Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca
- Autores:
-
Castellar-Ortega, Grey
Mendoza Colina, Evert De Jesus
Angulo Mercado, Edgardo Ramon
Paula Pereira, Zilena Alejandra
Rosso Bravo, María Camila
Jaramillo Colpas, Javier Enrique
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/6016
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/6016
https://doi.org/10.21897/rmvz.1700
- Palabra clave:
- Activated carbon
adsorption
direct blue 86 dye
pollutant
Adsorción
carbón activado
colorante azul directo 86
contaminantes
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UCORDOBA2_3721886b0505bbec35a10dd8149c4916 |
---|---|
oai_identifier_str |
oai:repositorio.unicordoba.edu.co:ucordoba/6016 |
network_acronym_str |
UCORDOBA2 |
network_name_str |
Repositorio Institucional Unicórdoba |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca |
dc.title.translated.eng.fl_str_mv |
Equilibrium, kinetic and thermodynamic of direct blue 86 dye adsorption on activated carbon obtained from manioc husk DB-86 dye adsorption |
title |
Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca |
spellingShingle |
Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca Activated carbon adsorption direct blue 86 dye pollutant Adsorción carbón activado colorante azul directo 86 contaminantes |
title_short |
Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca |
title_full |
Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca |
title_fullStr |
Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca |
title_full_unstemmed |
Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca |
title_sort |
Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca |
dc.creator.fl_str_mv |
Castellar-Ortega, Grey Mendoza Colina, Evert De Jesus Angulo Mercado, Edgardo Ramon Paula Pereira, Zilena Alejandra Rosso Bravo, María Camila Jaramillo Colpas, Javier Enrique |
dc.contributor.author.spa.fl_str_mv |
Castellar-Ortega, Grey Mendoza Colina, Evert De Jesus Angulo Mercado, Edgardo Ramon Paula Pereira, Zilena Alejandra Rosso Bravo, María Camila Jaramillo Colpas, Javier Enrique |
dc.subject.eng.fl_str_mv |
Activated carbon adsorption direct blue 86 dye pollutant |
topic |
Activated carbon adsorption direct blue 86 dye pollutant Adsorción carbón activado colorante azul directo 86 contaminantes |
dc.subject.spa.fl_str_mv |
Adsorción carbón activado colorante azul directo 86 contaminantes |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-04-11 00:00:00 2022-07-01T21:01:14Z |
dc.date.available.none.fl_str_mv |
2019-04-11 00:00:00 2022-07-01T21:01:14Z |
dc.date.issued.none.fl_str_mv |
2019-04-11 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-0268 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unicordoba.edu.co/handle/ucordoba/6016 |
dc.identifier.doi.none.fl_str_mv |
10.21897/rmvz.1700 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21897/rmvz.1700 |
dc.identifier.eissn.none.fl_str_mv |
1909-0544 |
identifier_str_mv |
0122-0268 10.21897/rmvz.1700 1909-0544 |
url |
https://repositorio.unicordoba.edu.co/handle/ucordoba/6016 https://doi.org/10.21897/rmvz.1700 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Anirudhan TS, Ramachandran M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Saf Environ Prot. 2015; 95:215–225. https://doi.org/10.1016/j.psep.2015.03.003 Arica MY, Bayramoglu G. Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem. 2016; 310(2):711–724. https://doi.org/10.1007/s10967-016-4828-z Bayramoglu G, Akbulut A, Liman G, Arica MY. Removal of metal complexed azo dyes from aqueous solution using tris(2-aminoethyl) amine ligand modified magnetic p(GMA-EGDMA) cationic resin: Adsorption, isotherm and kinetic studies. Chem Eng Res Des. 2017; 124:85–97. https://doi.org/10.1016/j.cherd.2017.06.005 Aljeboree AM, Alshirifi AN, Alkaim AF. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbón. Arab J Chem. 2017; 10(Supl 2):S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020 Castellar G, Angulo E, Zambrano A, Charris D. Equilibrio de adsorción del colorante azul de metileno sobre carbón activado. Rev UDCA Act & Div Cient. 2013; 16(1):263–271. https://revistas.udca.edu.co/index.php/ruadc/article/view/882 Chabane L, Cheknane B, Zermane F, Bouras O, Baudu M. Synthesis and characterization of reinforced hybridporous beads: application to the adsorption of malachitegreen in aqueous solution. Chem Eng Res Des. 2017; 120: 291–302. https://doi.org/10.1016/j.cherd.2016.12.014 Sari AA, Muryanto ST, Hadibarata T. Development of bioreactor systems for decolorization of Reactive Green 19 using white rot fungus. Desalin Water Treat. 2016; 57(15):7029–7039. https://doi.org/10.1080/19443994.2015.1012121 Mirzadeh SS, Khezri SM, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA. Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. J Environ Health Sci Eng. 2014; 12(6):1-9. https://doi.org/10.1186/2052-336x-12-6 Tavengwa NT, Cukrowska E, Chimuka L. Synthesis, adsorption and selectivity studies of N-propyl quaternized magnetic poly(4-vinylpyridine) for hexavalent chromium. Talanta. 2013; 116:670–677. https://doi.org/10.1016/j.talanta.2013.07.034 Kyzas GZ, Lazaridis NK, Mitropoulos A. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. Chem Eng J. 2012; 189-190: 148-159. https://doi.org/10.1016/j.cej.2012.02.045 Ho YS, McKay G. Sorption of dyes and copper ions onto biosorbents. Process Biochem. 2003; 38(7):1047-1061. https://doi.org/10.1016/s0032-9592(02)00239-x Gonçalves M, Guerreiro M, De Oliveira L, De Castro C. A friendly environmental material: iron oxide dispersed over activated carbon from coffee husk for organic pollutants removal. J Environ Manage. 2013; 127:206-211. https://doi.org/10.1016/j.jenvman.2013.05.017 Hu Z, Srinivasan MP. Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater. 1999; 27(1):11-18. https://doi.org/10.1016/s1387-1811(98)00183-8 Li G, Zhu W, Zhang C, Zhang S, Liu L, Zhu L, Zhao W. Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar. Bioresour Technol. 2016; 206:16-22. https://doi.org/10.1016/j.biortech.2015.12.087 Sun L, Chen D, Wan S, Yu Z. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Bioresour Technol. 2015; 198:300-308. https://doi.org/10.1016/j.biortech.2015.09.026 Jung KW, Choi BH, Hwang MJ, Jeong TU, Ahn KH. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresour Technol. 2016; 219:185-195. https://doi.org/10.1016/j.biortech.2016.07.098 Albis A, López AJ, Romero MC. Remoción de azul de metileno de soluciones acuosas utilizando cáscara de yuca (Manihot esculenta) modificada con ácido fosfórico. Prospectiva. 2017; 15(2):60-73. https://doi.org/10.15665/rp.v15i2.777 Gonçalves R, Martins C, Mendes N, Farias L, Ferreira RC, Oliveira A, Oliveira M, Ilhéu R. Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCL2 as activating agents for BSA and α-lactalbumin adsorption. Fuel Process Technol. 2014; 126:476–486. https://doi.org/10.1016/j.fuproc.2014.06.001 Boehm HP. Chemical identification of surface groups. Adv Catal. 1966; 16: 179–274. https://doi.org/10.1016/S0360-0564(08)60354-5 Nunell GV, Fernández ME, Bonelli PR, Cukierman AL. Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater. Biomass Bioenerg. 2012; 44:87-95. https://doi.org/10.1016/j.biombioe.2012.05.001 Figueroa D, Moreno A, Hormaza A. Equilibrio, termodinámica y modelos cinéticos en la adsorción de Rojo 40 sobre tuza de maíz. Rev Ing Univ Medellín. 2015; 14(26):105-120. https://doi.org/10.22395/rium.v14n26a7 Konicki W, Aleksandrzak M, Mijowska E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem Eng Res Des. 2017; 123:35–49. https://doi.org/10.1016/j.cherd.2017.03.036 Contescu A, Contescu C, Putyera K, Schwarz J. Surface acidity of carbons characterized by their continuous pK distribution and Böehm titration. Carbon 1997; 35(1):83-94. https://doi.org/10.1016/s0008-6223(96)00125-x Valencia J, Castellar G. Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada. Rev Fac Ing Univ Antioquia. 2013; 66:141-158. http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/15231 Maldonado-Hódar FJ, Morales-Torres S, Perez-Cardenas AF, Carrasco-Marín F. Química superficial de los materiales de carbón. Bol Grupo Español Carbón. 2011; 20:10-15. http://www.gecarbon.org/Boletines/articulos/boletinGEC_020_art.3.pdf Rincón-Silva N, Ramirez-Gomez W, Mojica-Sánchez L, Blanco-Martínez D, Giraldo L, Moreno-Piraján J. Obtención de carbones activados a partir de semillas de eucalipto, por activación química con H3PO4. Caracterización y evaluación de la capacidad de absorción de fenol desde solución acuosa. Ingeniería y Competitividad. 2014; 16(1):207-219. https://doi.org/10.25100/iyc.v16i1.3725 Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S. Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination. 2010; 261(1-2):52–60. https://doi.org/10.1016/j.desal.2010.05.032 Calvete T, Lima EC, Cardoso NF, Vaghetti JCP, Dias SLP, Pavan FA. Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies. J Environ Manage. 2010; 91(8):1695-1706. https://doi.org/10.1016/j.jenvman.2010.03.013 Leechart P, Nakbanpote W, Thiravetyan P. Application of ‘waste’ wood-shaving bottom ash for adsorption of azo reactive dye. J Environ Manage. 2009; 90(2):912-920. https://doi.org/10.1016/j.jenvman.2008.02.005 Li Q, Yue QY, Su Y, Gao BY, Sun HJ. Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite. Chem Eng J. 2010; 158(3):489–497. https://doi.org/10.1016/j.cej.2010.01.033 Von Oepen B, Kördel W, Klein W. Sorption of nonpolar and polar compounds to soils: processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere. 1991; 22(3-4):285–304. https://doi.org/10.1016/0045-6535(91)90318-8 Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol. 1994; 28(1):38-46. https://doi.org/10.1021/es00050a007 |
dc.relation.bitstream.none.fl_str_mv |
https://revistamvz.unicordoba.edu.co/article/download/1700/1968 https://revistamvz.unicordoba.edu.co/article/download/1700/1969 https://revistamvz.unicordoba.edu.co/article/download/1700/2275 https://revistamvz.unicordoba.edu.co/article/download/1700/2276 https://revistamvz.unicordoba.edu.co/article/download/1700/2277 https://revistamvz.unicordoba.edu.co/article/download/1700/2278 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2019 : Revista MVZ Córdoba Volumen 24(2) Mayo-Agosto 2019 |
dc.relation.citationendpage.none.fl_str_mv |
7238 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
7231 |
dc.relation.citationvolume.spa.fl_str_mv |
24 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista MVZ Córdoba |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf application/pdf application/xml application/xml application/zip application/zip |
dc.publisher.spa.fl_str_mv |
Universidad de Córdoba |
dc.source.spa.fl_str_mv |
https://revistamvz.unicordoba.edu.co/article/view/1700 |
institution |
Universidad de Córdoba |
bitstream.url.fl_str_mv |
https://repositorio.unicordoba.edu.co/bitstreams/93fc40e4-8abb-4e52-8595-18c052967a38/download |
bitstream.checksum.fl_str_mv |
365896814d258b357374d9f7d6c34376 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Córdoba |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1839636046634024960 |
spelling |
Castellar-Ortega, Grey01b4f102-7698-459e-ba3d-65694285d88f-1Mendoza Colina, Evert De Jesusa79c3c7d-86ff-4349-b237-6b9c13e7826b-1Angulo Mercado, Edgardo Ramon49ef52de-25d4-40a2-9bf2-f871e10d5405-1Paula Pereira, Zilena Alejandrac45825e0-d1e9-4946-8a62-6c1571006ea5-1Rosso Bravo, María Camila326a576b-a326-48ed-b82c-c1c77284f8af-1Jaramillo Colpas, Javier Enrique9b4e6a14-795a-4750-8f8b-4d7d5aede7a7-12019-04-11 00:00:002022-07-01T21:01:14Z2019-04-11 00:00:002022-07-01T21:01:14Z2019-04-110122-0268https://repositorio.unicordoba.edu.co/handle/ucordoba/601610.21897/rmvz.1700https://doi.org/10.21897/rmvz.17001909-0544application/pdfapplication/pdfapplication/xmlapplication/xmlapplication/zipapplication/zipspaUniversidad de Córdobahttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistamvz.unicordoba.edu.co/article/view/1700Activated carbonadsorptiondirect blue 86 dyepollutantAdsorcióncarbón activadocolorante azul directo 86contaminantesEquilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yucaEquilibrium, kinetic and thermodynamic of direct blue 86 dye adsorption on activated carbon obtained from manioc husk DB-86 dye adsorptionArtículo de revistaJournal articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Anirudhan TS, Ramachandran M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Saf Environ Prot. 2015; 95:215–225. https://doi.org/10.1016/j.psep.2015.03.003Arica MY, Bayramoglu G. Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem. 2016; 310(2):711–724. https://doi.org/10.1007/s10967-016-4828-zBayramoglu G, Akbulut A, Liman G, Arica MY. Removal of metal complexed azo dyes from aqueous solution using tris(2-aminoethyl) amine ligand modified magnetic p(GMA-EGDMA) cationic resin: Adsorption, isotherm and kinetic studies. Chem Eng Res Des. 2017; 124:85–97. https://doi.org/10.1016/j.cherd.2017.06.005Aljeboree AM, Alshirifi AN, Alkaim AF. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbón. Arab J Chem. 2017; 10(Supl 2):S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020Castellar G, Angulo E, Zambrano A, Charris D. Equilibrio de adsorción del colorante azul de metileno sobre carbón activado. Rev UDCA Act & Div Cient. 2013; 16(1):263–271. https://revistas.udca.edu.co/index.php/ruadc/article/view/882Chabane L, Cheknane B, Zermane F, Bouras O, Baudu M. Synthesis and characterization of reinforced hybridporous beads: application to the adsorption of malachitegreen in aqueous solution. Chem Eng Res Des. 2017; 120: 291–302. https://doi.org/10.1016/j.cherd.2016.12.014Sari AA, Muryanto ST, Hadibarata T. Development of bioreactor systems for decolorization of Reactive Green 19 using white rot fungus. Desalin Water Treat. 2016; 57(15):7029–7039. https://doi.org/10.1080/19443994.2015.1012121Mirzadeh SS, Khezri SM, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA. Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. J Environ Health Sci Eng. 2014; 12(6):1-9. https://doi.org/10.1186/2052-336x-12-6Tavengwa NT, Cukrowska E, Chimuka L. Synthesis, adsorption and selectivity studies of N-propyl quaternized magnetic poly(4-vinylpyridine) for hexavalent chromium. Talanta. 2013; 116:670–677. https://doi.org/10.1016/j.talanta.2013.07.034Kyzas GZ, Lazaridis NK, Mitropoulos A. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. Chem Eng J. 2012; 189-190: 148-159. https://doi.org/10.1016/j.cej.2012.02.045Ho YS, McKay G. Sorption of dyes and copper ions onto biosorbents. Process Biochem. 2003; 38(7):1047-1061. https://doi.org/10.1016/s0032-9592(02)00239-xGonçalves M, Guerreiro M, De Oliveira L, De Castro C. A friendly environmental material: iron oxide dispersed over activated carbon from coffee husk for organic pollutants removal. J Environ Manage. 2013; 127:206-211. https://doi.org/10.1016/j.jenvman.2013.05.017Hu Z, Srinivasan MP. Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater. 1999; 27(1):11-18. https://doi.org/10.1016/s1387-1811(98)00183-8Li G, Zhu W, Zhang C, Zhang S, Liu L, Zhu L, Zhao W. Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar. Bioresour Technol. 2016; 206:16-22. https://doi.org/10.1016/j.biortech.2015.12.087Sun L, Chen D, Wan S, Yu Z. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Bioresour Technol. 2015; 198:300-308. https://doi.org/10.1016/j.biortech.2015.09.026Jung KW, Choi BH, Hwang MJ, Jeong TU, Ahn KH. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresour Technol. 2016; 219:185-195. https://doi.org/10.1016/j.biortech.2016.07.098Albis A, López AJ, Romero MC. Remoción de azul de metileno de soluciones acuosas utilizando cáscara de yuca (Manihot esculenta) modificada con ácido fosfórico. Prospectiva. 2017; 15(2):60-73. https://doi.org/10.15665/rp.v15i2.777Gonçalves R, Martins C, Mendes N, Farias L, Ferreira RC, Oliveira A, Oliveira M, Ilhéu R. Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCL2 as activating agents for BSA and α-lactalbumin adsorption. Fuel Process Technol. 2014; 126:476–486. https://doi.org/10.1016/j.fuproc.2014.06.001Boehm HP. Chemical identification of surface groups. Adv Catal. 1966; 16: 179–274. https://doi.org/10.1016/S0360-0564(08)60354-5Nunell GV, Fernández ME, Bonelli PR, Cukierman AL. Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater. Biomass Bioenerg. 2012; 44:87-95. https://doi.org/10.1016/j.biombioe.2012.05.001Figueroa D, Moreno A, Hormaza A. Equilibrio, termodinámica y modelos cinéticos en la adsorción de Rojo 40 sobre tuza de maíz. Rev Ing Univ Medellín. 2015; 14(26):105-120. https://doi.org/10.22395/rium.v14n26a7Konicki W, Aleksandrzak M, Mijowska E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem Eng Res Des. 2017; 123:35–49. https://doi.org/10.1016/j.cherd.2017.03.036Contescu A, Contescu C, Putyera K, Schwarz J. Surface acidity of carbons characterized by their continuous pK distribution and Böehm titration. Carbon 1997; 35(1):83-94. https://doi.org/10.1016/s0008-6223(96)00125-xValencia J, Castellar G. Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada. Rev Fac Ing Univ Antioquia. 2013; 66:141-158. http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/15231Maldonado-Hódar FJ, Morales-Torres S, Perez-Cardenas AF, Carrasco-Marín F. Química superficial de los materiales de carbón. Bol Grupo Español Carbón. 2011; 20:10-15. http://www.gecarbon.org/Boletines/articulos/boletinGEC_020_art.3.pdfRincón-Silva N, Ramirez-Gomez W, Mojica-Sánchez L, Blanco-Martínez D, Giraldo L, Moreno-Piraján J. Obtención de carbones activados a partir de semillas de eucalipto, por activación química con H3PO4. Caracterización y evaluación de la capacidad de absorción de fenol desde solución acuosa. Ingeniería y Competitividad. 2014; 16(1):207-219. https://doi.org/10.25100/iyc.v16i1.3725Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S. Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination. 2010; 261(1-2):52–60. https://doi.org/10.1016/j.desal.2010.05.032Calvete T, Lima EC, Cardoso NF, Vaghetti JCP, Dias SLP, Pavan FA. Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies. J Environ Manage. 2010; 91(8):1695-1706. https://doi.org/10.1016/j.jenvman.2010.03.013Leechart P, Nakbanpote W, Thiravetyan P. Application of ‘waste’ wood-shaving bottom ash for adsorption of azo reactive dye. J Environ Manage. 2009; 90(2):912-920. https://doi.org/10.1016/j.jenvman.2008.02.005Li Q, Yue QY, Su Y, Gao BY, Sun HJ. Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite. Chem Eng J. 2010; 158(3):489–497. https://doi.org/10.1016/j.cej.2010.01.033Von Oepen B, Kördel W, Klein W. Sorption of nonpolar and polar compounds to soils: processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere. 1991; 22(3-4):285–304. https://doi.org/10.1016/0045-6535(91)90318-8Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol. 1994; 28(1):38-46. https://doi.org/10.1021/es00050a007https://revistamvz.unicordoba.edu.co/article/download/1700/1968https://revistamvz.unicordoba.edu.co/article/download/1700/1969https://revistamvz.unicordoba.edu.co/article/download/1700/2275https://revistamvz.unicordoba.edu.co/article/download/1700/2276https://revistamvz.unicordoba.edu.co/article/download/1700/2277https://revistamvz.unicordoba.edu.co/article/download/1700/2278Núm. 2 , Año 2019 : Revista MVZ Córdoba Volumen 24(2) Mayo-Agosto 201972382723124Revista MVZ CórdobaPublicationOREORE.xmltext/xml3470https://repositorio.unicordoba.edu.co/bitstreams/93fc40e4-8abb-4e52-8595-18c052967a38/download365896814d258b357374d9f7d6c34376MD51ucordoba/6016oai:repositorio.unicordoba.edu.co:ucordoba/60162023-10-06 00:45:39.935https://creativecommons.org/licenses/by-nc-sa/4.0/metadata.onlyhttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.com |