Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina

Autores:
Enríquez V, Cruz
Paez R, Paola
Campos G, Rómulo
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/5405
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/5405
https://doi.org/10.21897/rmvz.184
Palabra clave:
Growth hormone
immune system
prolactin
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UCORDOBA2_4b6079328e41cbd59cd2efc2c797a4e1
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/5405
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina
dc.title.translated.eng.fl_str_mv Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina
title Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina
spellingShingle Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina
Growth hormone
immune system
prolactin
title_short Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina
title_full Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina
title_fullStr Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina
title_full_unstemmed Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina
title_sort Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina
dc.creator.fl_str_mv Enríquez V, Cruz
Paez R, Paola
Campos G, Rómulo
dc.contributor.author.spa.fl_str_mv Enríquez V, Cruz
Paez R, Paola
Campos G, Rómulo
dc.subject.spa.fl_str_mv Growth hormone
immune system
prolactin
topic Growth hormone
immune system
prolactin
publishDate 2013
dc.date.accessioned.none.fl_str_mv 2013-05-06 00:00:00
2022-07-01T20:58:13Z
dc.date.available.none.fl_str_mv 2013-05-06 00:00:00
2022-07-01T20:58:13Z
dc.date.issued.none.fl_str_mv 2013-05-06
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-0268
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/5405
dc.identifier.doi.none.fl_str_mv 10.21897/rmvz.184
dc.identifier.url.none.fl_str_mv https://doi.org/10.21897/rmvz.184
dc.identifier.eissn.none.fl_str_mv 1909-0544
identifier_str_mv 0122-0268
10.21897/rmvz.184
1909-0544
url https://repositorio.unicordoba.edu.co/handle/ucordoba/5405
https://doi.org/10.21897/rmvz.184
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Kelley KW, Weigent DA, Kooijman R. Protein Hormones and Immunity. Brain Behav Immun 2007; 21(4):384–392. http://dx.doi.org/10.1016/j.bbi.2006.11.010
O'Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW. Regulation of IGF-I function by proinflammatory cytokines: at the interface of immunology and endocrinology. Cell Immunol 2008; 252:91-110. http://dx.doi.org/10.1016/j.cellimm.2007.09.010
Redelman D, Welniak LA, Taub D, Murphy WJ. Review Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cel Immunol 2008; 252:111–121. http://dx.doi.org/10.1016/j.cellimm.2007.12.003
Tripathi A, Sodhi A. Production of nitric oxide by murine peritoneal macrophages in vitro on treatment with prolactin and growth hormone: Involvement of protein tyrosine kinases, Ca++, and MAP kinase signal transduction pathways. Mol Immunol 2007; 44:3185–3194. http://dx.doi.org/10.1016/j.molimm.2007.01.024
Falzacappa MV, Muckenthaler MU. Hepcidin: iron-hormone and anti-microbial peptide. Gene 2005; 364:37-44. http://dx.doi.org/10.1016/j.gene.2005.07.020
Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 2007; 109:353–358. http://dx.doi.org/10.1182/blood-2006-07-033969
Carroll JA. Bidirectional communication: Growth and immunity in domestic livestock. J Anim Sci 2008; 86:E126–E137.
Hattori N. Review Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm IGF Res 2009; 19:187–197. http://dx.doi.org/10.1016/j.ghir.2008.12.001
Elenkov L J. Neurohormonal–cytokine interaction; implication for inflammation, common human diseases and well-being. Neurochem Int 2008; 52:40–51. http://dx.doi.org/10.1016/j.neuint.2007.06.037
Torres RC, Aguilar F. Relación anatómica, clínica y neurofisiológica entre los sistemas nervioso, endocrino e inmune. Plast & Rest Neurol 2006; 5(1): 75-84.
Mocchegiani E, Santarelli L, Costarelli L, Cipriano C, Muti E, Giacconi R, Malavolta M. Plasticity of neuroendocrine–thymus interactions during ontogeny and ageing: role of zinc and arginine. Ageing Res Rev 2006; 5:281–309. http://dx.doi.org/10.1016/j.arr.2006.06.001
Peyssonnaux C, Zinkernagel AS, Datta V, et al. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 2006; 107:3727–3732. http://dx.doi.org/10.1182/blood-2005-06-2259
Pinto JP, Dias V, Zoller H, Porto G, Carmo H, Carvalho F et al.Hepcidin messenger RNA expression in human lymphocytes. Immunol 2010; 130:217–230. http://dx.doi.org/10.1111/j.1365-2567.2009.03226.x
Borghetti P, Saleri R, MocchegianiE, Corradi A, Martelli P. Infection, immunity and the neuroendocrine response. Vet Immunol Immunopathol 2009; 130:141–162. http://dx.doi.org/10.1016/j.vetimm.2009.01.013
Correa Silvia G, Maccioni M, Rivero VE, Iribarren P, Sotomayor CE, Riera CM. Cytokines and the immune-neuroendocrine network: what did we learn from infection and autoimmunity? Cytokine Growth Factor Rev 2007; 18:125–134.
Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 2010; 20:1–7. http://dx.doi.org/10.1016/j.ghir.2009.09.002
Kojima M, Hosada H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growthhormone-releasing acylated peptide from stomach. Nat 1999; 402:656–60. http://dx.doi.org/10.1038/45230
ThanThan S, Mekaru C, Seki N, Hidaka K, Ueno A, ThidarMyint H et al. Endogenous ghrelin released in response to endothelin stimulates growth hormone secretion in cattle. Domest Anim Endocrinol 2010; 38(1):1-12. http://dx.doi.org/10.1016/j.domaniend.2009.07.007
Sodhi A, Tripathi A. Prolactin and growth hormone induce differential cytokine and chemokine profile in murine peritoneal macrophages in vitro: Involvement of p_38 MAP kinase, STAT3 and NF_ κB. Cytokine 2008; 41:162–173. http://dx.doi.org/10.1016/j.cyto.2007.11.007
Baeza I, Alvarado C, Ariznavarreta C, Castillo C, Tresguerres JA, De la Fuente M. Effect of growth hormone treatment on lymphocyte functions in old male rats. Neuroimmunomodulation 2008; 15(4-6): 279-284.
Baeza I, Alvarado C, Álvarez P, Salazar V, Castillo C, Ariznavarreta C, et al. Improvement of leucocyte functions in ovariectomised aged rats after treatment with growth hormone, melatonin, oestrogens or phyto-oestrogens. J Reprod Immunol. 2009; 80(1):70-79. http://dx.doi.org/10.1016/j.jri.2009.02.002
Frare EO, Elena Santello F, Caetano LC, Caldeira JC, Toldo MP, Prado JC. Growth hormones therapy in immune response against Trypanosoma cruzi. Res Vet Sci 2010; 88:273–278. http://dx.doi.org/10.1016/j.rvsc.2009.10.001
Briard, N., V. Guillaume, C. Frachebois, M. Rico-Gomez, N. Sauze, C. Oliver, and A. Dutour. Endotoxin injection increases growth hormone and somatostatin secretion in sheep. Endocrinol 1998; 139:2662–2669. http://dx.doi.org/10.1210/endo.139.6.6072
Briard N, Dadoun F, Pommier G, Sauze N, Lebouc Y, Oliver C et al. IGF-1/IGFBPs system response to endotoxin challenge in sheep. J Endocrinol 2000; 164:361–369. http://dx.doi.org/10.1677/joe.0.1640361
Priego T, Granado M, Iba-ez de Cáceres I, Martín AI, Villanúa MA, Calderón A. Endotoxin at low doses stimulates pituitary GH whereas it decreases IGF-I and IGFBP-3 in rats. J Endocrinol 2003; 179:107–17. http://dx.doi.org/10.1677/joe.0.1790107
Daniel JA, Elsasser TH, Martinez A, Steele B, K. Whitlock BK,Sartin JL. Interleukin-1beta and tumor necrosisfactor-alpha mediation of endotoxin action on growth hormone. Am J Physiol Endocrinol Metab 2005. 289: E650–E657.
Priego T, Granado M, Iba-ez de Cáceres I, Martín AI, Villanúa MA, Calderón A. Endotoxin administration increases hypothalamic somatostatin mRNA through nitric oxide release. Regulat Pept 2005; 124:113– 118. http://dx.doi.org/10.1016/j.regpep.2004.07.001
Wang X, Jiang J, Warram J, Baumann G, Gan Y, MenonR et al. Endotoxin-Induced Proteolytic Reduction in Hepatic Growth Hormone (GH) Receptor: A Novel Mechanism for GH Insensitivity. Mol Endocrinol 2008; 22: 1427–1437. http://dx.doi.org/10.1210/me.2007-0561
Rogatsky I, Ivashkiv LB. Review Article Glucocorticoid modulation of cytokine signaling. J compilation 2006; 68:1–12.
Tripathi A, Sodhi A. Growth hormone-induced production of cytokines in murine peritoneal macrophages in vitro: Role of JAK/STAT, PI3K, PKC and MAP kinases. Immunobiol 2009; 214:430–440. http://dx.doi.org/10.1016/j.imbio.2008.11.013
Sodhi A, Tripathi A. Prolactin and growth hormone induce differential cytokine and chemokine profile in murine peritoneal macrophages in vitro: Involvement of p-38 MAP kinase, STAT3 and NF_κB. Cytokine 2008; 41:162–173. http://dx.doi.org/10.1016/j.cyto.2007.11.007
Tripathi A, Sodhi A. Prolactin-induced production of cytokines in macrophages in vitro involves JAK/STAT and JNK MAPK pathways. International Immunol 2007; 20 (3):327–336. http://dx.doi.org/10.1093/intimm/dxm145
Xu D, Lin L, Lin X, Huang Z, Lei Z. Immunoregulation of autocrine prolactin: Suppressing the expression of costimulatory molecules and cytokines in T lymphocytes by prolactin receptor knockdown. Cel Immunol 2010; 263(1):77-78. http://dx.doi.org/10.1016/j.cellimm.2010.02.018
Nemirovsky MS, Homberg JC. Fundamentos de inmunología. Bases estructurales, fisiológicas y fisiopatologías de la respuesta inmune. México: Trillas; 2003.
Carre-o PC, Sacedón R, Jiménez E, Vicente, Zapata AG. Prolactin affects both survival and differentiation of T-cell progenitors.J Neuroimmunol 2005; 160:135–145. http://dx.doi.org/10.1016/j.jneuroim.2004.11.008
Bolander J. Prolactin activation of mammary nitric oxide synthase: molecular mechanisms. J Mol Endocrinol 2002; 28:45–51. http://dx.doi.org/10.1677/jme.0.0280045
Kumar A, Singh SM, Sodhi A. Effect of prolactin on nitric oxide and interleukin-1 production of murine peritoneal macrophages: Role of Ca2+ and protein kinace C. Int Societ immunopharmacol 1997; 19 (3): 129-133. http://dx.doi.org/10.1016/S0192-0561(97)00022-2
Boutet P, Sulon J, Closset R, DetilleuxJ, Beckers J, Bureau F et al. Prolactin-Induced Activation of Nuclear Factor κB in Bovine Mammary Epithelial Cells: Role in Chronic Mastitis. J Dairy Sci 2007; 90:155–164. http://dx.doi.org/10.3168/jds.S0022-0302(07)72617-6
Vorbach C, Capecchi MR, Penninger JM. Evolution of the mammary gland from the innate immune system?. BioEssays 2006; 28:606–616. http://dx.doi.org/10.1002/bies.20423
Hugman A. Hepcidin: an important new regulator of iron homeostasis. Clin Lab Haematol 2006; 28(2):75-83. http://dx.doi.org/10.1111/j.1365-2257.2006.00768.x
Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz Knappe P, Adermann K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. Antimicrobial activity. FEBS Lett 2000; 480:147–150. http://dx.doi.org/10.1016/S0014-5793(00)01920-7
Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J BiolChem SA 2001; 276:7806-7810. http://dx.doi.org/10.1074/jbc.m008922200
Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr 2006; 26:323–342. http://dx.doi.org/10.1146/annurev.nutr.26.061505.111303
Del Castillo A, De Portugal J. Hepcidina, una nueva proteína en la homeostasis del hierro. An Med Interna 2003; 20:605-606. http://dx.doi.org/10.4321/s0212-71992003001200001
Andrews N, Schmidt P. Iron Homeostasis. Annu Rev Physiol 2007; 69:69-85. http://dx.doi.org/10.1146/annurev.physiol.69.031905.164337
Zhang S, Enns C. Iron Homeostasis: Recently Identified Proteins Provide Insight into Novel Control Mechanisms. J Biol.Chem 2009; 284(2):711–715.
Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. PNAS 2001; 98:8780-8785. http://dx.doi.org/10.1073/pnas.151179498
Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. PNAS 2002; 99: 4596–4601. http://dx.doi.org/10.1073/pnas.072632499
Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia on inflammation. Blood 2003; 103(3):783-788. http://dx.doi.org/10.1182/blood-2003-03-0672
Lee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. PNAS 2005; 102(6):1906-1910. http://dx.doi.org/10.1073/pnas.0409808102
Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 2007; 82:934–945. http://dx.doi.org/10.1189/jlb.0407216
Nemeth E. Regulation of iron metabolism by hepcidin. Annu Rev Nutr 2006; 26:323-42. http://dx.doi.org/10.1146/annurev.nutr.26.061505.111303
dc.relation.bitstream.none.fl_str_mv https://revistamvz.unicordoba.edu.co/article/download/184/253
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2013 : Revista MVZ Córdoba Volumen 18(2) Mayo-Agosto 2013
dc.relation.citationendpage.none.fl_str_mv 3593
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 3585
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.spa.fl_str_mv Revista MVZ Córdoba
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Córdoba
dc.source.spa.fl_str_mv https://revistamvz.unicordoba.edu.co/article/view/184
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/d7438228-b8b2-48b1-9359-6b2fa87b5a72/download
bitstream.checksum.fl_str_mv eb9ea6f9b5777ca96430ab14f091d86c
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636043746246656
spelling Enríquez V, Cruzf6472cd6-e6bc-466d-ab62-8fe7fadd9422-1Paez R, Paola4b2f11a6-a2a0-4a21-b09a-df2b941218bc-1Campos G, Rómulo7a8ea800-771f-4f9f-abea-3b4d737d6740-12013-05-06 00:00:002022-07-01T20:58:13Z2013-05-06 00:00:002022-07-01T20:58:13Z2013-05-060122-0268https://repositorio.unicordoba.edu.co/handle/ucordoba/540510.21897/rmvz.184https://doi.org/10.21897/rmvz.1841909-0544application/pdfspaUniversidad de Córdobahttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistamvz.unicordoba.edu.co/article/view/184Growth hormoneimmune systemprolactinComunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidinaComunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidinaArtículo de revistaJournal articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Kelley KW, Weigent DA, Kooijman R. Protein Hormones and Immunity. Brain Behav Immun 2007; 21(4):384–392. http://dx.doi.org/10.1016/j.bbi.2006.11.010O'Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW. Regulation of IGF-I function by proinflammatory cytokines: at the interface of immunology and endocrinology. Cell Immunol 2008; 252:91-110. http://dx.doi.org/10.1016/j.cellimm.2007.09.010Redelman D, Welniak LA, Taub D, Murphy WJ. Review Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cel Immunol 2008; 252:111–121. http://dx.doi.org/10.1016/j.cellimm.2007.12.003Tripathi A, Sodhi A. Production of nitric oxide by murine peritoneal macrophages in vitro on treatment with prolactin and growth hormone: Involvement of protein tyrosine kinases, Ca++, and MAP kinase signal transduction pathways. Mol Immunol 2007; 44:3185–3194. http://dx.doi.org/10.1016/j.molimm.2007.01.024Falzacappa MV, Muckenthaler MU. Hepcidin: iron-hormone and anti-microbial peptide. Gene 2005; 364:37-44. http://dx.doi.org/10.1016/j.gene.2005.07.020Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 2007; 109:353–358. http://dx.doi.org/10.1182/blood-2006-07-033969Carroll JA. Bidirectional communication: Growth and immunity in domestic livestock. J Anim Sci 2008; 86:E126–E137.Hattori N. Review Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm IGF Res 2009; 19:187–197. http://dx.doi.org/10.1016/j.ghir.2008.12.001Elenkov L J. Neurohormonal–cytokine interaction; implication for inflammation, common human diseases and well-being. Neurochem Int 2008; 52:40–51. http://dx.doi.org/10.1016/j.neuint.2007.06.037Torres RC, Aguilar F. Relación anatómica, clínica y neurofisiológica entre los sistemas nervioso, endocrino e inmune. Plast & Rest Neurol 2006; 5(1): 75-84.Mocchegiani E, Santarelli L, Costarelli L, Cipriano C, Muti E, Giacconi R, Malavolta M. Plasticity of neuroendocrine–thymus interactions during ontogeny and ageing: role of zinc and arginine. Ageing Res Rev 2006; 5:281–309. http://dx.doi.org/10.1016/j.arr.2006.06.001Peyssonnaux C, Zinkernagel AS, Datta V, et al. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 2006; 107:3727–3732. http://dx.doi.org/10.1182/blood-2005-06-2259Pinto JP, Dias V, Zoller H, Porto G, Carmo H, Carvalho F et al.Hepcidin messenger RNA expression in human lymphocytes. Immunol 2010; 130:217–230. http://dx.doi.org/10.1111/j.1365-2567.2009.03226.xBorghetti P, Saleri R, MocchegianiE, Corradi A, Martelli P. Infection, immunity and the neuroendocrine response. Vet Immunol Immunopathol 2009; 130:141–162. http://dx.doi.org/10.1016/j.vetimm.2009.01.013Correa Silvia G, Maccioni M, Rivero VE, Iribarren P, Sotomayor CE, Riera CM. Cytokines and the immune-neuroendocrine network: what did we learn from infection and autoimmunity? Cytokine Growth Factor Rev 2007; 18:125–134.Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 2010; 20:1–7. http://dx.doi.org/10.1016/j.ghir.2009.09.002Kojima M, Hosada H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growthhormone-releasing acylated peptide from stomach. Nat 1999; 402:656–60. http://dx.doi.org/10.1038/45230ThanThan S, Mekaru C, Seki N, Hidaka K, Ueno A, ThidarMyint H et al. Endogenous ghrelin released in response to endothelin stimulates growth hormone secretion in cattle. Domest Anim Endocrinol 2010; 38(1):1-12. http://dx.doi.org/10.1016/j.domaniend.2009.07.007Sodhi A, Tripathi A. Prolactin and growth hormone induce differential cytokine and chemokine profile in murine peritoneal macrophages in vitro: Involvement of p_38 MAP kinase, STAT3 and NF_ κB. Cytokine 2008; 41:162–173. http://dx.doi.org/10.1016/j.cyto.2007.11.007Baeza I, Alvarado C, Ariznavarreta C, Castillo C, Tresguerres JA, De la Fuente M. Effect of growth hormone treatment on lymphocyte functions in old male rats. Neuroimmunomodulation 2008; 15(4-6): 279-284.Baeza I, Alvarado C, Álvarez P, Salazar V, Castillo C, Ariznavarreta C, et al. Improvement of leucocyte functions in ovariectomised aged rats after treatment with growth hormone, melatonin, oestrogens or phyto-oestrogens. J Reprod Immunol. 2009; 80(1):70-79. http://dx.doi.org/10.1016/j.jri.2009.02.002Frare EO, Elena Santello F, Caetano LC, Caldeira JC, Toldo MP, Prado JC. Growth hormones therapy in immune response against Trypanosoma cruzi. Res Vet Sci 2010; 88:273–278. http://dx.doi.org/10.1016/j.rvsc.2009.10.001Briard, N., V. Guillaume, C. Frachebois, M. Rico-Gomez, N. Sauze, C. Oliver, and A. Dutour. Endotoxin injection increases growth hormone and somatostatin secretion in sheep. Endocrinol 1998; 139:2662–2669. http://dx.doi.org/10.1210/endo.139.6.6072Briard N, Dadoun F, Pommier G, Sauze N, Lebouc Y, Oliver C et al. IGF-1/IGFBPs system response to endotoxin challenge in sheep. J Endocrinol 2000; 164:361–369. http://dx.doi.org/10.1677/joe.0.1640361Priego T, Granado M, Iba-ez de Cáceres I, Martín AI, Villanúa MA, Calderón A. Endotoxin at low doses stimulates pituitary GH whereas it decreases IGF-I and IGFBP-3 in rats. J Endocrinol 2003; 179:107–17. http://dx.doi.org/10.1677/joe.0.1790107Daniel JA, Elsasser TH, Martinez A, Steele B, K. Whitlock BK,Sartin JL. Interleukin-1beta and tumor necrosisfactor-alpha mediation of endotoxin action on growth hormone. Am J Physiol Endocrinol Metab 2005. 289: E650–E657.Priego T, Granado M, Iba-ez de Cáceres I, Martín AI, Villanúa MA, Calderón A. Endotoxin administration increases hypothalamic somatostatin mRNA through nitric oxide release. Regulat Pept 2005; 124:113– 118. http://dx.doi.org/10.1016/j.regpep.2004.07.001Wang X, Jiang J, Warram J, Baumann G, Gan Y, MenonR et al. Endotoxin-Induced Proteolytic Reduction in Hepatic Growth Hormone (GH) Receptor: A Novel Mechanism for GH Insensitivity. Mol Endocrinol 2008; 22: 1427–1437. http://dx.doi.org/10.1210/me.2007-0561Rogatsky I, Ivashkiv LB. Review Article Glucocorticoid modulation of cytokine signaling. J compilation 2006; 68:1–12.Tripathi A, Sodhi A. Growth hormone-induced production of cytokines in murine peritoneal macrophages in vitro: Role of JAK/STAT, PI3K, PKC and MAP kinases. Immunobiol 2009; 214:430–440. http://dx.doi.org/10.1016/j.imbio.2008.11.013Sodhi A, Tripathi A. Prolactin and growth hormone induce differential cytokine and chemokine profile in murine peritoneal macrophages in vitro: Involvement of p-38 MAP kinase, STAT3 and NF_κB. Cytokine 2008; 41:162–173. http://dx.doi.org/10.1016/j.cyto.2007.11.007Tripathi A, Sodhi A. Prolactin-induced production of cytokines in macrophages in vitro involves JAK/STAT and JNK MAPK pathways. International Immunol 2007; 20 (3):327–336. http://dx.doi.org/10.1093/intimm/dxm145Xu D, Lin L, Lin X, Huang Z, Lei Z. Immunoregulation of autocrine prolactin: Suppressing the expression of costimulatory molecules and cytokines in T lymphocytes by prolactin receptor knockdown. Cel Immunol 2010; 263(1):77-78. http://dx.doi.org/10.1016/j.cellimm.2010.02.018Nemirovsky MS, Homberg JC. Fundamentos de inmunología. Bases estructurales, fisiológicas y fisiopatologías de la respuesta inmune. México: Trillas; 2003.Carre-o PC, Sacedón R, Jiménez E, Vicente, Zapata AG. Prolactin affects both survival and differentiation of T-cell progenitors.J Neuroimmunol 2005; 160:135–145. http://dx.doi.org/10.1016/j.jneuroim.2004.11.008Bolander J. Prolactin activation of mammary nitric oxide synthase: molecular mechanisms. J Mol Endocrinol 2002; 28:45–51. http://dx.doi.org/10.1677/jme.0.0280045Kumar A, Singh SM, Sodhi A. Effect of prolactin on nitric oxide and interleukin-1 production of murine peritoneal macrophages: Role of Ca2+ and protein kinace C. Int Societ immunopharmacol 1997; 19 (3): 129-133. http://dx.doi.org/10.1016/S0192-0561(97)00022-2Boutet P, Sulon J, Closset R, DetilleuxJ, Beckers J, Bureau F et al. Prolactin-Induced Activation of Nuclear Factor κB in Bovine Mammary Epithelial Cells: Role in Chronic Mastitis. J Dairy Sci 2007; 90:155–164. http://dx.doi.org/10.3168/jds.S0022-0302(07)72617-6Vorbach C, Capecchi MR, Penninger JM. Evolution of the mammary gland from the innate immune system?. BioEssays 2006; 28:606–616. http://dx.doi.org/10.1002/bies.20423Hugman A. Hepcidin: an important new regulator of iron homeostasis. Clin Lab Haematol 2006; 28(2):75-83. http://dx.doi.org/10.1111/j.1365-2257.2006.00768.xKrause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz Knappe P, Adermann K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. Antimicrobial activity. FEBS Lett 2000; 480:147–150. http://dx.doi.org/10.1016/S0014-5793(00)01920-7Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J BiolChem SA 2001; 276:7806-7810. http://dx.doi.org/10.1074/jbc.m008922200Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr 2006; 26:323–342. http://dx.doi.org/10.1146/annurev.nutr.26.061505.111303Del Castillo A, De Portugal J. Hepcidina, una nueva proteína en la homeostasis del hierro. An Med Interna 2003; 20:605-606. http://dx.doi.org/10.4321/s0212-71992003001200001Andrews N, Schmidt P. Iron Homeostasis. Annu Rev Physiol 2007; 69:69-85. http://dx.doi.org/10.1146/annurev.physiol.69.031905.164337Zhang S, Enns C. Iron Homeostasis: Recently Identified Proteins Provide Insight into Novel Control Mechanisms. J Biol.Chem 2009; 284(2):711–715.Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. PNAS 2001; 98:8780-8785. http://dx.doi.org/10.1073/pnas.151179498Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. PNAS 2002; 99: 4596–4601. http://dx.doi.org/10.1073/pnas.072632499Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia on inflammation. Blood 2003; 103(3):783-788. http://dx.doi.org/10.1182/blood-2003-03-0672Lee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. PNAS 2005; 102(6):1906-1910. http://dx.doi.org/10.1073/pnas.0409808102Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 2007; 82:934–945. http://dx.doi.org/10.1189/jlb.0407216Nemeth E. Regulation of iron metabolism by hepcidin. Annu Rev Nutr 2006; 26:323-42. http://dx.doi.org/10.1146/annurev.nutr.26.061505.111303https://revistamvz.unicordoba.edu.co/article/download/184/253Núm. 2 , Año 2013 : Revista MVZ Córdoba Volumen 18(2) Mayo-Agosto 201335932358518Revista MVZ CórdobaPublicationOREORE.xmltext/xml2678https://repositorio.unicordoba.edu.co/bitstreams/d7438228-b8b2-48b1-9359-6b2fa87b5a72/downloadeb9ea6f9b5777ca96430ab14f091d86cMD51ucordoba/5405oai:repositorio.unicordoba.edu.co:ucordoba/54052023-10-06 00:45:38.113https://creativecommons.org/licenses/by-nc-sa/4.0/metadata.onlyhttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.com