemical Physics, 21(17), 8808–8819. https://doi.org/10.1039/C9CP01277J
Bilecka, I., & Niederberger, M. (2010a). Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2(8), 1358. https://doi.org/10.1039/b9nr00377k
Briceño, C., & Cáceres, L. (1994). Química Briceño.
Britannica. (2024). Cupric oxide | chemical compound | Britannica. Encyclopedia Britannica. The Editors of Encyclopaedia Britannica. (2024, September 12). Cupric Oxide | Chemical Compound | Britannica. Encyclopedia Britannica. Https://Www.Britannica.Com/Science/Cupric-Oxide.
Barber, J., et al. (2010). Temperature-dependent anti-Stokes Raman scattering: Applications in microthermometry. Journal of Applied Physics, 108(3), 033104. https://doi.org/10.1063/1.3455334
Bonger A., Journeau P.H., Thollet G., Basset D. and Gauthier C., A history of SEM developmentsTowards ` wet-STEM ` imaging, Micron, 2007; 38: 390-401.
Breton P.J., From Microns to nanometers: early landmarks in the science of scanning electron microscope imaging, Scanning Microscopy, 13-1: 1-6. (1999).
Broers A.N., Recent advances in SEM with Lathanum hesaboride cathodes, Scanning Electron Microscopy, (Eds. Johari O., Corvin I.) IITRI, Chicago I: 10-18. (1974)
Bozzola, J. J., & Russell, L. D. (1998). Electron Microscopy: Principles and Techniques for Biologists (2nd ed.). Jones and Bartlett Publishers.
ÇETİNKAYA, S. (2024a). Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. Turkish Journal of Engineering, 8(1), 107–115. https://doi.org/10.31127/tuje.1290655
Coey, J. M. D. (2006). Dilute Ferromagnetic Oxides. In Local-Moment Ferromagnets (pp. 185–198). Springer-Verlag. https://doi.org/10.1007/11417255_12
Collins, M. J. (2010). Future Trends in Microwave Synthesis. Future Medicinal Chemistry, 2(2), 151–155. https://doi.org/10.4155/fmc.09.133
CUO - Solid State Chemistry Aalto - Aalto University Wiki. (2024). CUO - Solid State Chemistry Aalto - Aalto University Wiki. (2024). CUO - Solid State Chemistry @Aalto - Aalto University Wiki. (2024). Https://Wiki.Aalto.Fi/Display/SSC/CuO.
Cullity. B. D.. & Graham. C. D. (2009). Introduction to Magnetic Materials (pp. 102-125). John Wiley & Sons.
Coey. J. M. D.. & Venkatesan. M. (Eds.). (2010). Magnetism and Magnetic Materials (pp. 78-92). Cambridge University Press.
Crewe A.V. and Lin P.S.D, Production of a field emission source, In progress in optics XI (Eds. Wolf E.) North Holland 1973, pp. 225-246.
Dahl, J. A., Maddux, B. L. S., & Hutchison, J. E. (2007). Toward Greener Nanosynthesis. Chemical Reviews, 107(6), 2228–2269. https://doi.org/10.1021/cr050943k
Dallinger, D., & Kappe, C. O. (2007). Microwave-Assisted Synthesis in Water as Solvent. Chemical Reviews, 107(6), 2563–2591. https://doi.org/10.1021/cr0509410
Douglas A. Skoog, F. James Holler, & Timothy A. Nieman. (2001). Principios de análisis instrumental (McGraw-Hill Interamericana de España S.L., Ed.; 5ta ed.). Concepción Hernández Madrid.
Davidson, M. W., & Abramowitz, M. (2002). Introduction to Optical Microscopy. In Encyclopedia of Imaging Science and Technology (pp. 1-25). Wiley.
Dunlop. D. J.. & Özdemir. Ö. (1997). Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press.
Dunlop. D. J.. & Özdemir. Ö. (1997). Rock Magnetism: Fundamentals and Frontiers (pp. 33-48). Cambridge University Press.
Dodrill, B., & Lindemuth, J. R. (2021). Vibrating sample magnetometry. In Magnetic Measurement Techniques for Materials Characterization (pp. 15–37). Springer International Publishing.
Egerton, R. F. (2005). Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM. Springer.
Fard, N. E., Fazaeli, R., Yousefi, M., & Abdolmohammadi, S. (2019). Morphology-Controlled Synthesis of CuO, CuO Rod/MWW Composite for Advanced Oxidation of Indole and Benzothiophene. ChemistrySelect, 4(33), 9529–9539. https://doi.org/10.1002/slct.201901514
Felix, S., Chakkravarthy, R. B. P., & Grace, A. N. (2015). Microwave assisted synthesis of copper oxide and its application in electrochemical sensing. IOP Conference Series: Materials Science and Engineering, 73, 012115. https://doi.org/10.1088/1757-899X/73/1/012115
Flewitt, P. E. J., & Wild, R. K. (2011). Physical Methods for Materials Characterisation (2nd ed.). CRC Press.
Friel, J. J., & Lyman, C. E. (2006). X-ray Mapping in Electron-Beam Instruments. Microscopy and Microanalysis, 12(1), 2–25. https://doi.org/10.1017/S1431927606060058
Gabriel, C., Gabriel, S., H. Grant, E., H. Grant, E., S. J. Halstead, B., & Michael P. Mingos, D. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27(3), 213. https://doi.org/10.1039/a827213z
Gao, D., Yang, G., Li, J., Zhang, J., Zhang, J., & Xue, D. (2010a). Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures. The Journal of Physical Chemistry C, 114(43), 18347–18351. https://doi.org/10.1021/jp106015t
García Ramón M. (2007). Centro de Investigación en Energía Introducción al Método Rietveld Septiembre de 2007.
Gatou, M.-A., Lagopati, N., Vagena, I.-A., Gazouli, M., & Pavlatou, E. A. (2022). ZnO Nanoparticles from Different Precursors and Their Photocatalytic Potential for Biomedical Use. Nanomaterials, 13(1), 122. https://doi.org/10.3390/nano13010122
Gedye, R. N., Rank, W., & Westaway, K. C. (1991). The rapid synthesis of organic compounds in microwave ovens. II. Canadian Journal of Chemistry, 69(4), 706–711. https://doi.org/10.1139/v91-106
Gedye, R. N., Smith, F. E., & Westaway, K. C. (1988). The rapid synthesis of organic compounds in microwave ovens. Canadian Journal of Chemistry, 66(1), 17–26. https://doi.org/10.1139/v88-003
Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27(3), 279–282. https://doi.org/10.1016/S0040-4039(00)83996-9
Giguere, R. J., Bray, T. L., Duncan, S. M., & Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters, 27(41), 4945–4948. https://doi.org/10.1016/S0040-4039(00)85103-5
Gonjal Prado Jesús, & Morán Emilio. (2011). Síntesis asistida por microondas de sólidos inorgánicos. Http://Www.Rseq.Org/.
Gupta, R. K., Serbetçi, Z., & Yakuphanoglu, F. (2012). Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films. Journal of Alloys and Compounds, 515, 96–100. https://doi.org/10.1016/j.jallcom.2011.11.098
Guruvammal, D., Selvaraj, S., & Meenakshi Sundar, S. (2018). Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method. Journal of Magnetism and Magnetic Materials, 452, 335–342. https://doi.org/10.1016/j.jmmm.2017.12.097
Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2003). Scanning Electron Microscopy and X-ray Microanalysis (3rd ed.). Springer.
Gnauck P., Drexel V., Greiser J., A new high resolution field emission scanning electron microscope with variable pressure capabilities, Microscopy and Microanalysis,2001; 7: 880-981.
Hao Zhang, Yulong Liu, Ke Zhu, Gueigu Siu, YonghongXiong, CaoshuiXiong, HaoZhang et al, J. Phys.: Condens.Matter, 2035 (1999).
Hansen. M. F.. Mørup. S.. & Frandsen. C. (2005). Vibrating sample magnetometer study of nanostructured materials. Journal of Magnetism and Magnetic Materials. 294(1). 76-80.
Hayes. L. (2002). Microwave Synthesis_ Chemistry at the Speed of Light - PDF Room.
Horikoshi, S., Abe, H., Sumi, T., Torigoe, K., Sakai, H., Serpone, N., & Abe, M. (2011). Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents. Nanoscale, 3(4), 1697. https://doi.org/10.1039/c0nr00861c
Horikoshi, S., Sakai, F., Kajitani, M., Abe, M., & Serpone, N. (2009). Microwave frequency effects on the photoactivity of TiO2: Dielectric properties and the degradation of 4-chlorophenol, bisphenol A and methylene blue. Chemical Physics Letters, 470(4–6), 304–307. https://doi.org/10.1016/j.cplett.2009.01.051
Irwin, J. C., Chrzanowski, J., Wei, T., Lockwood, D. J., & Wold, A. (1990). Raman scattering from single crystals of cupric oxide. Physica C: Superconductivity, 166(5-6), 456-464.
Jacob, J., Chia, L. H. L., & Boey, F. Y. C. (1995). Thermal and non-thermal interaction of microwave radiation with materials. Journal of Materials Science, 30(21), 5321–5327. https://doi.org/10.1007/BF00351541
Jhung, S. H., Jin, T., Hwang, Y. K., & Chang, J. (2007). Microwave Effect in the Fast Synthesis of Microporous Materials: Which Stage Between Nucleation and Crystal Growth is Accelerated by Microwave Irradiation? Chemistry – A European Journal, 13(16), 4410–4417. https://doi.org/10.1002/chem.200700098
J. Tauc, (Plenum, 1974), Amorphous and Liquid Semiconductors, https://books.google.co.in/books? id¼AiNRAAAAMAAJ.
Joy D.C. and Pawley J.B., High resolution scanning electron microscopy, Ultra microscopy, 1993; 47; 80- 100.
J Schilling, J., White A., Scherer G., Stupian R., Hillebrand, U., The construction of a Field emission scanning electron microscopy and its application to the study of fibres. Int J Sci. 2005; 15-20.
Kappe, C. O. (2004). Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition, 43(46), 6250–6284. https://doi.org/10.1002/anie.200400655
Komarneni, S., & Roy, R. (1985). Titania gel spheres by a new sol-gel process. Materials Letters, 3(4), 165–167. https://doi.org/10.1016/0167-577X(85)90151-X
KUBA, J., MITCHELS, J., HOVORKA, M., ERDMANN, P., BERKA, L., KIRMSE, R., KÖNIG, J., DE BOCK, J., GOETZE, B., & RIGORT, A. (2021). Advanced cryo‐tomography workflow developments – correlative microscopy, milling automation and cryo‐lift‐out. Journal of Microscopy, 281(2), 112–124. https://doi.org/10.1111/jmi.12939
Liang, Y., Wei, Z., Wang, R., & Zhang, X. (2022). The Microwave Facile Synthesis of NiOx@graphene Nanocomposites for Application in Supercapacitors: Insights into the Formation and Storage Mechanisms. Coatings, 12(8), 1060. https://doi.org/10.3390/coatings12081060
Lizarraga Matto. (2021). INFLUENCIA DE LA TEMPERATURA EN LA ESTRUCTURA CRISTALINA DE LA MONTMORILLONITA ESTUDIO POR DIFRACCIÓN DE RAYOS-X Y MÉTODO DE RIETVELD. 41–42.
Lima. E.. & Silva. G. (2019). Recent advances in vibrating sample magnetometry for magnetic measurements. Journal of Magnetism and Magnetic Materials. 473. 207-215.
Long, D. A. (2002). The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley & Sons.
Maini, A., & Shah, M. A. (2021). Investigation on physical properties of nanosized copper oxide (CuO) doped with cobalt (Co): A material for electronic device application.
International Journal of Ceramic Engineering & Science, 3(4), 192–199. https://doi.org/10.1002/ces2.10097
Materiales y propiedades. Uvigo.es. Recuperado el 6 de mayo de 2024. De https://quintans.webs.uvigo.es/recursos/Web_electromagnetismo/magnetismo_materiales.htm.
M. Kaur et al., J. Cryst. Growth. 289, 670 (2006), doi: 10.1016/j.jcrysgro.2005.11.111.
Nakajima, K., & Ozaki, M. (2024). Anisotropic crystal growth in blue phase I transitioned from a uniformly oriented cholesteric phase. Soft Matter, 20(20), 4072–4078. https://doi.org/10.1039/D4SM00289J
Nüchter, M., Ondruschka, B., Bonrath, W., & Gum, A. (2004). Microwave assisted synthesis – a critical technology overview. Green Chem., 6(3), 128–141. https://doi.org/10.1039/B310502D
Ohno, H. (1998). Making Nonmagnetic Semiconductors Ferromagnetic. Science, 281(5379), 951–956. https://doi.org/10.1126/science.281.5379.951
Owen, T. (2000). Fundamentos de la espectroscopía UV-visible moderna: conceptos básicos. Hewlett Packard.
Patete, J. M., Peng, X., Koenigsmann, C., Xu, Y., Karn, B., & Wong, S. S. (2011). Viable methodologies for the synthesis of high-quality nanostructures. Green Chemistry, 13(3), 482. https://doi.org/10.1039/c0gc00516a
Pearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., & Boatner, L. A. (2003). Wide band gap ferromagnetic semiconductors and oxides. Journal of Applied Physics, 93(1), 1–13. https://doi.org/10.1063/1.1517164
Polshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743. https://doi.org/10.1039/b921171c
Ponnarasan, V., & Krishnan, A. (2017a). Synthesis, Structural and Optical Properties of Cobalt Doped CuO Nanoparticles. International Journal of Nanoscience, 16(2). https://doi.org/10.1142/S0219581X16500319
Ponnar, M., Thangamani, C., Monisha, P., Gomathi, S. S., & Pushpanathan, K. (2018). Influence of Ce doping on CuO nanoparticles synthesized by microwave irradiation method. Applied Surface Science, 449, 132–143. https://doi.org/10.1016/j.apsusc.2018.01.126
Prabhu, R. S., Priyanka, R., Vijay, M., & Vikashini, G. K. (2021). Field emission scanning electron microscopy (fesem) with a very big future in pharmaceutical research. Research Article—Pharmaceutical Sciences—OA Journal—MCI Approved—Index Copernicus, 11, 2321-3272.
Pawely J., The development if field emission scanning electron microscopy for imaging biological surfaces, Scanning, Vol. 19: 324-336, (1997).
Rajamohan, R., Raorane, C. J., Kim, S.-C., Ashokkumar, S., & Lee, Y. R. (2023). Novel Microwave Synthesis of Copper Oxide Nanoparticles and Appraisal of the Antibacterial Application. Micromachines, 14(2), 456. https://doi.org/10.3390/mi14020456
Rana, K. K., & Rana, S. (2014). Microwave Reactors: A Brief Review on Its Fundamental Aspects and Applications. OALib, 01(06), 1–20. https://doi.org/10.4236/oalib.1100686
Rao, K. J., Vaidhyanathan, B., Ganguli, M., & Ramakrishnan, P. A. (1999). Synthesis of Inorganic Solids Using Microwaves. Chemistry of Materials, 11(4), 882–895. https://doi.org/10.1021/cm9803859
Rashad, M., Rüsing, M., Berth, G., Lischka, K., & Pawlis, A. (2013). CuO and Co3O4 nanoparticles: Synthesis, characterizations, and raman spectroscopy. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/714853
Rubio, N., Herrero, M. A., Meneghetti, M., Díaz-Ortiz, Á., Schiavon, M., Prato, M., & Vázquez, E. (2009). Efficient functionalization of carbon nanohorns via microwave irradiation. Journal of Materials Chemistry, 19(25), 4407. https://doi.org/10.1039/b900776h
Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (2nd ed.). Springer.
SEAS. (2023, January). Semiconductor intrínseco y extrínseco que son y cómo funcionan.
Si, Y., Guo, C., Xie, C., & Xiong, Z. (2018). An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction. Materials, 11(10), 1912. https://doi.org/10.3390/ma11101912
Skoog, D. A., Holler, Fj., & Crouch, S. R. (2009). Principios de análisis instrumental.
Swatsitang, E., Karaphun, A., & Putjuso, T. (2020). Influence of Fe:Co co–doping on the morphology, optical and magnetic properties of Cu1-(x+y)FexCoyO nanostructures prepared by a hydrothermal method. Physica B: Condensed Matter, 583, 412044. https://doi.org/10.1016/j.physb.2020.412044
Smith, K.C.A., Oately, C.W. The Field emission Scanning electron microscopy and its fields of application. British Journal of Applied physics. 1995; 6 (11): 391.
Singh KK., Robinson D., Pathak YV., Morphological characterization of malto dextrin derivatives using Field emission scanning electron microscopy. Cells and materials. 1993, pp. 543-620.
Smith, E., & Dent, G. (2005). Modern Raman Spectroscopy: A Practical Approach. John Wiley & Sons.
S. Asbrink and L.-J. Norrby, Acta. Cryst. B 26 ( 1970) 8.
Srivastava, S., & Agarwal, A. (2018). INFLUENCE OF Co DOPING ON STRUCTURAL AND OPTICAL PROPERTIES OF CuO NANOPARTICLES. Journal of Ovonic Research, 14(5).
Taunk, M., & Singh, N. (2023). A Comparative Analysis of X-Ray Diffraction, Morphology, and Optical Properties of Sonochemically Synthesized Cupric Oxide Nanostructures. Journal of Electronic Materials, 52(10), 6888–6901. https://doi.org/10.1007/s11664-023-10611-7
Thakur, N., Anu, & Kumar, K. (2020). Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: A rapid microwave assisted method. Journal of Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.2020.104011
Tompsett, G. A., Conner, W. C., & Yngvesson, K. S. (2006). Microwave Synthesis of Nanoporous Materials. ChemPhysChem, 7(2), 296–319. https://doi.org/10.1002/cphc.200500449
Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties AndElectronic Structure of Amorphous Germanium. Phys. Status Solidi B1966, 15, 627−637.
TEMA 7 Módulo 2. ESPECTROSCOPIA. (2024). Ppt Descargar. https://slideplayer.es/slide/3528146/
Uma, H. B., Kumar, M. S. V., & Ananda, S. (2022). Semiconductor-assisted photodegradation of textile dye, photo-voltaic and antibacterial property of electrochemically synthesized Sr-doped CuO nano photocatalysts. Journal of Molecular Structure, 1264. https://doi.org/10.1016/j.molstruc.2022.133110
Varghese, D., Tom, C., & Krishna Chandar, N. (2017). Effect of CTAB on structural and optical properties of CuO nanoparticles prepared by coprecipitation route. IOP Conference Series: Materials Science and Engineering, 263, 022002. https://doi.org/10.1088/1757-899X/263/2/022002
Vera cuartero Yagüe. (2012). Evolución de las propiedades multiferroicas del TbMnO 3 mediante la dilución de la subred de Mn.
Vijayalakshmi, R. V., Saravanan, G., Kumar, P. P., & Ravichandran, K. (2018). Systematic analysis of CuO and Co doped CuO nanoparticles and the impact of dopant on magnetic and optical properties. 030160. https://doi.org/10.1063/1.5032495
Vindhya, P. S., & Kavitha, V. T. (2023). Effect of cobalt doping on antimicrobial, antioxidant and photocatalytic activities of CuO nanoparticles. Materials Science and Engineering: B, 289. https://doi.org/10.1016/j.mseb.2022.116258 Varma, D. (2022). Raman Spectroscopy! How does it work? - Materials101. Materials101. https://materials101.science/raman-spectroscopy-how-does-it-work/
Watauchi, S., Wakihara, M., & Tanaka, I. (2001). Control of the anisotropic growth rates of oxide single crystals in floating zone growth. Journal of Crystal Growth, 229(1–4), 423–427. https://doi.org/10.1016/S0022-0248(01)01194-0
W.G. Fateley, F.R. Dollish, M.T. McDevitt and F.F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations (Wiley, New York, 1972).
Xiang, L., Guo, J., Wu, C., Cai, M., Zhou, X., & Zhang, N. (2018). A brief review on the growth mechanism of CuO nanowires via thermal oxidation. In Journal of Materials Research (Vol. 33, Issue 16, pp. 2264–2280). Cambridge University Press. https://doi.org/10.1557/jmr.2018.215
Xu, J. F., Ji, W., Shen, Z. X., Li, W. S., Tang, S. H., Ye, X. R., Jia, D. Z., & Xin, X. Q. (1999). Raman Spectra of CuO Nanocrystals (Vol. 30).
Xu, Z. P., & Zeng, H. C. (1999). Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds. Chemistry of Materials, 11(1), 67–74. https://doi.org/10.1021/cm980420b
Yakout, S. M., & El-Sayed, A. M. (2016). Structural, Morphological and Ferromagnetic Properties of Pure and (Mn, Co) Codoped CuO Nanostructures. Journal of Superconductivity and Novel Magnetism, 29(11), 2961–2968. https://doi.org/10.1007/s10948-016-3641-9
Yakout, S. M. (2020). Spintronics: Future technology for new data storage and communication devices. Journal of Superconductivity and Novel Magnetism, 33(9), 2557–2580. https://doi.org/10.1007/s10948-020-05545-8
Zhang, Y., Ji, Y., Li, J., Liu, H., Hu, X., Zhong, Z., & Su, F. (2018). Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction. Nano Research, 11(2), 804–819. https://doi.org/10.1007/s12274-017-1689-x
Zhao, Y., Li, Z., Lv, Z., Liang, X., Min, J., Wang, L., & Shi, Y. (2010). A new phase and optical properties of the N-doped ZnO film. Materials Research Bulletin, 45(9), 1046–1050. https://doi.org/10.1016/j.materresbull.2010.06.008
Zhao, Y., Zhao, J., Li, Y., Ma, D., Hou, S., Li, L., Hao, X., & Wang, Z. (2011). Room temperature synthesis of 2D CuO nanoleaves in aqueous solution. Nanotechnology, 22(11), 115604. https://doi.org/10.1088/0957-4484/22/11/115604
Zhu, Y. J., & Chen, F. (2014). Microwave-assisted preparation of inorganic nanostructures in liquid phase. In Chemical Reviews (Vol. 114, Issue 12, pp. 6462–6555). American Chemical Society. https://doi.org/10.1021/cr400366s
Zimbovskii, D. S., & Churagulov, B. R. (2018). Cu2O and CuO Films Produced by Chemical and Anodic Oxidation on the Surface of Copper Foil. Inorganic Materials, 54(7), 660–666. https://doi.org/10.1134/S0020168518070208
Zoolfakar, A. S., Rani, R. A., Morfa, A. J., O’Mullane, A. P., & Kalantar-Zadeh, K. (2014a). Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. Journal of Materials Chemistry C, 2(27), 5247–5270. https://doi.org/10.1039/c4tc00345d
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Química
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/c74dad51-86d4-4ab5-a7f9-725cf19ec596/download
https://repositorio.unicordoba.edu.co/bitstreams/e3d2dc0a-a7b8-43be-a741-5e514c0b6087/download
https://repositorio.unicordoba.edu.co/bitstreams/e3277811-68b8-405b-9ba9-3c2c2c075987/download
https://repositorio.unicordoba.edu.co/bitstreams/ab730eeb-2dfb-4895-9fe7-2f1c97614420/download
https://repositorio.unicordoba.edu.co/bitstreams/065b849b-6e28-4054-a6a8-7a5a47c8f85f/download
https://repositorio.unicordoba.edu.co/bitstreams/2e8f02d7-4c48-43d9-9642-6e215012a76b/download
https://repositorio.unicordoba.edu.co/bitstreams/1bb73e77-810c-4e58-8a13-10162ef48fc6/download
bitstream.checksum.fl_str_mv 37fb5f30486adaded6b6ce5dfdb5993b
858d6a3feff1d9c45de5dbb4db64c4de
73a5432e0b76442b22b026844140d683
fb38f75464caf5fb7ba9dcbe8b535e75
5d633ae7315069a09b6d9dfb9cc7d6f1
7abd529884067407c3103a8b9b2f680c
81a962997ce9f0d350ad339c34cb9621
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636153001574400
spelling Beltrán Jiménez, Jailes Joaquín1e5a3b92-37b7-4ef8-a43d-aaa7f8d9934e-1Osorno Bolívar, Carlos Eduardo53f1cd6c-a3ea-41cb-8040-38902ca4a54f-1Beltrán Jiménez Jailes JoaquínSánchez Pacheco, Luis Carlosc70f51f7-3f3d-4340-a903-99b7dbae8aa2-1García Negrete, Carlosd80674ff-2991-46e0-9f04-159efef0161f-12025-02-07T13:25:28Z2025-02-07T13:25:28Z2025-02-05https://repositorio.unicordoba.edu.co/handle/ucordoba/9029Universidad de CórdobaRepositorio Institucional Unicórdobahttps://repositorio.unicordoba.edu.coEl CuO es un material semiconductor tipo p con propiedades destacadas como una estrecha banda prohibida (~1.2 eV, en bulk), alta conductividad eléctrica y térmica, estabilidad química y aplicaciones multifuncionales que van desde la catálisis hasta sensores y espintrónica. El potencial de sus aplicaciones puede mejorarse mediante el dopaje con metales de transición, lo que permite modificar su estructura cristalina, propiedades ópticas y comportamiento magnético. En este trabajo de grado se estudia los efectos del dopaje con Co en nanopartículas de CuO, investigando de manera integral sus propiedades morfológicas, vibracionales, estructurales, ópticas y magnéticas. La síntesis de las nanopartículas de CuO y Cu_(1-x) Co_x O con diferentes concentraciones de Co (x = 0.01 a 0.08), se realizó mediante el método de co-precipitación asistida por microondas. Los resultados de FTIR-ATR, RAMAN y DRX indicaron que el dopante se introdujo homogéneamente en la matriz del CuO hasta x = 0.05. Los resultados por difracción de rayos X confirmaron la formación de la fase monoclínica del CuO y evidenciaron la incorporación del Co en su red cristalina, formando una solución sólida sin presencia de fases impuras en las muestras de concentración menor igual al 6 % mol. Adicionalmente, las técnicas de microscopía electrónica (FIB-FESEM y espectroscopía Uv-Vis) revelaron un cambio en la morfología de 2D para la muestra pura y 3D, para la muestra con 5 % mol del dopante.CuO is a p-type semiconductor material with remarkable properties such as a narrow bandgap (~1.2 eV, in bulk), high electrical and thermal conductivity, chemical stability and multifunctional applications ranging from catalysis to sensors and spintronics. The potential of their applications can be improved through the doping with transition metals, by modifiying their crystalline structure, optical properties and magnetic behaviour. In this work, the effects of Co doping on CuO nanoparticles are studied, investigating their morphological, vibrational, structural, optical and magnetic properties in a comprehensive way. The synthesis of CuO and Cu1-xCoxO nanoparticles with different Co concentrations (x = 0.01 to 0.08) was carried out by microwave-assisted co-precipitation method. FTIR-ATR, RAMAN and XRD results indicated that the dopant was homogeneously introduced into the CuO matrix up to x = 0.05. X-ray diffraction results confirmed the formation of the monoclinic phase of CuO and evidenced the incorporation of Co in its crystal lattice of the semiconductor, forming a solid solution without the presence of impurity phases in the samples with concentrations lower than 6 % mol. Additionally, FIB-FESEM and Uv-Vis spectroscopy revealed a change in morphology from 2D for the pure sample to 3D for the sample with 5 % mol of the dopant.AGRADECIMIENTOSRESUMENLISTA DE FIGURASLISTA DE ABREVIACIONESINTRODUCCIÓNCAPÍTULO 1 FUNDAMENTACIÓN TEÓRICA1. MARCO TEÓRICO1.1. Semiconducotres magnéticamente diluidos1.2. Óxidos semiconductores magnéticamente diluidos (ODMS)1.3. CuO1.3.1. Propiedades físicas y químicas1.3.2. Morfología, formación y yacimientos1.3.3. Estructura cristalina1.3.4. Propiedades ópticas1.3.5. Propiedaes magnéticas1.3.6. AplicacionesCAPÍTULO 2 SÍNTESIS ASISTIDA POR MICROONDAS Y TÉCNICAS DE CARACTERIZACIÓN2. SÍNTESIS ASISTIDA POR MICROONDAS2.1. Síntesis por microondas2.1.1. Química de microondas y efectos de las microondas2.1.2. Aceleraciones de velocidad por calentamiento con microondas2.1.3. Preparación asistida por microondas en distintos disolventes2.1.4. Preparación asistida por microondas en un sistema de reacción abierto2.1.5. Preparación de nanoestructuras en solución acuosa asistida por microondas2.2. Acetatos de metales de transición como precursores2.3. TÉCNICAS DE CARACTERIZACIÓN2.3.1. Microscopía de barrido electrónico con espectroscopía de dispersión de energía (SEM-EDS) y Microscopía electrónica de barrido de emisión de campo dual beam (FIB-FESEM)2.4. Espectroscopía infrarroja con transformada de Fourier (FTIR)2.4.1. Tipos de vibraciones moleculares2.4.2. Espectrometría de reflectancia atenuada total (ATR)2.5. Espectroscopía RAMAN2.5.1. Mecanismo de la dispersión Raman y Rayleigh2.5.2. Intensidad de los picos Raman normales2.5.3. Dispersión Rayleigh, Stok y Antistok2.6. Difracción de rayos X (DRX)2.6.1. Ley de Bragg2.6.2. Método de refinamiento Rietveld2.7. Espectroscopía UV-Vis2.7.1. Origen de los espectros UV-Vis2.7.2. Transmitancia y absorbancia2.7.3. Ley de Beer2.8. Uv-relectancia difusa (UV-DR)2.9. Medidas magnéticas2.9.1. Magnetrómetro de muestra vibrante2.10. Estado del arteCAPÍTULO 3 PREPARACIÓN Y CARACTERIZACIÓN DE LAS MUESTRAS3. Síntesis de NPs de CuO y CuO dopadas con Co (x = 0.01, 0.02, 0.03, 0.04, 0.05 y 0.08)3.1. Reactivos y equipos3.2. Cálculos estequiométricos3.3. Procedimiento experimental3.3.1. Masas pesadas experimentalmente, tiempo de exposición y porcentaje de rendimiento de cada reacción3.4. Caracterización3.4.1. Microscopio electrónico de barrido con espectroscopía de rayos X de energía dispersiva (SEM-EDS)3.4.2. Microscopía electrónica de emisión de campo dual beam (FIB – FESEM)3.4.3. Espectroscopía infrarroja con transformada de Fourier y refelctancia total atenuada (FTIR-ATR)3.4.4. Espectroscopía RAMAN3.4.5. Difracción de rayos X (DRX)3.4.6. UV-Visible (UV-Vis)3.4.7. UV-reflectancia difusa (UV-DR)3.4.8. Magnetometría de muestra vibrante (VMS)CAPÍTULO 4 OBJETIVOS4. Objetivos4.1. Objetivo general4.2. Objetivos específicosCAPÍTULO 5 RESULTADOS Y DISCUSIÓN5. RESULTADOS Y DISCUSIÓN5.1. Microscopía electrónica de barrido con espectroscopía de rayos X de energía dispersiva (SEM-EDS)5.2. Microscopía electrónica de emisión de campo dual beam (FIB – FESEM)5.3. Propiedades vibracionales5.3.1. Espectroscopía infrarroja con transformada de Fourier (FTIR)5.3.2. Espectroscopía RAMAN5.4. Difracción de rayos X5.4.1. Patrones de difracción de rayos X e identificación de fases5.4.2. Patrones de difracción de rayos X ajustados5.4.3. Parámetros de red5.5. Propiedades ópticas5.5.1. Espectroscopía UV-vis5.5.2. UV- Reflectancia difusa5.6. Medidas magnéticas6. CONCLUSIONES7. TRABAJO A FUTURO8. BIBLIOGRAFÍAPregradoQuímico(a)Trabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaQuímicaCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfCuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnéticaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTextAbdullahi, S. S., Güner, S., Koseoglu, Y., Musa, I. M., Adamu, B. I., & Abdulhamid, M. I. (2016). Sımple Method For The Determınatıon of Band Gap of a Nanopowdered Sample Usıng Kubelka Munk Theory. In Journal of the Nigerian Association of Mathematical Physics (Vol. 35).Alburaih, H. A., Aadil, M., Ejaz, S. R., Hassan, W., Anwar, A., Anjum, S., Aman, S., Al-Buriahi, M. S., Alrowaili, Z. A., & Trukhanov, A. V. (2022). Wet-chemical synthesis of urchin-like Co-doped CuO: A visible light trigger photocatalyst for water remediation and antimicrobial applications. Ceramics International, 48(15), 21804–21813. https://doi.org/10.1016/j.ceramint.2022.04.159Anu Prathap, M. U., Kaur, B., & Srivastava, R. (2012). Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. Journal of Colloid and Interface Science, 370(1), 144–154. https://doi.org/10.1016/j.jcis.2011.12.074Aromaa, J., Kekkonen, M., Mousapour, M., Jokilaakso, A., & Lundström, M. (2021). The Oxidation of Copper in Air at Temperatures up to 100 °C. Corrosion and Materials Degradation, 2(4), 625–640. https://doi.org/10.3390/cmd2040033Arun, L., Karthikeyan, C., Philip, D., Dhayanithi, D., Giridharan, N. V., & Unni, C. (2018). Influence of transition metal ion Ni2+ on optical, electrical, magnetic and antibacterial properties of phyto-synthesized CuO nanostructure. Optical and Quantum Electronics, 50(12), 414. https://doi.org/10.1007/s11082-018-1684-9Atchaya, S., & Meena Devi, J. (2024). Experimental Investigation on Structural, Optical, Electrical and Magnetic Properties of Copper Oxide Nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 94(1), 153–160. https://doi.org/10.1007/s40010-023-00855-7Aharoni. A. (1996). Introduction to the theory of ferromagnetism (pp. 45-67). Oxford University Press.Andrew. E. R. (1955). Nuclear Magnetic Resonance. Physical Review. 98(3). 703-707.A. El-Trass, H. ElShamy, I. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci. 258, 2997 (2012), doi: 10.1016/j.apsusc.2011.11.025. 42.Baghbanzadeh, M., Carbone, L., Cozzoli, P. D., & Kappe, C. O. (2011). Microwave‐Assisted Synthesis of Colloidal Inorganic Nanocrystals. Angewandte Chemie International Edition, 50(48), 11312–11359. https://doi.org/10.1002/anie.201101274Baghurst, D. R., & Mingos, D. M. P. (1992). A new reaction vessel for accelerated syntheses using microwave dielectric super-heating effects. Journal of the Chemical Society, Dalton Transactions, 7, 1151. https://doi.org/10.1039/dt9920001151Basith, N. M., Vijaya, J. J., Kennedy, L. J., Bououdina, M., & Hussain, S. (2014a). Optical and magnetic properties of Co-doped CuO flower/plates/particles- like nanostructures. Journal of Nanoscience and Nanotechnology, 14(3), 2577–2583. https://doi.org/10.1166/jnn.2014.8514Bayansal, F., Taşköprü, T., Şahin, B., & Çetinkara, H. A. (2014). Effect of Cobalt Doping on Nanostructured CuO Thin Films. Metallurgical and Materials Transactions A, 45(8), 3670–3674. https://doi.org/10.1007/s11661-014-2306-1Beltrán, J. J., Barrero, C. A., & Punnoose, A. (2016). Identifying the sources of ferromagnetism in sol-gel synthesized Zn1−xCoxO (0≤x≤0.10) nanoparticles. Journal of Solid State Chemistry, 240, 30–42. https://doi.org/10.1016/j.jssc.2016.05.013Beltrán, J. J., Barrero, C. A., & Punnoose, A. (2019). Relationship between ferromagnetism and formation of complex carbon bonds in carbon doped ZnO powders. Physical Chemistry Chemical Physics, 21(17), 8808–8819. https://doi.org/10.1039/C9CP01277JBilecka, I., & Niederberger, M. (2010a). Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2(8), 1358. https://doi.org/10.1039/b9nr00377kBriceño, C., & Cáceres, L. (1994). Química Briceño.Britannica. (2024). Cupric oxide | chemical compound | Britannica. Encyclopedia Britannica. The Editors of Encyclopaedia Britannica. (2024, September 12). Cupric Oxide | Chemical Compound | Britannica. Encyclopedia Britannica. Https://Www.Britannica.Com/Science/Cupric-Oxide.Barber, J., et al. (2010). Temperature-dependent anti-Stokes Raman scattering: Applications in microthermometry. Journal of Applied Physics, 108(3), 033104. https://doi.org/10.1063/1.3455334Bonger A., Journeau P.H., Thollet G., Basset D. and Gauthier C., A history of SEM developmentsTowards ` wet-STEM ` imaging, Micron, 2007; 38: 390-401.Breton P.J., From Microns to nanometers: early landmarks in the science of scanning electron microscope imaging, Scanning Microscopy, 13-1: 1-6. (1999).Broers A.N., Recent advances in SEM with Lathanum hesaboride cathodes, Scanning Electron Microscopy, (Eds. Johari O., Corvin I.) IITRI, Chicago I: 10-18. (1974)Bozzola, J. J., & Russell, L. D. (1998). Electron Microscopy: Principles and Techniques for Biologists (2nd ed.). Jones and Bartlett Publishers.ÇETİNKAYA, S. (2024a). Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. Turkish Journal of Engineering, 8(1), 107–115. https://doi.org/10.31127/tuje.1290655Coey, J. M. D. (2006). Dilute Ferromagnetic Oxides. In Local-Moment Ferromagnets (pp. 185–198). Springer-Verlag. https://doi.org/10.1007/11417255_12Collins, M. J. (2010). Future Trends in Microwave Synthesis. Future Medicinal Chemistry, 2(2), 151–155. https://doi.org/10.4155/fmc.09.133CUO - Solid State Chemistry Aalto - Aalto University Wiki. (2024). CUO - Solid State Chemistry Aalto - Aalto University Wiki. (2024). CUO - Solid State Chemistry @Aalto - Aalto University Wiki. (2024). Https://Wiki.Aalto.Fi/Display/SSC/CuO.Cullity. B. D.. & Graham. C. D. (2009). Introduction to Magnetic Materials (pp. 102-125). John Wiley & Sons.Coey. J. M. D.. & Venkatesan. M. (Eds.). (2010). Magnetism and Magnetic Materials (pp. 78-92). Cambridge University Press.Crewe A.V. and Lin P.S.D, Production of a field emission source, In progress in optics XI (Eds. Wolf E.) North Holland 1973, pp. 225-246.Dahl, J. A., Maddux, B. L. S., & Hutchison, J. E. (2007). Toward Greener Nanosynthesis. Chemical Reviews, 107(6), 2228–2269. https://doi.org/10.1021/cr050943kDallinger, D., & Kappe, C. O. (2007). Microwave-Assisted Synthesis in Water as Solvent. Chemical Reviews, 107(6), 2563–2591. https://doi.org/10.1021/cr0509410Douglas A. Skoog, F. James Holler, & Timothy A. Nieman. (2001). Principios de análisis instrumental (McGraw-Hill Interamericana de España S.L., Ed.; 5ta ed.). Concepción Hernández Madrid.Davidson, M. W., & Abramowitz, M. (2002). Introduction to Optical Microscopy. In Encyclopedia of Imaging Science and Technology (pp. 1-25). Wiley.Dunlop. D. J.. & Özdemir. Ö. (1997). Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press.Dunlop. D. J.. & Özdemir. Ö. (1997). Rock Magnetism: Fundamentals and Frontiers (pp. 33-48). Cambridge University Press.Dodrill, B., & Lindemuth, J. R. (2021). Vibrating sample magnetometry. In Magnetic Measurement Techniques for Materials Characterization (pp. 15–37). Springer International Publishing.Egerton, R. F. (2005). Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM. Springer.Fard, N. E., Fazaeli, R., Yousefi, M., & Abdolmohammadi, S. (2019). Morphology-Controlled Synthesis of CuO, CuO Rod/MWW Composite for Advanced Oxidation of Indole and Benzothiophene. ChemistrySelect, 4(33), 9529–9539. https://doi.org/10.1002/slct.201901514Felix, S., Chakkravarthy, R. B. P., & Grace, A. N. (2015). Microwave assisted synthesis of copper oxide and its application in electrochemical sensing. IOP Conference Series: Materials Science and Engineering, 73, 012115. https://doi.org/10.1088/1757-899X/73/1/012115Flewitt, P. E. J., & Wild, R. K. (2011). Physical Methods for Materials Characterisation (2nd ed.). CRC Press.Friel, J. J., & Lyman, C. E. (2006). X-ray Mapping in Electron-Beam Instruments. Microscopy and Microanalysis, 12(1), 2–25. https://doi.org/10.1017/S1431927606060058Gabriel, C., Gabriel, S., H. Grant, E., H. Grant, E., S. J. Halstead, B., & Michael P. Mingos, D. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27(3), 213. https://doi.org/10.1039/a827213zGao, D., Yang, G., Li, J., Zhang, J., Zhang, J., & Xue, D. (2010a). Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures. The Journal of Physical Chemistry C, 114(43), 18347–18351. https://doi.org/10.1021/jp106015tGarcía Ramón M. (2007). Centro de Investigación en Energía Introducción al Método Rietveld Septiembre de 2007.Gatou, M.-A., Lagopati, N., Vagena, I.-A., Gazouli, M., & Pavlatou, E. A. (2022). ZnO Nanoparticles from Different Precursors and Their Photocatalytic Potential for Biomedical Use. Nanomaterials, 13(1), 122. https://doi.org/10.3390/nano13010122Gedye, R. N., Rank, W., & Westaway, K. C. (1991). The rapid synthesis of organic compounds in microwave ovens. II. Canadian Journal of Chemistry, 69(4), 706–711. https://doi.org/10.1139/v91-106Gedye, R. N., Smith, F. E., & Westaway, K. C. (1988). The rapid synthesis of organic compounds in microwave ovens. Canadian Journal of Chemistry, 66(1), 17–26. https://doi.org/10.1139/v88-003Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27(3), 279–282. https://doi.org/10.1016/S0040-4039(00)83996-9Giguere, R. J., Bray, T. L., Duncan, S. M., & Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters, 27(41), 4945–4948. https://doi.org/10.1016/S0040-4039(00)85103-5Gonjal Prado Jesús, & Morán Emilio. (2011). Síntesis asistida por microondas de sólidos inorgánicos. Http://Www.Rseq.Org/.Gupta, R. K., Serbetçi, Z., & Yakuphanoglu, F. (2012). Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films. Journal of Alloys and Compounds, 515, 96–100. https://doi.org/10.1016/j.jallcom.2011.11.098Guruvammal, D., Selvaraj, S., & Meenakshi Sundar, S. (2018). Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method. Journal of Magnetism and Magnetic Materials, 452, 335–342. https://doi.org/10.1016/j.jmmm.2017.12.097Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2003). Scanning Electron Microscopy and X-ray Microanalysis (3rd ed.). Springer.Gnauck P., Drexel V., Greiser J., A new high resolution field emission scanning electron microscope with variable pressure capabilities, Microscopy and Microanalysis,2001; 7: 880-981.Hao Zhang, Yulong Liu, Ke Zhu, Gueigu Siu, YonghongXiong, CaoshuiXiong, HaoZhang et al, J. Phys.: Condens.Matter, 2035 (1999).Hansen. M. F.. Mørup. S.. & Frandsen. C. (2005). Vibrating sample magnetometer study of nanostructured materials. Journal of Magnetism and Magnetic Materials. 294(1). 76-80.Hayes. L. (2002). Microwave Synthesis_ Chemistry at the Speed of Light - PDF Room.Horikoshi, S., Abe, H., Sumi, T., Torigoe, K., Sakai, H., Serpone, N., & Abe, M. (2011). Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents. Nanoscale, 3(4), 1697. https://doi.org/10.1039/c0nr00861cHorikoshi, S., Sakai, F., Kajitani, M., Abe, M., & Serpone, N. (2009). Microwave frequency effects on the photoactivity of TiO2: Dielectric properties and the degradation of 4-chlorophenol, bisphenol A and methylene blue. Chemical Physics Letters, 470(4–6), 304–307. https://doi.org/10.1016/j.cplett.2009.01.051Irwin, J. C., Chrzanowski, J., Wei, T., Lockwood, D. J., & Wold, A. (1990). Raman scattering from single crystals of cupric oxide. Physica C: Superconductivity, 166(5-6), 456-464.Jacob, J., Chia, L. H. L., & Boey, F. Y. C. (1995). Thermal and non-thermal interaction of microwave radiation with materials. Journal of Materials Science, 30(21), 5321–5327. https://doi.org/10.1007/BF00351541Jhung, S. H., Jin, T., Hwang, Y. K., & Chang, J. (2007). Microwave Effect in the Fast Synthesis of Microporous Materials: Which Stage Between Nucleation and Crystal Growth is Accelerated by Microwave Irradiation? Chemistry – A European Journal, 13(16), 4410–4417. https://doi.org/10.1002/chem.200700098J. Tauc, (Plenum, 1974), Amorphous and Liquid Semiconductors, https://books.google.co.in/books? id¼AiNRAAAAMAAJ.Joy D.C. and Pawley J.B., High resolution scanning electron microscopy, Ultra microscopy, 1993; 47; 80- 100.J Schilling, J., White A., Scherer G., Stupian R., Hillebrand, U., The construction of a Field emission scanning electron microscopy and its application to the study of fibres. Int J Sci. 2005; 15-20.Kappe, C. O. (2004). Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition, 43(46), 6250–6284. https://doi.org/10.1002/anie.200400655Komarneni, S., & Roy, R. (1985). Titania gel spheres by a new sol-gel process. Materials Letters, 3(4), 165–167. https://doi.org/10.1016/0167-577X(85)90151-XKUBA, J., MITCHELS, J., HOVORKA, M., ERDMANN, P., BERKA, L., KIRMSE, R., KÖNIG, J., DE BOCK, J., GOETZE, B., & RIGORT, A. (2021). Advanced cryo‐tomography workflow developments – correlative microscopy, milling automation and cryo‐lift‐out. Journal of Microscopy, 281(2), 112–124. https://doi.org/10.1111/jmi.12939Liang, Y., Wei, Z., Wang, R., & Zhang, X. (2022). The Microwave Facile Synthesis of NiOx@graphene Nanocomposites for Application in Supercapacitors: Insights into the Formation and Storage Mechanisms. Coatings, 12(8), 1060. https://doi.org/10.3390/coatings12081060Lizarraga Matto. (2021). INFLUENCIA DE LA TEMPERATURA EN LA ESTRUCTURA CRISTALINA DE LA MONTMORILLONITA ESTUDIO POR DIFRACCIÓN DE RAYOS-X Y MÉTODO DE RIETVELD. 41–42.Lima. E.. & Silva. G. (2019). Recent advances in vibrating sample magnetometry for magnetic measurements. Journal of Magnetism and Magnetic Materials. 473. 207-215.Long, D. A. (2002). The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley & Sons.Maini, A., & Shah, M. A. (2021). Investigation on physical properties of nanosized copper oxide (CuO) doped with cobalt (Co): A material for electronic device application.International Journal of Ceramic Engineering & Science, 3(4), 192–199. https://doi.org/10.1002/ces2.10097Materiales y propiedades. Uvigo.es. Recuperado el 6 de mayo de 2024. De https://quintans.webs.uvigo.es/recursos/Web_electromagnetismo/magnetismo_materiales.htm.M. Kaur et al., J. Cryst. Growth. 289, 670 (2006), doi: 10.1016/j.jcrysgro.2005.11.111.Nakajima, K., & Ozaki, M. (2024). Anisotropic crystal growth in blue phase I transitioned from a uniformly oriented cholesteric phase. Soft Matter, 20(20), 4072–4078. https://doi.org/10.1039/D4SM00289JNüchter, M., Ondruschka, B., Bonrath, W., & Gum, A. (2004). Microwave assisted synthesis – a critical technology overview. Green Chem., 6(3), 128–141. https://doi.org/10.1039/B310502DOhno, H. (1998). Making Nonmagnetic Semiconductors Ferromagnetic. Science, 281(5379), 951–956. https://doi.org/10.1126/science.281.5379.951Owen, T. (2000). Fundamentos de la espectroscopía UV-visible moderna: conceptos básicos. Hewlett Packard.Patete, J. M., Peng, X., Koenigsmann, C., Xu, Y., Karn, B., & Wong, S. S. (2011). Viable methodologies for the synthesis of high-quality nanostructures. Green Chemistry, 13(3), 482. https://doi.org/10.1039/c0gc00516aPearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., & Boatner, L. A. (2003). Wide band gap ferromagnetic semiconductors and oxides. Journal of Applied Physics, 93(1), 1–13. https://doi.org/10.1063/1.1517164Polshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743. https://doi.org/10.1039/b921171cPonnarasan, V., & Krishnan, A. (2017a). Synthesis, Structural and Optical Properties of Cobalt Doped CuO Nanoparticles. International Journal of Nanoscience, 16(2). https://doi.org/10.1142/S0219581X16500319Ponnar, M., Thangamani, C., Monisha, P., Gomathi, S. S., & Pushpanathan, K. (2018). Influence of Ce doping on CuO nanoparticles synthesized by microwave irradiation method. Applied Surface Science, 449, 132–143. https://doi.org/10.1016/j.apsusc.2018.01.126Prabhu, R. S., Priyanka, R., Vijay, M., & Vikashini, G. K. (2021). Field emission scanning electron microscopy (fesem) with a very big future in pharmaceutical research. Research Article—Pharmaceutical Sciences—OA Journal—MCI Approved—Index Copernicus, 11, 2321-3272.Pawely J., The development if field emission scanning electron microscopy for imaging biological surfaces, Scanning, Vol. 19: 324-336, (1997).Rajamohan, R., Raorane, C. J., Kim, S.-C., Ashokkumar, S., & Lee, Y. R. (2023). Novel Microwave Synthesis of Copper Oxide Nanoparticles and Appraisal of the Antibacterial Application. Micromachines, 14(2), 456. https://doi.org/10.3390/mi14020456Rana, K. K., & Rana, S. (2014). Microwave Reactors: A Brief Review on Its Fundamental Aspects and Applications. OALib, 01(06), 1–20. https://doi.org/10.4236/oalib.1100686Rao, K. J., Vaidhyanathan, B., Ganguli, M., & Ramakrishnan, P. A. (1999). Synthesis of Inorganic Solids Using Microwaves. Chemistry of Materials, 11(4), 882–895. https://doi.org/10.1021/cm9803859Rashad, M., Rüsing, M., Berth, G., Lischka, K., & Pawlis, A. (2013). CuO and Co3O4 nanoparticles: Synthesis, characterizations, and raman spectroscopy. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/714853Rubio, N., Herrero, M. A., Meneghetti, M., Díaz-Ortiz, Á., Schiavon, M., Prato, M., & Vázquez, E. (2009). Efficient functionalization of carbon nanohorns via microwave irradiation. Journal of Materials Chemistry, 19(25), 4407. https://doi.org/10.1039/b900776hReimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (2nd ed.). Springer.SEAS. (2023, January). Semiconductor intrínseco y extrínseco que son y cómo funcionan.Si, Y., Guo, C., Xie, C., & Xiong, Z. (2018). An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction. Materials, 11(10), 1912. https://doi.org/10.3390/ma11101912Skoog, D. A., Holler, Fj., & Crouch, S. R. (2009). Principios de análisis instrumental.Swatsitang, E., Karaphun, A., & Putjuso, T. (2020). Influence of Fe:Co co–doping on the morphology, optical and magnetic properties of Cu1-(x+y)FexCoyO nanostructures prepared by a hydrothermal method. Physica B: Condensed Matter, 583, 412044. https://doi.org/10.1016/j.physb.2020.412044Smith, K.C.A., Oately, C.W. The Field emission Scanning electron microscopy and its fields of application. British Journal of Applied physics. 1995; 6 (11): 391.Singh KK., Robinson D., Pathak YV., Morphological characterization of malto dextrin derivatives using Field emission scanning electron microscopy. Cells and materials. 1993, pp. 543-620.Smith, E., & Dent, G. (2005). Modern Raman Spectroscopy: A Practical Approach. John Wiley & Sons.S. Asbrink and L.-J. Norrby, Acta. Cryst. B 26 ( 1970) 8.Srivastava, S., & Agarwal, A. (2018). INFLUENCE OF Co DOPING ON STRUCTURAL AND OPTICAL PROPERTIES OF CuO NANOPARTICLES. Journal of Ovonic Research, 14(5).Taunk, M., & Singh, N. (2023). A Comparative Analysis of X-Ray Diffraction, Morphology, and Optical Properties of Sonochemically Synthesized Cupric Oxide Nanostructures. Journal of Electronic Materials, 52(10), 6888–6901. https://doi.org/10.1007/s11664-023-10611-7Thakur, N., Anu, & Kumar, K. (2020). Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: A rapid microwave assisted method. Journal of Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.2020.104011Tompsett, G. A., Conner, W. C., & Yngvesson, K. S. (2006). Microwave Synthesis of Nanoporous Materials. ChemPhysChem, 7(2), 296–319. https://doi.org/10.1002/cphc.200500449Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties AndElectronic Structure of Amorphous Germanium. Phys. Status Solidi B1966, 15, 627−637.TEMA 7 Módulo 2. ESPECTROSCOPIA. (2024). Ppt Descargar. https://slideplayer.es/slide/3528146/Uma, H. B., Kumar, M. S. V., & Ananda, S. (2022). Semiconductor-assisted photodegradation of textile dye, photo-voltaic and antibacterial property of electrochemically synthesized Sr-doped CuO nano photocatalysts. Journal of Molecular Structure, 1264. https://doi.org/10.1016/j.molstruc.2022.133110Varghese, D., Tom, C., & Krishna Chandar, N. (2017). Effect of CTAB on structural and optical properties of CuO nanoparticles prepared by coprecipitation route. IOP Conference Series: Materials Science and Engineering, 263, 022002. https://doi.org/10.1088/1757-899X/263/2/022002Vera cuartero Yagüe. (2012). Evolución de las propiedades multiferroicas del TbMnO 3 mediante la dilución de la subred de Mn.Vijayalakshmi, R. V., Saravanan, G., Kumar, P. P., & Ravichandran, K. (2018). Systematic analysis of CuO and Co doped CuO nanoparticles and the impact of dopant on magnetic and optical properties. 030160. https://doi.org/10.1063/1.5032495Vindhya, P. S., & Kavitha, V. T. (2023). Effect of cobalt doping on antimicrobial, antioxidant and photocatalytic activities of CuO nanoparticles. Materials Science and Engineering: B, 289. https://doi.org/10.1016/j.mseb.2022.116258 Varma, D. (2022). Raman Spectroscopy! How does it work? - Materials101. Materials101. https://materials101.science/raman-spectroscopy-how-does-it-work/Watauchi, S., Wakihara, M., & Tanaka, I. (2001). Control of the anisotropic growth rates of oxide single crystals in floating zone growth. Journal of Crystal Growth, 229(1–4), 423–427. https://doi.org/10.1016/S0022-0248(01)01194-0W.G. Fateley, F.R. Dollish, M.T. McDevitt and F.F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations (Wiley, New York, 1972).Xiang, L., Guo, J., Wu, C., Cai, M., Zhou, X., & Zhang, N. (2018). A brief review on the growth mechanism of CuO nanowires via thermal oxidation. In Journal of Materials Research (Vol. 33, Issue 16, pp. 2264–2280). Cambridge University Press. https://doi.org/10.1557/jmr.2018.215Xu, J. F., Ji, W., Shen, Z. X., Li, W. S., Tang, S. H., Ye, X. R., Jia, D. Z., & Xin, X. Q. (1999). Raman Spectra of CuO Nanocrystals (Vol. 30).Xu, Z. P., & Zeng, H. C. (1999). Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds. Chemistry of Materials, 11(1), 67–74. https://doi.org/10.1021/cm980420bYakout, S. M., & El-Sayed, A. M. (2016). Structural, Morphological and Ferromagnetic Properties of Pure and (Mn, Co) Codoped CuO Nanostructures. Journal of Superconductivity and Novel Magnetism, 29(11), 2961–2968. https://doi.org/10.1007/s10948-016-3641-9Yakout, S. M. (2020). Spintronics: Future technology for new data storage and communication devices. Journal of Superconductivity and Novel Magnetism, 33(9), 2557–2580. https://doi.org/10.1007/s10948-020-05545-8Zhang, Y., Ji, Y., Li, J., Liu, H., Hu, X., Zhong, Z., & Su, F. (2018). Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction. Nano Research, 11(2), 804–819. https://doi.org/10.1007/s12274-017-1689-xZhao, Y., Li, Z., Lv, Z., Liang, X., Min, J., Wang, L., & Shi, Y. (2010). A new phase and optical properties of the N-doped ZnO film. Materials Research Bulletin, 45(9), 1046–1050. https://doi.org/10.1016/j.materresbull.2010.06.008Zhao, Y., Zhao, J., Li, Y., Ma, D., Hou, S., Li, L., Hao, X., & Wang, Z. (2011). Room temperature synthesis of 2D CuO nanoleaves in aqueous solution. Nanotechnology, 22(11), 115604. https://doi.org/10.1088/0957-4484/22/11/115604Zhu, Y. J., & Chen, F. (2014). Microwave-assisted preparation of inorganic nanostructures in liquid phase. In Chemical Reviews (Vol. 114, Issue 12, pp. 6462–6555). American Chemical Society. https://doi.org/10.1021/cr400366sZimbovskii, D. S., & Churagulov, B. R. (2018). Cu2O and CuO Films Produced by Chemical and Anodic Oxidation on the Surface of Copper Foil. Inorganic Materials, 54(7), 660–666. https://doi.org/10.1134/S0020168518070208Zoolfakar, A. S., Rani, R. A., Morfa, A. J., O’Mullane, A. P., & Kalantar-Zadeh, K. (2014a). Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. Journal of Materials Chemistry C, 2(27), 5247–5270. https://doi.org/10.1039/c4tc00345dCu1-xCoxO (0.00<x<0.08)Síntesis asistida por microondasInfluencia del dopaje con CoNanoláminasBrecha de bandaFerromagnetismo a temperatura ambienteCu1-xCoxO (0.00<x<0.08)Microwave assisted synthesisCobalt doping influenceBand gapFerromagnetism at room temperaturePublicationORIGINALAutorización de publicación.pdfAutorización de publicación.pdfapplication/pdf265336https://repositorio.unicordoba.edu.co/bitstreams/c74dad51-86d4-4ab5-a7f9-725cf19ec596/download37fb5f30486adaded6b6ce5dfdb5993bMD51Carlos Eduardo Osorno Bolívar. Final.pdfCarlos Eduardo Osorno Bolívar. Final.pdfapplication/pdf6604917https://repositorio.unicordoba.edu.co/bitstreams/e3d2dc0a-a7b8-43be-a741-5e514c0b6087/download858d6a3feff1d9c45de5dbb4db64c4deMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/e3277811-68b8-405b-9ba9-3c2c2c075987/download73a5432e0b76442b22b026844140d683MD52TEXTAutorización de publicación.pdf.txtAutorización de publicación.pdf.txtExtracted texttext/plain4571https://repositorio.unicordoba.edu.co/bitstreams/ab730eeb-2dfb-4895-9fe7-2f1c97614420/downloadfb38f75464caf5fb7ba9dcbe8b535e75MD54Carlos Eduardo Osorno Bolívar. Final.pdf.txtCarlos Eduardo Osorno Bolívar. Final.pdf.txtExtracted texttext/plain101906https://repositorio.unicordoba.edu.co/bitstreams/065b849b-6e28-4054-a6a8-7a5a47c8f85f/download5d633ae7315069a09b6d9dfb9cc7d6f1MD56THUMBNAILAutorización de publicación.pdf.jpgAutorización de publicación.pdf.jpgGenerated Thumbnailimage/jpeg14192https://repositorio.unicordoba.edu.co/bitstreams/2e8f02d7-4c48-43d9-9642-6e215012a76b/download7abd529884067407c3103a8b9b2f680cMD55Carlos Eduardo Osorno Bolívar. Final.pdf.jpgCarlos Eduardo Osorno Bolívar. Final.pdf.jpgGenerated Thumbnailimage/jpeg17112https://repositorio.unicordoba.edu.co/bitstreams/1bb73e77-810c-4e58-8a13-10162ef48fc6/download81a962997ce9f0d350ad339c34cb9621MD57ucordoba/9029oai:repositorio.unicordoba.edu.co:ucordoba/90292025-02-08 03:01:31.484https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025embargohttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K