Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)

Hemipholis cordifera es una especie de ofiuroideo perteneciente a la familia Ophiactidae registrada en el Atlántico, que puede encontrarse asociada a arrecifes de coral, esponjas, fondos fangosos, arenosos, rocosos y algas a profundidades entre 1 y 18 m. En general, la identificación de esta especie...

Full description

Autores:
Londoño Montes, Nixon
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9442
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9442
https://repositorio.unicordoba.edu.co
Palabra clave:
Hemipholis cordifera
Alometria
Morfometria
Ontogenia
Ophiactidae
Hemipholis cordifera
Allometry
Morphometrics
Ontogeny
Ophiactidae
Rights
embargoedAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_3fa952b651a65a59dd3c13803c9255cb
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9442
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)
title Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)
spellingShingle Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)
Hemipholis cordifera
Alometria
Morfometria
Ontogenia
Ophiactidae
Hemipholis cordifera
Allometry
Morphometrics
Ontogeny
Ophiactidae
title_short Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)
title_full Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)
title_fullStr Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)
title_full_unstemmed Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)
title_sort Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)
dc.creator.fl_str_mv Londoño Montes, Nixon
dc.contributor.advisor.none.fl_str_mv Nisperuza Pérez, Carlos Andrés
dc.contributor.author.none.fl_str_mv Londoño Montes, Nixon
dc.contributor.jury.none.fl_str_mv Escobar Yepes, Juan
Aycardi Morinelly, Maria Paulina
dc.subject.proposal.none.fl_str_mv Hemipholis cordifera
Alometria
Morfometria
Ontogenia
Ophiactidae
topic Hemipholis cordifera
Alometria
Morfometria
Ontogenia
Ophiactidae
Hemipholis cordifera
Allometry
Morphometrics
Ontogeny
Ophiactidae
dc.subject.keywords.none.fl_str_mv Hemipholis cordifera
Allometry
Morphometrics
Ontogeny
Ophiactidae
description Hemipholis cordifera es una especie de ofiuroideo perteneciente a la familia Ophiactidae registrada en el Atlántico, que puede encontrarse asociada a arrecifes de coral, esponjas, fondos fangosos, arenosos, rocosos y algas a profundidades entre 1 y 18 m. En general, la identificación de esta especie se ha basado en organismos adultos y no existen registros de posibles cambios en su morfología durante su crecimiento. Por otro lado, H. cordifera tiene semejanzas morfológicas con otras especies, principalmente del género Amphiodia, lo que podría dificultar su correcta identificación taxonómica. El presente estudio proporciona descripciones morfológicas y morfométricas de los estadios post-metamórficos de 150 organismos de H. cordifera a partir de muestras recolectadas en el Caribe colombiano. A cada individuo se le midieron 15 características anatómicas y con base en el diámetro del disco, se establecieron intervalos de talla. Se brindan datos cuantitativos sobre cada medida anatómica considerando el tamaño de los organismos. Los datos morfométricos se ajustaron a una ecuación de potencia para detectar el grado de alometría en el crecimiento de los caracteres anatómicos. También se obtuvieron microestructuras de la sección proximal del brazo de especímenes en diferentes estadios para su observación en un SEM. El diámetro del disco de H. cordifera varió entre 1,97 y 7,25 mm y se establecieron tres intervalos de talla: juveniles (1,97-3,73 mm), etapa intermedia (3,73 -5,53 mm) y adultos (5,54-7,27 mm). La relación entre la longitud del brazo (LB) y el diámetro del disco (DD) en Hemipholis cordifera presentó un crecimiento alométrico negativo (k = 0,47), lo que indica un desarrollo más rápido de los brazos en comparación con el disco. Los valores bajos de LB/DD observados sugieren un estilo de vida de superficie o epifaunal. Además, las 14 relaciones morfométricas establecidas presentaron crecimiento alométrico negativo. El Índice de Asimetría reveló que, en cuanto a la longitud, el 76% de los organismos tienen los escudos radiales simétricos, mientras que en el 19% y el 5% presentaron asimetría sesgada a la derecha e izquierda respectivamente. Por otro lado, teniendo en cuenta la serie de crecimiento de la especie, las estructuras que sufren cambios a lo largo del desarrollo ontogénico post-metamórfico son: placas primarias, escudos radiales, placas dorsales y ventrales de los brazos y el análisis detallado de las microestructuras revelo cambios en las vértebras, que incluyen variaciones en el área muscular, dorso muscular y quilla entre organismos juveniles y adultos. Estos hallazgos constituyen el primer acercamiento detallado al desarrollo post-metamórfico de H. cordifera desde una perspectiva morfológica y morfométrica. Los resultados no solo contribuyen al conocimiento de la ontogenia en ofiuros, sino que también ofrecen nuevas herramientas para su identificación taxonómica, resaltando la necesidad de considerar las variaciones asociadas al crecimiento en estudios sistemáticos. Asimismo, aportan elementos clave para futuras investigaciones sobre ecología funcional, evolución morfológica y filogenia en la familia Ophiactidae.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-21T20:19:52Z
dc.date.available.none.fl_str_mv 2025-07-21T20:19:52Z
2026-07-21
dc.date.issued.none.fl_str_mv 2025-07-20
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9442
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Institucional Unicórdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9442
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Institucional Unicórdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Alitto, R. A. S., Granadier, G., Christensen, A. B., O'Hara, T., Di Domenico, M., & Borges, M. (2018). Unravelling the taxonomic identity of Ophiothela verrill, 1867 (Ophiuroidea) along the Brazilian coast. Marine Biodiversity, 48(1), 101–115. https://doi.org/10.1007/s12526-017-0734-0
Alvarado, J. J., Solís-Marín, F. A., & Ahearn, C. (2010). Echinoderm (Echinodermata) diversity in the Caribbean Sea. Marine Biodiversity, 40(3), 261-285.
Balon, E. K. (1990). Epigenesis of an epigeneticist: The development of some alternative concepts of ontogeny and evolution. Guelph Ichthyology Reviews.
Benavides-Serrato, M., Borrero-Pérez, G., & Díaz-Sánchez, C. M. (2011). Equinodermos del Caribe colombiano I: Crinoidea, Asteroidea y Ophiuroidea. Instituto de Investigaciones Marinas y Costeras - INVEMAR. Santa Marta, Colombia: Serie de Publicaciones Especiales de INVEMAR, 22.
Benítez-Villalobos, F., & Díaz-Martínez, J. P. (2013). Variaciones morfométricas de Ophiocoma aethiops Lütken, 1859 en tres zonas de la Isla Gorgona [Tesis de maestría no publicada o Manuscrito no publicado]. Universidad Nacional de Colombia / Institución de afiliación.
Bock, D. G., & Smith, A. B. (2021). Adaptive morphological variability in benthic echinoderms. Journal of Marine Biology, 98(4), 675–689. https://doi.org/10.1016/j.jmb.2021.05.007
Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge University Press.
Borges, M., Alitto, R. A. S., & Amaral, A. C. Z. (2015). From baby to adult: Ontogenetic series of nine species of Ophiuroidea from Atlantic southwestern. Revista de Biología Tropical, 63(Suppl. 2), 361–381. https://doi.org/10.15517/rbt.v63i2.18837
Bosc, L. A. G. (1802). Histoire naturelle des vers, contenant leur description et leurs moeurs; avec figures dessinées d’après nature (Vol. 2). Paris: Chez Deterville, de l'imprimerie de Guilleminet 20-29.
Bradley, R. D., Bradley, L. C., Garner, H. J., & Baker, R. J. (2014). Assessing the value of natural history collections and addressing issues regarding long-term growth and care. Bioscience, 64(12), 1150–1158.
Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics.
Brennan, I. G., & Keogh, J. S. (2018). Miocene biome turnover drove conservative body size evolution across Australian vertebrates. Proceedings of the Royal Society B: Biological Sciences, 285(1880), 20181474. https://doi.org/10.1098/rspb.2018.1474
Brogger, M. I., Martínez, M. I., Cadierno, M. P., & Penchaszadeh, P. E. (2015). Tooth microstructure and feeding biology of the brittle star Ophioplocus januarii (Echinodermata: Ophiuroidea) from northern Patagonia, Argentina. Revista de Biología Tropical, 63(Suppl. 2), 353–360.
Clark HL. (1914). Growth changes in brittle stars. Carnegie Institution of Washington Publication 5, 93–126.
Collin, R., Venera-Pontón, D. E., Driskell, A. C., Macdonald, K. S., & Boyle, M. J. (2021). Challenges for morphological taxonomy in the context of protracted marine invertebrate larval phases. Marine Biodiversity, 51(3), 1-14. https://doi.org/10.1007/s12526-021-01189-6
Damiano CJS, Serrano H, Alitto RAS, Mendonça JB, Tavares M, Borges M (2025). Post-larval development and growthintraspecific variations in Ophiocoma echinata and Ophiocoma trindadensis from Brazil (Echinodermata: Ophiuroidea). Journal of the Marine Biological Association of the United Kingdom 105, e12, 1–15. https://doi.org/10.1017/S0025315424001164
Eichsteller, A. C., O’Hara, T. D., & Stöhr, S. (2023). Ophiotholia (Echinodermata: Ophiuroidea): A little-known deep-sea genus present in polymetallic nodule fields with the description of a new species. Frontiers in Marine Science, 10, 1056282. https://doi.org/10.3389/fmars.2023.1056282
Eichsteller, A., Martínez, R., & Solís-Marín, F. A. (2023). Ontogenetic variation in ophiuroid skeletal elements: Implications for taxonomy and phylogeny. Marine Biodiversity, 53(2), 45–58. https://doi.org/10.1007/s12526-023-01234-5
Emson, R. H., & Wilkie, I. C. (1980). "Fission and autotomy in echinoderms". Oceanography and Marine Biology Annual Review, 18, 155-250.
Fell, H. B. (1960). Synoptic keys to the genera of Ophiuroidea. Zoology Publications from Victoria University of Wellington, 26, 1–44.
Gaurisas, D. Y., & Solís-Marín, F. A. (2015). Uso de la Microscopía Electrónica de Barrido en la Taxonomía de las Estrellas Quebradizas (Echinodermata: Ophiuroidea). Libro de resúmenes IV Congreso Latinoamericano de Equinodermos. Recuperado de https://www.researchgate.net/publication/329629224
Gaurisas, M., & Solís-Marín, F. A. (2015). Microstructural analysis of ophiuroid ossicles using SEM: Taxonomic implications. Zootaxa, 3985(3), 301–316. https://doi.org/10.11646/zootaxa.3985.3.1
Goharimanesh, M., Stöhr, S., Mirshamsi, O., Ghassemzadeh, F., & Adriaens, D. (2021). Interactive identification key to all brittle star families (Echinodermata: Ophiuroidea) leads to revised morphological descriptions. European Journal of Taxonomy, 766, 1–63. https://doi.org/10.5852/ejt.2021.766.1483
Goswami, A., Binder, W. J., Meachen, J., & O’Keefe, F. R. (2022). The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics. Annual Review of Ecology, Evolution, and Systematics, 53, 275-300. https://doi.org/10.1146/annurev-ecolsys-102220-024657
Gould, S. J. (1977). Geometric similarity in allometric growth: A contribution to the problem of scaling in biology. American Naturalist, 105(941), 113–136. https://doi.org/10.1086/282703
Granja-Fernández, R., Hernández-Ávila, I., Herrero-Pérezrul, M. D., & Solís-Marín, F. A. (2021). Morphological variability of Ophiocomella alexandri from the Pacific coast of Mexico. Journal of the Marine Biological Association of the United Kingdom, 101(3), 405–412. https://doi.org/10.1017/S0025315421000426
Hendler, G. (2011). New insights on the nomenclature, taxonomy, and biology of species of Hemipholis (Echinodermata: Ophiuroidea: Ophiactidae). Zootaxa, 3048(1), 44. https://doi.org/10.11646/zootaxa.3048.1.2
Hendler, G. (2018). "Taxonomy of brittle stars (Echinodermata: Ophiuroidea) from the Caribbean Sea and adjacent waters". Zootaxa, 4461(1), 1-164.
Hendler, G., Miller, J. E., Pawson, D. L., & Kier, P. M. (1995). Sea Stars, Sea Urchins, and Allies: Echinoderms of Florida and the Caribbean. Smithsonian Institution Press.
Henkel, T. P., & Pawlik, J. R. (2005). Habitat use by sponge-dwelling brittlestars. Marine Biology, 146(2), 301–313. https://doi.org/10.1007/s00227-004-1448-
Hickman, C. P. (1998). A field guide to sea stars and other echinoderms of Galápagos. Sugar Spring Press.
Humara-Gil, K. J., Granja-Fernández, R., Bautista-Guerrero, E., Solís-Marín, F. A., & Rodríguez-Troncoso, A. P. (2025). On Ophioderma (Echinodermata: Ophiuroidea) coming of age: Morphological variations in three eastern Pacific species. Journal of the Marine Biological Association of the United Kingdom, 105, e49, 1–13. https://doi.org/10.1017/S0025315425000396
Huxley, J. S. (1924). Constant differential growth-ratios and their significance. Nature, 114(2867), 895-896. https://doi.org/10.1038/114895a0
Huxley, J.S. (1932) Problems of Relative Growth. Johns Hopkins University Press, Methuen, London, 273.
Iriondo, J. M. (2000). Taxonomía y conservación: Dos aproximaciones a un mismo dilema. Portugaliae Acta Biologica, 18(1-2), 63-71.
Laguarda-Figueras, A., Hernández-Herrejón, L. A., Solís-Marín, F. A., & Durán-González, A. (2009). Ofiuroideos del Caribe Mexicano y Golfo de México. CONABIO UNAM.
Ljungman, A. V. (1867). Ophiuroidea viventia huc usque cognita enumerat. Öfversigt af Kongl. Vetenskaps-Akademiens Forhandlingar, 23, 303–336.
Lyman, T. (1865). Ophiuridae and Astrophytidae. Harvard University Press, Welch, Bigelow, & Company.
Martínez Melo, Alejandra & Rios-Jara, Eduardo & Solis-Marin, Francisco & Galván-Villa, Cristian & Buitron, Blanca & Laguarda-Figueras, Alfredo. (2018). Principios para identificación de equinodermos.
Martínez, R., Chen, H., O’Connor, S., Lee, K., & Dubois, P. (2022). Biomechanical adaptations in Ophiuroidea: Articulation and mobility. Marine Ecology Progress Series, 670, 45–58. https://doi.org/10.3354/meps13720
Martynov, A., Ishida, Y., Irimura, S., Tajiri, R., O’Hara, T., & Fujita, T. (2015). When ontogeny matters: A new Japanese species of brittle star illustrates the importance of considering both adult and juvenile characters in taxonomic practice. PLOS ONE, 10(10), e0139463. https://doi.org/10.1371/journal.pone.0139463
Matsumoto, H. (1915). A new classification of the Ophiuroidea: with description of new genera and species. Proceedings of the Academy of Natural Sciences of Philadelphia. 68: 43-92., available online at https://biodiversitylibrary.org/page/1708443
Mondin, M. A., López, R. D., Fernández, J. E., & Carranza, S. (2024). Taxonomic challenges in Ophiactis: A geometric morphometrics approach. Zoological Journal of the Linnean Society.
O’Hara, T. D., Hugall, A. F., Thuy, B., & Stöhr, S. (2017). Morphological and molecular evidence for multiple origins of deep-sea ophiuroid families. Molecular Phylogenetics and Evolution, 112, 1–14. https://doi.org/10.1016/j.ympev.2017.04.003
O'Hara, T. D., Stöhr, S., Hugall, A. F., Thuy, B., & Martynov, A. (2018). Morphological diagnoses of higher taxa in Ophiuroidea (Echinodermata) in support of a new classification. European Journal of Taxonomy, 416, 1–35. https://doi.org/10.5852/ejt.2018.416
Pardo-Gandarillas, M. C., Torres, F. I., & Méndez, M. A. (2023). Autotomy in crustaceans: Biases in morphological studies and ecological implications. Journal of Experimental Marine Biology and Ecology, 560, 151857. https://doi.org/10.1016/j.jembe.2022.151857
Paterson, G. L. (1985). The deep-sea Ophiuroidea of the North Atlantic Ocean. Bulletin British Museum (Natural History), Zoology Series, 49(28), 76–80. Disponible en: https://archive.org/details/biostor-48/mode/1up
Pérez-Portela, R., Leiva, C., & Turon, X. (2022). Sex-specific transcriptomic differences in the immune cells of a key Atlantic-Mediterranean sea urchin. Frontiers in Marine Science, 9, 1166. https://doi.org/10.3389/fmars.2022.1067666
Reiss, M. J. (1991). The allometry of growth and reproduction. Cambridge University Press.
Rodríguez, J. A. Q. (2015). Echinoderms in Shallow-Bottom from Ahumadera Sector, Cispatá Bay, Cordoba, Colombian Caribbean. Acta Biológica Colombiana, 20(1), 101-108.
Rosales-Contreras, G. I., Laguarda-Figueras, A., & Solís-Marín, F. A. (2021). Morfología y microestructura interna de la estrella quebradiza Ophiocomella alexandri (Echinodermata: Ophiocomidae). Revista de Biología Tropical, 69(S1), S358–S374. https://doi.org/10.15517/rbt.v69iSuppl.1.46367
Rueda, J. L., Urra, J., & Gofas, S. (2022). The silent crisis in marine taxonomy: Underfunding and the loss of expertise in molluscan systematics. Frontiers in Marine Science, 9, 887955. https://doi.org/10.3389/fmars.2022.887955
Sanvicente-Añorve, L., Solís-Marín, F. A., & Rosales-Contreras, I. (2021). Morphometry and relative growth of Ophiolepis crassa (Echinodermata: Ophiuroidea), a brittle star from the Eastern Pacific. Zoological Studies, 60, 26. https://doi.org/10.6620/ZS.2021.60-26
Smith, L. C., Arizza, V., Hudgell, M. A. B., Barone, G., Bodnar, A. G., Buckley, K. M., Cunsolo, V., Dheilly, N. M., Franchi, N., Fugmann, S. D., Furukawa, R., García-Arrarás, J., Henson, J. H., Hibino, T., Irons, Z. H., Li, C., Lun, C. M., Majeske, A. J., Oren, M., Pagliara, P., Pinsino, A., Raftos, D. A., Rast, J. P., Samasa, B., Schillaci, D., Schrankel, C. S., Stabili, L., Stensväg, K., & Sutton, E. (2018). Echinodermata: The complex immune system in echinoderms. In E. L. Cooper (Ed.), Advances in Comparative Immunology (pp. 409–501). Springer. https://doi.org/10.1007/978-3-319-76768-0_13
Solís-Marín, F. A., Laguarda-Figueras, A., & Honey-Escandón, M. (2005). Biodiversidad de equinodermos (Echinodermata) en México / Biodiversity of echinoderms (Echinodermata) in Mexico. Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México.
Stancyk, S. E., Golde, H. M., Pape-Lindstrom, P. A., & Dobson, W. E. (1982). "Brittle star bioenergetics: Growth and reproduction in Hemipholis cordifera". Marine Biology, 69(1), 1-7.
Stöhr, S. (2005). Who’s who among baby brittle stars (Echinodermata: Ophiuroidea): Post-metamorphic development of some North Atlantic forms. Zoological Journal of the Linnean Society, 143(4), 543–576. https://doi.org/10.1111/j.1096-3642.2005.00155.x
Stöhr, S., & Martynov, A. (2016). Paedomorphosis as an evolutionary driving force: Insights from deep-sea brittle stars. PLOS ONE, 11(11), e0164562. https://doi.org/10.1371/journal.pone.0164562
Stöhr, S., & Martynov, A. (2022). Restructuring higher taxonomy using broad-scale phylogenomics: The living Ophiuroidea. Molecular Phylogenetics and Evolution, 177, 107624. https://doi.org/10.1016/j.ympev.2022.107624
Stöhr, S., O’Hara, T. D., & Thuy, B. (2012). Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE, 7(3), e31940. https://doi.org/10.1371/journal.pone.0031940
Stöhr, S., O'Hara, T., & Thuy, B. (2025). Ophiuroidea: Diversity and global distribution of brittle stars. In Echinoderm biodiversity and biogeography (pp. 45–52). Marine Research Press.
Thomas, L. P. (1962). "The shallow water amphiurid brittle stars (Ophiuroidea) of Florida". Bulletin of Marine Science of the Gulf and Caribbean, 12(4), 623-694.
Thuy, B., & Stöhr, S. (2011). Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): New perspectives for ophiuroid micropalaeontology and classification. Zootaxa, 3013(1), 1–47.
Thuy, B., & Stöhr, S. (2023). Skeletal microstructure in Ophiactidae (Echinodermata: Ophiuroidea). Zoomorphology. https://doi.org/10.1007/s00435-023-00601-5
Tomholt, L., Byrne, M., & O'Hara, T. D. (2020). Dominance of brittle stars in benthic marine communities: Ecological and morphological characteristics. Marine Biology Research, 16(5), 327–342. https://doi.org/10.1080/17451000.2020.1718010
Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution, 16(2), 125–142.
Verrill, A. E. (1867). V. Notes on the Radiata in the Museum of Yale College, with Descriptions of New Genera and Species. No. 2. Notes on the echinoderms of Panama and the West Coast of America, with descriptions of new genera and species. Transactions of the Connecticut Academy of Arts and Sciences, 1, 251–322.
Zar, J. H. (1999). Biostatistical analysis (4th ed.). Prentice Hall.
Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: A primer (2nd ed.). Academic Press. https://doi.org/10.1016/B978-0-12-386903-6.00001-8
Ziegler, A., Faber, C., & Mueller, S. (2019). Comparative morphology and evolution of echinoderm skeletal plates. Frontiers in Zoology, 16(1), 1–15.
Ziegler, A., Faber, C., Mueller, S., & Bartolomaeus, T. (2021). Comparative morphology and evolution of the echinoderm water vascular system. Zoomorphology, 140(3), 357-376. https://doi.org/10.1007/s00435-021-00534-4
Ziegler, A., Martynov, A., & Thuy, B. (2024). High-resolution micro-CT for ophiuroid taxonomy. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.14275
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Biología
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://dspace8-unicordoba.metabuscador.org/bitstreams/9ed6424a-714b-4dae-af96-c35db5ba4018/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/5c66025b-892f-405a-bb0f-39ef072bbec1/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/0ddb8c44-fb56-4c52-8132-7ed88c68cc7e/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/af67a98a-42b8-4f9e-9be7-c211e99d82a3/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/54853834-db02-4afa-9369-1a0d3f6fba26/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/7b277521-0bf8-4c64-bece-1349309933cb/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/41308113-dfcc-4f5e-afc8-64a97145e199/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
6c03c2084001d0a9230269ba8b8b02a6
e4a3c61abb6c72daa74ebf0918823206
fc286a5db4aef089e419318a6d403baa
65c06b14003fb60ebee95bd951639f00
73ce73403deb014780167697a8534fb6
b1450bfdcab5931eb2e6945b450838ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1849968395732123648
spelling Nisperuza Pérez, Carlos AndrésLondoño Montes, NixonEscobar Yepes, JuanAycardi Morinelly, Maria Paulina2025-07-21T20:19:52Z2026-07-212025-07-21T20:19:52Z2025-07-20https://repositorio.unicordoba.edu.co/handle/ucordoba/9442Universidad de CórdobaRepositorio Institucional Unicórdobahttps://repositorio.unicordoba.edu.coHemipholis cordifera es una especie de ofiuroideo perteneciente a la familia Ophiactidae registrada en el Atlántico, que puede encontrarse asociada a arrecifes de coral, esponjas, fondos fangosos, arenosos, rocosos y algas a profundidades entre 1 y 18 m. En general, la identificación de esta especie se ha basado en organismos adultos y no existen registros de posibles cambios en su morfología durante su crecimiento. Por otro lado, H. cordifera tiene semejanzas morfológicas con otras especies, principalmente del género Amphiodia, lo que podría dificultar su correcta identificación taxonómica. El presente estudio proporciona descripciones morfológicas y morfométricas de los estadios post-metamórficos de 150 organismos de H. cordifera a partir de muestras recolectadas en el Caribe colombiano. A cada individuo se le midieron 15 características anatómicas y con base en el diámetro del disco, se establecieron intervalos de talla. Se brindan datos cuantitativos sobre cada medida anatómica considerando el tamaño de los organismos. Los datos morfométricos se ajustaron a una ecuación de potencia para detectar el grado de alometría en el crecimiento de los caracteres anatómicos. También se obtuvieron microestructuras de la sección proximal del brazo de especímenes en diferentes estadios para su observación en un SEM. El diámetro del disco de H. cordifera varió entre 1,97 y 7,25 mm y se establecieron tres intervalos de talla: juveniles (1,97-3,73 mm), etapa intermedia (3,73 -5,53 mm) y adultos (5,54-7,27 mm). La relación entre la longitud del brazo (LB) y el diámetro del disco (DD) en Hemipholis cordifera presentó un crecimiento alométrico negativo (k = 0,47), lo que indica un desarrollo más rápido de los brazos en comparación con el disco. Los valores bajos de LB/DD observados sugieren un estilo de vida de superficie o epifaunal. Además, las 14 relaciones morfométricas establecidas presentaron crecimiento alométrico negativo. El Índice de Asimetría reveló que, en cuanto a la longitud, el 76% de los organismos tienen los escudos radiales simétricos, mientras que en el 19% y el 5% presentaron asimetría sesgada a la derecha e izquierda respectivamente. Por otro lado, teniendo en cuenta la serie de crecimiento de la especie, las estructuras que sufren cambios a lo largo del desarrollo ontogénico post-metamórfico son: placas primarias, escudos radiales, placas dorsales y ventrales de los brazos y el análisis detallado de las microestructuras revelo cambios en las vértebras, que incluyen variaciones en el área muscular, dorso muscular y quilla entre organismos juveniles y adultos. Estos hallazgos constituyen el primer acercamiento detallado al desarrollo post-metamórfico de H. cordifera desde una perspectiva morfológica y morfométrica. Los resultados no solo contribuyen al conocimiento de la ontogenia en ofiuros, sino que también ofrecen nuevas herramientas para su identificación taxonómica, resaltando la necesidad de considerar las variaciones asociadas al crecimiento en estudios sistemáticos. Asimismo, aportan elementos clave para futuras investigaciones sobre ecología funcional, evolución morfológica y filogenia en la familia Ophiactidae.Hemipholis cordifera is a species of ophiuroid belonging to the family Ophiactidae, recorded in the Atlantic Ocean. It can be found associated with coral reefs, sponges, muddy, sandy, and rocky bottoms, as well as algae, at depths ranging from 1 to 18 meters. In general, the identification of this species has been based on adult specimens, and there are no records of possible morphological changes throughout its growth. Moreover, H. cordifera shows morphological similarities with other species, mainly within the genus Amphiodia, which may hinder its correct taxonomic identification. This study provides morphological and morphometric descriptions of the post-metamorphic stages of 150 H. cordifera individuals, based on samples collected in the Colombian Caribbean. Fifteen anatomical characteristics were measured for each individual, and size classes were established based on disk diameter. Quantitative data were provided for each anatomical trait in relation to the organism's size. Morphometric data were fitted to a power equation to determine the degree of allometric growth of the anatomical traits. Additionally, microstructures of the proximal section of the arm were examined in different stages using scanning electron microscopy (SEM). The disk diameter of H. cordifera ranged from 1.97 to 7.25 mm, and three size classes were established: juveniles (1.97–3.73 mm), intermediate stage (3.73–5.53 mm), and adults (5.54–7.27 mm). The relationship between arm length (AL) and disk diameter (DD) showed negative allometric growth (k = 0.47), indicating faster development of the arms compared to the disk. The low AL/DD values suggest an epifaunal or surface-dwelling lifestyle. Furthermore, the 14 established morphometric relationships also showed negative allometric growth. The Asymmetry Index revealed that, in terms of length, 76% of the individuals had symmetrical radial shields, while 19% and 5% exhibited right- and left-biased asymmetry, respectively. Additionally, based on the species' growth series, the structures that undergo changes throughout post-metamorphic ontogenetic development include: primary plates, radial shields, dorsal and ventral arm plates. A detailed analysis of microstructures revealed changes in the vertebrae, including variations in muscle area, muscle dorsum, and keel between juvenile and adult specimens. These findings represent the first detailed approach to the post-metamorphic development of H. cordifera from a morphological and morphometric perspective. The results not only contribute to the understanding of ophiuroid ontogeny but also offer new tools for their taxonomic identification, highlighting the importance of considering growth-related variations in systematic studies. Additionally, they provide key elements for future research on functional ecology, morphological evolution, and phylogeny within the Ophiactidae family.ResumenAbstractIntroduccionObjetivosEstado del arteMarco teoricoOnteogeniaMorfometriaPlasticidad fenotipicaLeyes de escalaClase OphiuroideaHemipholisMetodologiaRecoleccion de ejemplaresFase de laboratorioResultadosCaracterizacion ontogenica de Hemipholis cordiferaDiscoBrazosvertebras desarticuladasPlacas braquiales desarticuladas del brazoDiscusionConclusionRecomendacionesBibliografiasAnexosAnalisis de la informacionPregradoBiólogo(a)Trabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaBiologíaCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfDesarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTextAlitto, R. A. S., Granadier, G., Christensen, A. B., O'Hara, T., Di Domenico, M., & Borges, M. (2018). Unravelling the taxonomic identity of Ophiothela verrill, 1867 (Ophiuroidea) along the Brazilian coast. Marine Biodiversity, 48(1), 101–115. https://doi.org/10.1007/s12526-017-0734-0Alvarado, J. J., Solís-Marín, F. A., & Ahearn, C. (2010). Echinoderm (Echinodermata) diversity in the Caribbean Sea. Marine Biodiversity, 40(3), 261-285.Balon, E. K. (1990). Epigenesis of an epigeneticist: The development of some alternative concepts of ontogeny and evolution. Guelph Ichthyology Reviews.Benavides-Serrato, M., Borrero-Pérez, G., & Díaz-Sánchez, C. M. (2011). Equinodermos del Caribe colombiano I: Crinoidea, Asteroidea y Ophiuroidea. Instituto de Investigaciones Marinas y Costeras - INVEMAR. Santa Marta, Colombia: Serie de Publicaciones Especiales de INVEMAR, 22.Benítez-Villalobos, F., & Díaz-Martínez, J. P. (2013). Variaciones morfométricas de Ophiocoma aethiops Lütken, 1859 en tres zonas de la Isla Gorgona [Tesis de maestría no publicada o Manuscrito no publicado]. Universidad Nacional de Colombia / Institución de afiliación.Bock, D. G., & Smith, A. B. (2021). Adaptive morphological variability in benthic echinoderms. Journal of Marine Biology, 98(4), 675–689. https://doi.org/10.1016/j.jmb.2021.05.007Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge University Press.Borges, M., Alitto, R. A. S., & Amaral, A. C. Z. (2015). From baby to adult: Ontogenetic series of nine species of Ophiuroidea from Atlantic southwestern. Revista de Biología Tropical, 63(Suppl. 2), 361–381. https://doi.org/10.15517/rbt.v63i2.18837Bosc, L. A. G. (1802). Histoire naturelle des vers, contenant leur description et leurs moeurs; avec figures dessinées d’après nature (Vol. 2). Paris: Chez Deterville, de l'imprimerie de Guilleminet 20-29.Bradley, R. D., Bradley, L. C., Garner, H. J., & Baker, R. J. (2014). Assessing the value of natural history collections and addressing issues regarding long-term growth and care. Bioscience, 64(12), 1150–1158.Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics.Brennan, I. G., & Keogh, J. S. (2018). Miocene biome turnover drove conservative body size evolution across Australian vertebrates. Proceedings of the Royal Society B: Biological Sciences, 285(1880), 20181474. https://doi.org/10.1098/rspb.2018.1474Brogger, M. I., Martínez, M. I., Cadierno, M. P., & Penchaszadeh, P. E. (2015). Tooth microstructure and feeding biology of the brittle star Ophioplocus januarii (Echinodermata: Ophiuroidea) from northern Patagonia, Argentina. Revista de Biología Tropical, 63(Suppl. 2), 353–360.Clark HL. (1914). Growth changes in brittle stars. Carnegie Institution of Washington Publication 5, 93–126.Collin, R., Venera-Pontón, D. E., Driskell, A. C., Macdonald, K. S., & Boyle, M. J. (2021). Challenges for morphological taxonomy in the context of protracted marine invertebrate larval phases. Marine Biodiversity, 51(3), 1-14. https://doi.org/10.1007/s12526-021-01189-6Damiano CJS, Serrano H, Alitto RAS, Mendonça JB, Tavares M, Borges M (2025). Post-larval development and growthintraspecific variations in Ophiocoma echinata and Ophiocoma trindadensis from Brazil (Echinodermata: Ophiuroidea). Journal of the Marine Biological Association of the United Kingdom 105, e12, 1–15. https://doi.org/10.1017/S0025315424001164Eichsteller, A. C., O’Hara, T. D., & Stöhr, S. (2023). Ophiotholia (Echinodermata: Ophiuroidea): A little-known deep-sea genus present in polymetallic nodule fields with the description of a new species. Frontiers in Marine Science, 10, 1056282. https://doi.org/10.3389/fmars.2023.1056282Eichsteller, A., Martínez, R., & Solís-Marín, F. A. (2023). Ontogenetic variation in ophiuroid skeletal elements: Implications for taxonomy and phylogeny. Marine Biodiversity, 53(2), 45–58. https://doi.org/10.1007/s12526-023-01234-5Emson, R. H., & Wilkie, I. C. (1980). "Fission and autotomy in echinoderms". Oceanography and Marine Biology Annual Review, 18, 155-250.Fell, H. B. (1960). Synoptic keys to the genera of Ophiuroidea. Zoology Publications from Victoria University of Wellington, 26, 1–44.Gaurisas, D. Y., & Solís-Marín, F. A. (2015). Uso de la Microscopía Electrónica de Barrido en la Taxonomía de las Estrellas Quebradizas (Echinodermata: Ophiuroidea). Libro de resúmenes IV Congreso Latinoamericano de Equinodermos. Recuperado de https://www.researchgate.net/publication/329629224Gaurisas, M., & Solís-Marín, F. A. (2015). Microstructural analysis of ophiuroid ossicles using SEM: Taxonomic implications. Zootaxa, 3985(3), 301–316. https://doi.org/10.11646/zootaxa.3985.3.1Goharimanesh, M., Stöhr, S., Mirshamsi, O., Ghassemzadeh, F., & Adriaens, D. (2021). Interactive identification key to all brittle star families (Echinodermata: Ophiuroidea) leads to revised morphological descriptions. European Journal of Taxonomy, 766, 1–63. https://doi.org/10.5852/ejt.2021.766.1483Goswami, A., Binder, W. J., Meachen, J., & O’Keefe, F. R. (2022). The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics. Annual Review of Ecology, Evolution, and Systematics, 53, 275-300. https://doi.org/10.1146/annurev-ecolsys-102220-024657Gould, S. J. (1977). Geometric similarity in allometric growth: A contribution to the problem of scaling in biology. American Naturalist, 105(941), 113–136. https://doi.org/10.1086/282703Granja-Fernández, R., Hernández-Ávila, I., Herrero-Pérezrul, M. D., & Solís-Marín, F. A. (2021). Morphological variability of Ophiocomella alexandri from the Pacific coast of Mexico. Journal of the Marine Biological Association of the United Kingdom, 101(3), 405–412. https://doi.org/10.1017/S0025315421000426Hendler, G. (2011). New insights on the nomenclature, taxonomy, and biology of species of Hemipholis (Echinodermata: Ophiuroidea: Ophiactidae). Zootaxa, 3048(1), 44. https://doi.org/10.11646/zootaxa.3048.1.2Hendler, G. (2018). "Taxonomy of brittle stars (Echinodermata: Ophiuroidea) from the Caribbean Sea and adjacent waters". Zootaxa, 4461(1), 1-164.Hendler, G., Miller, J. E., Pawson, D. L., & Kier, P. M. (1995). Sea Stars, Sea Urchins, and Allies: Echinoderms of Florida and the Caribbean. Smithsonian Institution Press.Henkel, T. P., & Pawlik, J. R. (2005). Habitat use by sponge-dwelling brittlestars. Marine Biology, 146(2), 301–313. https://doi.org/10.1007/s00227-004-1448-Hickman, C. P. (1998). A field guide to sea stars and other echinoderms of Galápagos. Sugar Spring Press.Humara-Gil, K. J., Granja-Fernández, R., Bautista-Guerrero, E., Solís-Marín, F. A., & Rodríguez-Troncoso, A. P. (2025). On Ophioderma (Echinodermata: Ophiuroidea) coming of age: Morphological variations in three eastern Pacific species. Journal of the Marine Biological Association of the United Kingdom, 105, e49, 1–13. https://doi.org/10.1017/S0025315425000396Huxley, J. S. (1924). Constant differential growth-ratios and their significance. Nature, 114(2867), 895-896. https://doi.org/10.1038/114895a0Huxley, J.S. (1932) Problems of Relative Growth. Johns Hopkins University Press, Methuen, London, 273.Iriondo, J. M. (2000). Taxonomía y conservación: Dos aproximaciones a un mismo dilema. Portugaliae Acta Biologica, 18(1-2), 63-71.Laguarda-Figueras, A., Hernández-Herrejón, L. A., Solís-Marín, F. A., & Durán-González, A. (2009). Ofiuroideos del Caribe Mexicano y Golfo de México. CONABIO UNAM.Ljungman, A. V. (1867). Ophiuroidea viventia huc usque cognita enumerat. Öfversigt af Kongl. Vetenskaps-Akademiens Forhandlingar, 23, 303–336.Lyman, T. (1865). Ophiuridae and Astrophytidae. Harvard University Press, Welch, Bigelow, & Company.Martínez Melo, Alejandra & Rios-Jara, Eduardo & Solis-Marin, Francisco & Galván-Villa, Cristian & Buitron, Blanca & Laguarda-Figueras, Alfredo. (2018). Principios para identificación de equinodermos.Martínez, R., Chen, H., O’Connor, S., Lee, K., & Dubois, P. (2022). Biomechanical adaptations in Ophiuroidea: Articulation and mobility. Marine Ecology Progress Series, 670, 45–58. https://doi.org/10.3354/meps13720Martynov, A., Ishida, Y., Irimura, S., Tajiri, R., O’Hara, T., & Fujita, T. (2015). When ontogeny matters: A new Japanese species of brittle star illustrates the importance of considering both adult and juvenile characters in taxonomic practice. PLOS ONE, 10(10), e0139463. https://doi.org/10.1371/journal.pone.0139463Matsumoto, H. (1915). A new classification of the Ophiuroidea: with description of new genera and species. Proceedings of the Academy of Natural Sciences of Philadelphia. 68: 43-92., available online at https://biodiversitylibrary.org/page/1708443Mondin, M. A., López, R. D., Fernández, J. E., & Carranza, S. (2024). Taxonomic challenges in Ophiactis: A geometric morphometrics approach. Zoological Journal of the Linnean Society.O’Hara, T. D., Hugall, A. F., Thuy, B., & Stöhr, S. (2017). Morphological and molecular evidence for multiple origins of deep-sea ophiuroid families. Molecular Phylogenetics and Evolution, 112, 1–14. https://doi.org/10.1016/j.ympev.2017.04.003O'Hara, T. D., Stöhr, S., Hugall, A. F., Thuy, B., & Martynov, A. (2018). Morphological diagnoses of higher taxa in Ophiuroidea (Echinodermata) in support of a new classification. European Journal of Taxonomy, 416, 1–35. https://doi.org/10.5852/ejt.2018.416Pardo-Gandarillas, M. C., Torres, F. I., & Méndez, M. A. (2023). Autotomy in crustaceans: Biases in morphological studies and ecological implications. Journal of Experimental Marine Biology and Ecology, 560, 151857. https://doi.org/10.1016/j.jembe.2022.151857Paterson, G. L. (1985). The deep-sea Ophiuroidea of the North Atlantic Ocean. Bulletin British Museum (Natural History), Zoology Series, 49(28), 76–80. Disponible en: https://archive.org/details/biostor-48/mode/1upPérez-Portela, R., Leiva, C., & Turon, X. (2022). Sex-specific transcriptomic differences in the immune cells of a key Atlantic-Mediterranean sea urchin. Frontiers in Marine Science, 9, 1166. https://doi.org/10.3389/fmars.2022.1067666Reiss, M. J. (1991). The allometry of growth and reproduction. Cambridge University Press.Rodríguez, J. A. Q. (2015). Echinoderms in Shallow-Bottom from Ahumadera Sector, Cispatá Bay, Cordoba, Colombian Caribbean. Acta Biológica Colombiana, 20(1), 101-108.Rosales-Contreras, G. I., Laguarda-Figueras, A., & Solís-Marín, F. A. (2021). Morfología y microestructura interna de la estrella quebradiza Ophiocomella alexandri (Echinodermata: Ophiocomidae). Revista de Biología Tropical, 69(S1), S358–S374. https://doi.org/10.15517/rbt.v69iSuppl.1.46367Rueda, J. L., Urra, J., & Gofas, S. (2022). The silent crisis in marine taxonomy: Underfunding and the loss of expertise in molluscan systematics. Frontiers in Marine Science, 9, 887955. https://doi.org/10.3389/fmars.2022.887955Sanvicente-Añorve, L., Solís-Marín, F. A., & Rosales-Contreras, I. (2021). Morphometry and relative growth of Ophiolepis crassa (Echinodermata: Ophiuroidea), a brittle star from the Eastern Pacific. Zoological Studies, 60, 26. https://doi.org/10.6620/ZS.2021.60-26Smith, L. C., Arizza, V., Hudgell, M. A. B., Barone, G., Bodnar, A. G., Buckley, K. M., Cunsolo, V., Dheilly, N. M., Franchi, N., Fugmann, S. D., Furukawa, R., García-Arrarás, J., Henson, J. H., Hibino, T., Irons, Z. H., Li, C., Lun, C. M., Majeske, A. J., Oren, M., Pagliara, P., Pinsino, A., Raftos, D. A., Rast, J. P., Samasa, B., Schillaci, D., Schrankel, C. S., Stabili, L., Stensväg, K., & Sutton, E. (2018). Echinodermata: The complex immune system in echinoderms. In E. L. Cooper (Ed.), Advances in Comparative Immunology (pp. 409–501). Springer. https://doi.org/10.1007/978-3-319-76768-0_13Solís-Marín, F. A., Laguarda-Figueras, A., & Honey-Escandón, M. (2005). Biodiversidad de equinodermos (Echinodermata) en México / Biodiversity of echinoderms (Echinodermata) in Mexico. Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México.Stancyk, S. E., Golde, H. M., Pape-Lindstrom, P. A., & Dobson, W. E. (1982). "Brittle star bioenergetics: Growth and reproduction in Hemipholis cordifera". Marine Biology, 69(1), 1-7.Stöhr, S. (2005). Who’s who among baby brittle stars (Echinodermata: Ophiuroidea): Post-metamorphic development of some North Atlantic forms. Zoological Journal of the Linnean Society, 143(4), 543–576. https://doi.org/10.1111/j.1096-3642.2005.00155.xStöhr, S., & Martynov, A. (2016). Paedomorphosis as an evolutionary driving force: Insights from deep-sea brittle stars. PLOS ONE, 11(11), e0164562. https://doi.org/10.1371/journal.pone.0164562Stöhr, S., & Martynov, A. (2022). Restructuring higher taxonomy using broad-scale phylogenomics: The living Ophiuroidea. Molecular Phylogenetics and Evolution, 177, 107624. https://doi.org/10.1016/j.ympev.2022.107624Stöhr, S., O’Hara, T. D., & Thuy, B. (2012). Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE, 7(3), e31940. https://doi.org/10.1371/journal.pone.0031940Stöhr, S., O'Hara, T., & Thuy, B. (2025). Ophiuroidea: Diversity and global distribution of brittle stars. In Echinoderm biodiversity and biogeography (pp. 45–52). Marine Research Press.Thomas, L. P. (1962). "The shallow water amphiurid brittle stars (Ophiuroidea) of Florida". Bulletin of Marine Science of the Gulf and Caribbean, 12(4), 623-694.Thuy, B., & Stöhr, S. (2011). Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): New perspectives for ophiuroid micropalaeontology and classification. Zootaxa, 3013(1), 1–47.Thuy, B., & Stöhr, S. (2023). Skeletal microstructure in Ophiactidae (Echinodermata: Ophiuroidea). Zoomorphology. https://doi.org/10.1007/s00435-023-00601-5Tomholt, L., Byrne, M., & O'Hara, T. D. (2020). Dominance of brittle stars in benthic marine communities: Ecological and morphological characteristics. Marine Biology Research, 16(5), 327–342. https://doi.org/10.1080/17451000.2020.1718010Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution, 16(2), 125–142.Verrill, A. E. (1867). V. Notes on the Radiata in the Museum of Yale College, with Descriptions of New Genera and Species. No. 2. Notes on the echinoderms of Panama and the West Coast of America, with descriptions of new genera and species. Transactions of the Connecticut Academy of Arts and Sciences, 1, 251–322.Zar, J. H. (1999). Biostatistical analysis (4th ed.). Prentice Hall.Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: A primer (2nd ed.). Academic Press. https://doi.org/10.1016/B978-0-12-386903-6.00001-8Ziegler, A., Faber, C., & Mueller, S. (2019). Comparative morphology and evolution of echinoderm skeletal plates. Frontiers in Zoology, 16(1), 1–15.Ziegler, A., Faber, C., Mueller, S., & Bartolomaeus, T. (2021). Comparative morphology and evolution of the echinoderm water vascular system. Zoomorphology, 140(3), 357-376. https://doi.org/10.1007/s00435-021-00534-4Ziegler, A., Martynov, A., & Thuy, B. (2024). High-resolution micro-CT for ophiuroid taxonomy. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.14275Hemipholis cordiferaAlometriaMorfometriaOntogeniaOphiactidaeHemipholis cordiferaAllometryMorphometricsOntogenyOphiactidaePublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://dspace8-unicordoba.metabuscador.org/bitstreams/9ed6424a-714b-4dae-af96-c35db5ba4018/download73a5432e0b76442b22b026844140d683MD53falseAnonymousREADORIGINALLondoño Montes, NixonLondoño Montes, Nixonapplication/pdf3695338https://dspace8-unicordoba.metabuscador.org/bitstreams/5c66025b-892f-405a-bb0f-39ef072bbec1/download6c03c2084001d0a9230269ba8b8b02a6MD54trueAnonymousREAD2026-07-20AutorizaciónPublicación.pdfAutorizaciónPublicación.pdfapplication/pdf254977https://dspace8-unicordoba.metabuscador.org/bitstreams/0ddb8c44-fb56-4c52-8132-7ed88c68cc7e/downloade4a3c61abb6c72daa74ebf0918823206MD55falseTEXTLondoño Montes, Nixon.txtLondoño Montes, Nixon.txtExtracted texttext/plain101874https://dspace8-unicordoba.metabuscador.org/bitstreams/af67a98a-42b8-4f9e-9be7-c211e99d82a3/downloadfc286a5db4aef089e419318a6d403baaMD56falseAnonymousREAD2026-07-20AutorizaciónPublicación.pdf.txtAutorizaciónPublicación.pdf.txtExtracted texttext/plain5829https://dspace8-unicordoba.metabuscador.org/bitstreams/54853834-db02-4afa-9369-1a0d3f6fba26/download65c06b14003fb60ebee95bd951639f00MD58falseTHUMBNAILLondoño Montes, Nixon.jpgLondoño Montes, Nixon.jpgGenerated Thumbnailimage/jpeg7316https://dspace8-unicordoba.metabuscador.org/bitstreams/7b277521-0bf8-4c64-bece-1349309933cb/download73ce73403deb014780167697a8534fb6MD57falseAnonymousREAD2026-07-20AutorizaciónPublicación.pdf.jpgAutorizaciónPublicación.pdf.jpgGenerated Thumbnailimage/jpeg14314https://dspace8-unicordoba.metabuscador.org/bitstreams/41308113-dfcc-4f5e-afc8-64a97145e199/downloadb1450bfdcab5931eb2e6945b450838baMD59falseucordoba/9442oai:dspace8-unicordoba.metabuscador.org:ucordoba/94422025-07-22 03:01:34.438https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025embargo2026-07-20https://dspace8-unicordoba.metabuscador.orgRepositorio institucional Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K