Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano
Esta investigación evaluó y comparó el desempeño ambiental de la fabricación de biocompuestos de matriz PLA reforzados con residuos agrícolas locales: fibra de pseudotallo de plátano (FP) y partículas de cáscara de nuez de marañón (PCNM), utilizando impresión 3D (FDM e impregnación in situ). El obje...
- Autores:
-
Fernández Hoyos, Daniel Fernando
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/9314
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/9314
https://repositorio.unicordoba.edu.co
- Palabra clave:
- Análisis de Ciclo de Vida (ACV)
Biocompuestos
Impresión 3D
Residuos Agrícolas
PLA
Life Cycle Assessment (LCA)
Biocomposites
3D Printing
Agricultural Waste
PLA
- Rights
- openAccess
- License
- Copyright Universidad de Córdoba, 2025
| id |
UCORDOBA2_2f73234f55cd7b88641801c0af9cf23b |
|---|---|
| oai_identifier_str |
oai:repositorio.unicordoba.edu.co:ucordoba/9314 |
| network_acronym_str |
UCORDOBA2 |
| network_name_str |
Repositorio Institucional Unicórdoba |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano |
| title |
Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano |
| spellingShingle |
Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano Análisis de Ciclo de Vida (ACV) Biocompuestos Impresión 3D Residuos Agrícolas PLA Life Cycle Assessment (LCA) Biocomposites 3D Printing Agricultural Waste PLA |
| title_short |
Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano |
| title_full |
Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano |
| title_fullStr |
Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano |
| title_full_unstemmed |
Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano |
| title_sort |
Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano |
| dc.creator.fl_str_mv |
Fernández Hoyos, Daniel Fernando |
| dc.contributor.advisor.none.fl_str_mv |
Soto Barrera, Viviana Cecilia |
| dc.contributor.author.none.fl_str_mv |
Fernández Hoyos, Daniel Fernando |
| dc.contributor.jury.none.fl_str_mv |
Campo Daza, Gabriel Antonio Tavera Quiróz, María José |
| dc.subject.proposal.spa.fl_str_mv |
Análisis de Ciclo de Vida (ACV) Biocompuestos Impresión 3D Residuos Agrícolas PLA |
| topic |
Análisis de Ciclo de Vida (ACV) Biocompuestos Impresión 3D Residuos Agrícolas PLA Life Cycle Assessment (LCA) Biocomposites 3D Printing Agricultural Waste PLA |
| dc.subject.keywords.eng.fl_str_mv |
Life Cycle Assessment (LCA) Biocomposites 3D Printing Agricultural Waste PLA |
| description |
Esta investigación evaluó y comparó el desempeño ambiental de la fabricación de biocompuestos de matriz PLA reforzados con residuos agrícolas locales: fibra de pseudotallo de plátano (FP) y partículas de cáscara de nuez de marañón (PCNM), utilizando impresión 3D (FDM e impregnación in situ). El objetivo fue determinar la opción con menor impacto ambiental mediante la metodología de Análisis de Ciclo de Vida (ACV) según la norma ISO 14040/44, con un enfoque "cuna-a-producción" y una unidad funcional de 1 kg de biocompuesto. El proceso de inventario de ciclo de vida (ICV) incluyó la recopilación de datos primarios (entrevistas, procesos de laboratorio como secado, molienda, extrusión e impresión) y secundarios (literatura, bases de datos Ecoinvent 3.10), utilizando el software SimaPro y el método de evaluación Environmental Footprint 3.1. Los resultados indican que el biocompuesto PLA-FP presenta un desempeño ambiental más favorable que el PLA-PCNM, destacando que presenta una huella de carbono reducida de 5,13 kg CO2 eq/kg, atribuida principalmente a parámetros de impresión más eficientes energéticamente para el PLA-FP. Los puntos críticos identificados fueron el alto consumo de energía eléctrica en la etapa de impresión 3D (60-76.4% del impacto total) y la producción de PLA virgen (22.6-30.4%). Se demostró un beneficio ambiental adicional al usar FP cuando se evita la disposición convencional del residuo, mientras que el uso de PCNM no mostró una ventaja clara frente a su disposición actual en vertedero. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-14T14:26:28Z |
| dc.date.available.none.fl_str_mv |
2025-07-14T14:26:28Z |
| dc.date.issued.none.fl_str_mv |
2025-07-14 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
| dc.type.content.none.fl_str_mv |
Text |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| status_str |
acceptedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.unicordoba.edu.co/handle/ucordoba/9314 |
| dc.identifier.instname.none.fl_str_mv |
Universidad de Córdoba |
| dc.identifier.reponame.none.fl_str_mv |
Repositorio Universidad de Córdoba |
| dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unicordoba.edu.co |
| url |
https://repositorio.unicordoba.edu.co/handle/ucordoba/9314 https://repositorio.unicordoba.edu.co |
| identifier_str_mv |
Universidad de Córdoba Repositorio Universidad de Córdoba |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Abarikwu, S. O. (2013). Lead, Arsenic, Cadmium, Mercury: Occurrence, Toxicity and Diseases. En E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Pollutant Diseases, Remediation and Recycling (Vol. 4, pp. 351-386). Springer International Publishing. https://doi.org/10.1007/978-3-319-02387-8_7 Agrawal, P., Mittal, A., Prakash, R., Kumar, M., Singh, T. B., & Tripathi, S. K. (2010). Assessment of Contamination of Soil due to Heavy Metals around Coal Fired Thermal Power Plants at Singrauli Region of India. Bulletin of Environmental Contamination and Toxicology, 85(2), 219-223. https://doi.org/10.1007/s00128-010-0043-8 Andersen, J. H., Fossing, H., Hansen, J. W., Manscher, O. H., Murray, C., & Petersen, D. L. J. (2014). Nitrogen Inputs from Agriculture: Towards Better Assessments of Eutrophication Status in Marine Waters. AMBIO, 43(7), 906-913. https://doi.org/10.1007/s13280-014-0514-y Andreozzi, M., Forcellese, A., Gentili, S., Mancia, T., & Verdini, T. (2024). Comparative Life Cycle Assessment of molding process and 3D printing of High-Performance Long-fiber Reinforced Composites. Procedia CIRP, 122, 909-914. https://doi.org/10.1016/j.procir.2024.01.124 Ángel Hidalgo-Salazar, M., Pablo Correa-Aguirre, J., Manuel Montalvo-Navarrete, J., Fernando Lopez-Rodriguez, D., & Felipe Rojas-González, A. (2020). Recycled Polypropylene-Coffee Husk and Coir Coconut Biocomposites: Morphological, Mechanical, Thermal and Environmental Studies. En G. Akın Evingür, Ö. Pekcan, & D. S. Achilias (Eds.), Thermosoftening Plastics. IntechOpen. https://doi.org/10.5772/intechopen.81635 Appusamy, A. M., Prakash, E., Madheswaran, S., Rajamanickam, A., Selvakumar, V. K., & Chandrasekar, P. (2021). Characterization and Fabrication of ABS and PLA-Based Polymer Matrix Composites Using 3D Printing. En G. Kumaresan, N. S. Shanmugam, & V. Dhinakaran (Eds.), Advances in Materials Research (Vol. 5, pp. 499-510). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-8319-3_50 Aydin, M., & Kaynak, B. (2023, mayo 15). Prediction of H2S Concentration Around Geothermal Power Plants Using Multiple Regression Analysis. https://doi.org/10.5194/egusphere-egu23-14483 Babaee, S., Loughlin, D. H., & Kaplan, P. O. (2020). Incorporating upstream emissions into electric sector nitrogen oxide reduction targets. Cleaner Engineering and Technology, 1, 100017. https://doi.org/10.1016/j.clet.2020.100017 Bach, V., Lehmann, A., Görmer, M., & Finkbeiner, M. (2018). Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility? Sustainability, 10(8), 2898. https://doi.org/10.3390/su10082898 Badanayak, P., Jose, S., & Bose, G. (2023). Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. Journal of Natural Fibers, 20(1), 2168821. https://doi.org/10.1080/15440478.2023.2168821 Badhotiya, G. K., Avikal, S., Soni, G., & Sengar, N. (2022). Analyzing barriers for the adoption of circular economy in the manufacturing sector. International Journal of Productivity and Performance Management, 71(3), 912-931. https://doi.org/10.1108/IJPPM-01-2021-0021 Badreddine, S., Abdelhafidh, K., Dellali, M., Mahmoudi, E., Sheehan, D., & Hamouda, B. (2017). The effects of anthracene on biochemical responses of Mediterranean mussels Mytilus galloprovincialis. Chemistry and Ecology, 33(4), 309-324. https://doi.org/10.1080/02757540.2017.1309393 Bajdur, W. M., Włodarczyk-Makuła, M., & Krukowska-Miler, A. (2024). Application of the Life Cycle Assessment (LCA) Method in Assessing the Environmental Impact of New Materials Derived from Waste Polymers in Terms of Sustainability. Sustainability, 16(22), 9759. https://doi.org/10.3390/su16229759 Bałdowska-Witos, P., Kruszelnicka, W., Kasner, R., Tomporowski, A., Flizikowski, J., Kłos, Z., Piotrowska, K., & Markowska, K. (2020). Application of LCA Method for Assessment of Environmental Impacts of a Polylactide (PLA) Bottle Shaping. Polymers, 12(2), 388. https://doi.org/10.3390/polym12020388 Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174, 106956. https://doi.org/10.1016/j.compositesb.2019.106956 Barde, M., Auad, M., Jones, J., Yan, Y., Lu, N., Pillay, S., & Ning, H. (2022). Natural Fiber Composite with α-Resorcylic Acid Based Bio-Epoxy Matrix. Universal Journal of Materials Science, 10(2), 9-20. https://doi.org/10.13189/ujms.2022.100201 Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205 Behera, A. K., Pattnaik, S. S., Behera, D., Behera, S., Kumar, J., Manna, S., & Das, N. (2025). Enhancement of Green Composite Performance Through the Synergistic Influence of Cashew Nut Shell Liquid and Nanoclay on Natural Fiber Reinforcement. Journal of Applied Polymer Science, 142(12), e56640. https://doi.org/10.1002/app.56640 Benavides, P. T., Lee, U., & Zarè-Mehrjerdi, O. (2020). Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. Journal of Cleaner Production, 277, 124010. https://doi.org/10.1016/j.jclepro.2020.124010 Bertassini, A. C., Ometto, A. R., Severengiz, S., & Gerolamo, M. C. (2021). Circular economy and sustainability: The role of organizational behaviour in the transition journey. Business Strategy and the Environment, 30(7), 3160-3193. https://doi.org/10.1002/bse.2796 Boone, L., Van Linden, V., De Meester, S., Vandecasteele, B., Muylle, H., Roldán-Ruiz, I., Nemecek, T., & Dewulf, J. (2016). Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of The Total Environment, 553, 551-564. https://doi.org/10.1016/j.scitotenv.2016.02.089 Borda, F., La Rosa, A. D., Filice, L., & Gagliardi, F. (2024). Environmental comparison of opposing manufacturing strategies at changing of energy sources, EoL approaches and shape peculiarity for an automotive component. Advances in Materials and Processing Technologies, 1-21. https://doi.org/10.1080/2374068X.2024.2432724 Brito De Figueirêdo, M. C., Potting, J., Lopes Serrano, L. A., Bezerra, M. A., Da Silva Barros, V., Gondim, R. S., & Nemecek, T. (2016). Environmental assessment of tropical perennial crops: The case of the Brazilian cashew. Journal of Cleaner Production, 112, 131-140. https://doi.org/10.1016/j.jclepro.2015.05.134 Cardona, D., Tamayo, J. A., & Eslava-Garzón, J. S. (2024). Hacia una matriz energética sostenible en Colombia. Una revisión sistemática de la literatura. Información Tecnológica, 35(5), 1-16. https://doi.org/10.4067/S0718-07642024000500001 Castañeda-Niño, J. P., Mina Hernandez, J. H., & Solanilla Duque, J. F. (2024). Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials. Polymers, 16(10), 1357. https://doi.org/10.3390/polym16101357 Chairi, M., El Bahaoui, J., Hanafi, I., Mata Cabrera, F., & Di Bella, G. (2023). Composite Materials: A Review of Polymer and Metal Matrix Composites, Their Mechanical Characterization, and Mechanical Properties. En L. Li, A. B. Pereira, & A. L. Pereira (Eds.), Next Generation Fiber-Reinforced Composites—New Insights. IntechOpen. https://doi.org/10.5772/intechopen.106624 Chung, K. W. Y., Blin, J., Lanvin, C., Martin, E., Valette, J., & Van De Steene, L. (2024). Pyrolysis of cashew nut shells-focus on extractives. Journal of Analytical and Applied Pyrolysis, 179, 106452. https://doi.org/10.1016/j.jaap.2024.106452 Ciroth, A., Muller, S., Weidema, B., & Lesage, P. (2016). Empirically based uncertainty factors for the pedigree matrix in ecoinvent. The International Journal of Life Cycle Assessment, 21(9), 1338-1348. https://doi.org/10.1007/s11367-013-0670-5 Cisneros-López, E. O., Pal, A. K., Rodriguez, A. U., Wu, F., Misra, M., Mielewski, D. F., Kiziltas, A., & Mohanty, A. K. (2020). Recycled poly(lactic acid)–based 3D printed sustainable biocomposites: A comparative study with injection molding. Materials Today Sustainability, 7-8, 100027. https://doi.org/10.1016/j.mtsust.2019.100027 Coban, K., Ekici, S., & Karakoc, T. H. (2024). Life Cycle Assessment: A Brief Definition and Overview. En T. H. Karakoc, S. Ekici, & A. Dalkiran (Eds.), Life Cycle Assessment in Aviation (pp. 11-23). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-52772-2_2 Cruz, T., Maranon, A., Hernandez, C., Alvarez, O., Ayala-García, C., & Porras, A. (2024). Exploring the potential of cashew nutshells: A critical review of alternative applications. BioResources, 19(3). https://doi.org/10.15376/biores.19.3.Cruz De Farias Braz, C. J., De Oliveira Dias, A. R., Figueiredo, S. N., Dos Santos Rosa, A. C. F., De Sousa Barros, I., Alves, A. T., De Lima Silva, S. M., De Carvalho, L. H., Barbosa, R., & Alves, T. S. (2024). Biodegradable composites filled with agro‐industrial waste and fertilizers for filament production and application in active manufacturing. Polymer Composites, pc.29375. https://doi.org/10.1002/pc.29375 De Simone, F., Artaxo, P., Bencardino, M., Cinnirella, S., Carbone, F., D’Amore, F., Dommergue, A., Feng, X. B., Gencarelli, C. N., Hedgecock, I. M., Landis, M. S., Sprovieri, F., Suzuki, N., Wängberg, I., & Pirrone, N. (2017). Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: A modelling assessment. Atmospheric Chemistry and Physics, 17(3), 1881-1899. https://doi.org/10.5194/acp-17-1881-2017 Deng Shuang Deng Shuang, Zhang Fan Zhang Fan, Liu Yu Liu Yu, Shi YingJie Shi YingJie, Wang HongMei Wang HongMei, Zhang Chen Zhang Chen, Wang XiangFeng Wang XiangFeng, & Cao Qing Cao Qing. (2013). Lead emission and speciation of coal-fired power plants in China. China Environmental Science, 33(7), 1199-1206. Díaz Ponce, M. A., Cervantes Molina, X. P., & Chesme Rios, C. L. (2023). Sostenibilidad en el Cultivo de Cacao (Theobroma Cacao L.) Por las Oportunidades de Economía Circular para la Provincia los Ríos. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 5182-5197. https://doi.org/10.37811/cl_rcm.v7i4.7342 Ding, M., Shi, S., Qie, S., Li, J., & Xi, X. (2023). Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: A systematic review and meta-analysis. Frontiers in Pediatrics, 11, 1169733. https://doi.org/10.3389/fped.2023.1169733 Dong, Y. (2024). Life Cycle Assessment in the Building and Construction Sector. En C. S. Goh & H.-Y. Chong, Rethinking Pathways to a Sustainable Built Environment (1.a ed., pp. 191-212). Routledge. https://doi.org/10.1201/9781003317890-12 Driouach, L., Zarbane, K., & Beidouri, Z. (2023). The impacts of additive manufacturing technology on lean manufacturing. Journal of Achievements in Materials and Manufacturing Engineering, 120(1), 22-32. https://doi.org/10.5604/01.3001.0053.9641 Dubey, K. A., & Bhardwaj, Y. K. (2021). High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations. En A. K. Tyagi & R. S. Ningthoujam (Eds.), Handbook on Synthesis Strategies for Advanced Materials (pp. 1-25). Springer Singapore. https://doi.org/10.1007/978-981-16-1892-5_1 Egon, A., Bell, C., & Shad, R. (2024). Sustainability in Additive Manufacturing: Analyzing the Environmental Impact of Additive Manufacturing Processes. Chemistry and Materials Science. https://doi.org/10.20944/preprints202407.2573.v1 Elsonbaty, A. A., MRashad, A., Abass, Omnia. Y., Y.Abdelghany, T., & MAlfauiomy, A. (2024). A Survey of Fused Deposition Modeling (FDM) Technology in 3D Printing. Journal of Engineering Research and Reports, 26(11), 304-312. https://doi.org/10.9734/jerr/2024/v26i111332 Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012 Farhan, M., Mohammad Taha, M., Yusuf, Y., Azwan Sundi, S., & Zakaria, N. H. (2024). Environmental Assessment on Fabrication of Bio-composite Filament Fused Deposition Modeling Through Life Cycle Analysis. Pertanika Journal of Science and Technology, 32(S2). https://doi.org/10.47836/pjst.32.S2.03 Felfil Evo | Extrusora de filamento en Kit o ensamblado para impresora 3D. (s. f.). Felfil. Recuperado 14 de febrero de 2025, de https://felfil.com/es/felfil-evo/ Fernández-López, L., González-García, P., Fernández-Ríos, A., Aldaco, R., Laso, J., Martínez-Ibáñez, E., Gutiérrez-Fernández, D., Pérez-Martínez, M. M., Marchisio, V., Figueroa, M., De Sousa, D. B., Méndez, D., & Margallo, M. (2024). Life cycle assessment of single cell protein production–A review of current technologies and emerging challenges. Cleaner and Circular Bioeconomy, 8, 100079. https://doi.org/10.1016/j.clcb.2024.100079 Fico, D., Rizzo, D., Malinconico, F., & Esposito Corcione, C. (2024). A SUSTAINABLE APPROACH TO RECYCLING WASTE: EXAMPLES OF THE APPLICATION OF 3D PRINTING TO EXTEND THE LIFE CYCLE OF MATERIALS. Detritus, 28, 60-69. https://doi.org/10.31025/2611-4135/2024.19408 Fogue Matchum, S., Sikame Tagne, N. R., Huisken Mejouyo, P. W., Tido Tiwa, S., Wenga, B., Njeugna, E., Drean, J.-Y., Bistac-Brogly, S., & Harzallah, O. (2024). Investigation of chemical, physical and morpho-mechanical properties of banana-plantain stalk fibers for ropes and woven fabrics used in composite and limited-lifespan geotextile. Heliyon, 10(8), e29656. https://doi.org/10.1016/j.heliyon.2024.e29656 Foley, M. E., Sigler, V., & Gruden, C. L. (2008). A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. The ISME Journal, 2(1), 56-66. https://doi.org/10.1038/ismej.2007.99 Fonseca, A., Ramalho, E., Gouveia, A., Figueiredo, F., & Nunes, J. (2023). Life Cycle Assessment of PLA Products: A Systematic Literature Review. Sustainability, 15(16), 12470. https://doi.org/10.3390/su151612470 Friedli, H. R., Radke, L. F., & Lu, J. Y. (2001). Mercury in smoke from biomass fires. Geophysical Research Letters, 28(17), 3223-3226. https://doi.org/10.1029/2000GL012704 Füchsl, S., Rheude, F., & Röder, H. (2022). Life cycle assessment (LCA) of thermal insulation materials: A critical review. Cleaner Materials, 5, 100119. https://doi.org/10.1016/j.clema.2022.100119 García, G. F., Álvarez, H. B., Echeverría, R. S., De Alba, S. R., Rueda, V. M., Dosantos, E. C., & Cruz, G. V. (2017). Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico. Journal of the Air & Waste Management Association, 67(9), 973-985. https://doi.org/10.1080/10962247.2017.1314871 Garnier, J., Riou, P., Le Gendre, R., Ramarson, A., Billen, G., Cugier, P., Schapira, M., Théry, S., Thieu, V., & Ménesguen, A. (2019). Managing the Agri-Food System of Watersheds to Combat Coastal Eutrophication: A Land-to-Sea Modelling Approach to the French Coastal English Channel. Geosciences, 9(10), 441. https://doi.org/10.3390/geosciences9100441 Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048 Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782 Ghabezi, P., Sam-Daliri, O., Flanagan, T., Walls, M., & Harrison, N. M. (2024). Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resources, Conservation and Recycling, 206, 107667. https://doi.org/10.1016/j.resconrec.2024.107667 Gloria Opoku Darkoh. (2024). EVALUATING THE CIRCULAR ECONOMY AS A TOOL FOR ACHIEVING SUSTAINABILITY: BALANCING ENVIRONMENTAL, ECONOMIC, AND SOCIAL IMPACTS. EPRA International Journal of Socio-Economic and Environmental Outlook, 14-17. https://doi.org/10.36713/epra19532 Godoy León, M. F., & Dewulf, J. (2020). Data quality assessment framework for critical raw materials. The case of cobalt. Resources, Conservation and Recycling, 157, 104564. https://doi.org/10.1016/j.resconrec.2019.104564 Golsteijn, L., & Vieira, M. (2020). Applicability of the European Environmental Footprint (EF) methodology in Southern Mediterranean countries—Learnings and recommendations for enabling EF-compliant studies in regions outside of Europe. The International Journal of Life Cycle Assessment, 25(12), 2407-2416. https://doi.org/10.1007/s11367-019-01681-z Gopinath, A., Kumar, M. S., & Elayaperumal, A. (2014). Experimental Investigations on Mechanical Properties Of Jute Fiber Reinforced Composites with Polyester and Epoxy Resin Matrices. Procedia Engineering, 97, 2052-2063. https://doi.org/10.1016/j.proeng.2014.12.448 Guo, Y., Yang, Q., Yan, W., Li, B., Qian, K., Li, T., Xiao, W., & He, L. (2014). Controlled release of acetochlor from poly (butyl methacrylate-diacetone acrylamide) based formulation prepared by nanoemulsion polymerisation method and evaluation of the efficacy. International Journal of Environmental Analytical Chemistry, 94(10), 1001-1012. https://doi.org/10.1080/03067319.2014.930844 Haylock, R., & Rosentrater, K. A. (2018). Cradle-to-Grave Life Cycle Assessment and Techno-Economic Analysis of Polylactic Acid Composites with Traditional and Bio-Based Fillers. Journal of Polymers and the Environment, 26(4), 1484-1503. https://doi.org/10.1007/s10924-017-1041-2 Hu, C., Zhang, Y., Pang, X., & Chen, X. (2024). Poly(Lactic Acid): Recent Stereochemical Advances and New Materials Engineering. Advanced Materials, 2412185. https://doi.org/10.1002/adma.202412185 Huang, M. H., Chen, W. H., Trinh, M. M., & Chang, M. B. (2023). Mass flows and characteristic of mercury emitted from coal-fired power plant equipped with seawater flue gas desulphurization. Sustainable Environment Research, 33(1), 8. https://doi.org/10.1186/s42834-023-00168-9 Hussain, M., & Shafqat, A. R. (2025). Sustainability and Materials. En K. Shaker & Y. Nawab (Eds.), Engineering Materials (pp. 257-274). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-72263-9_11 Imoisili, P. E., & Jen, T. C. (2024). Effect of Mercerization on the Crystallographic, Macromolecular, and Thermal Properties of Plantain Fibers for Fiber Reinforced Composite. Materials Science Forum, 1115, 63-70. https://doi.org/10.4028/p-ki55Mr (ISO), I. O. for S. (2006). Environmental management. Life cycle assessment. Requirements and guidelines (b). International Organization for Standardization. Jomova, K., Alomar, S. Y., Nepovimova, E., Kuca, K., & Valko, M. (2025). Heavy metals: Toxicity and human health effects. Archives of Toxicology, 99(1), 153-209. https://doi.org/10.1007/s00204-024-03903-2 Jordaan, S. M., Xu, Q., & Hobbs, B. F. (2020). Grid-Scale Life Cycle Greenhouse Gas Implications of Renewable, Storage, and Carbon Pricing Options. Environmental Science & Technology, 54(17), 10435-10445. https://doi.org/10.1021/acs.est.0c01861 Kai Che, Chong-Ming Chen, Qing-Yu Zheng, Hui Fan, Ming-Lei Wei, Peng Luo, & Jin-Xing Yu. (2022). Heavy Metal Emissions from Coal-fired Power Plants and Heavy Metal Pollution Characteristics and Health Risks in Surrounding Soils. Huan Jing Ke Xue= Huanjing Kexue, 43(10), 4578-4589. Kalkanis, K., Bourtsalas, A., & Psomopoulos, C. S. (2024). Life Cycle Assessment applied to waste-to-energy technologies. En Waste Valorization for Bioenergy and Bioproducts (pp. 527-543). Elsevier. https://doi.org/10.1016/B978-0-443-19171-8.00014-6 Kaptan, A., & Kartal, F. (2024). Advancements in polylactic acid research: From material properties to sustainable applications. European Mechanical Science, 8(2), 104-114. https://doi.org/10.26701/ems.1440630 Kavlak, G., & Graedel, T. E. (2013). Global anthropogenic tellurium cycles for 1940–2010. Resources, Conservation and Recycling, 76, 21-26. https://doi.org/10.1016/j.resconrec.2013.04.007 Khalid, M., & Peng, Q. (2021). Sustainability and Environmental Impact of Additive Manufacturing: A Literature Review. Computer-Aided Design and Applications, 18(6), 1210-1232. https://doi.org/10.14733/cadaps.2021.1210-1232 Khatib, I., Horyn, O., Bodnar, O., Lushchak, O., Rychter, P., & Falfushynska, H. (2023). Molecular and Biochemical Evidence of the Toxic Effects of Terbuthylazine and Malathion in Zebrafish. Animals, 13(6), 1029. https://doi.org/10.3390/ani13061029 Kirschnick, U., Ravindran, B., Sieberer, M., Fauster, E., & Feuchter, M. (2025). The Fossil, the Green and the in-Between: Life Cycle Assessment of Manufacturing Composites with Varying Bio-Based Content. Chemistry and Materials Science. https://doi.org/10.20944/preprints202501.1145.v1 Kiš, F., Vasin, J., Milovac, Ž., Zeremski, T., Milić, S., & Savić, J. (2024). Environmental impact assessment of rapeseed production using the LCA method: Part one: Life cycle inventory analysis. Selekcija i Semenarstvo, 30(1), 13-33. https://doi.org/10.5937/SelSem2401013K Komal, U. K., Lila, M. K., & Singh, I. (2020). PLA/banana fiber based sustainable biocomposites: A manufacturing perspective. Composites Part B: Engineering, 180, 107535. https://doi.org/10.1016/j.compositesb.2019.107535 Kottuparambil, S., & Park, J. (2019). Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter. Scientific Reports, 9(1), 15323. https://doi.org/10.1038/s41598-019-51451-y Koziol, M., Wieczorek, J., Bogdan-Włodek, A., & Myalski, J. (2013). Evaluation of jute fiber preforms absorbability using optical profilographometer. Journal of Composite Materials, 47(19), 2309-2319. https://doi.org/10.1177/0021998312457197 Kreiger, M., & Pearce, J. M. (2013). Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products. ACS Sustainable Chemistry & Engineering, 1(12), 1511-1519. https://doi.org/10.1021/sc400093k Kumar, R., Singh, R., Kumar, V., & Ranjan, N. (2024). On secondary recycling of high-density polyethylene with reinforcement of stubble powder by a material extrusion process for construction applications. Journal of Thermoplastic Composite Materials, 08927057241309822. https://doi.org/10.1177/08927057241309822 Laca, A., Laca, A., Herrero, M., & Díaz, M. (2019). Life Cycle Assessment in Biotechnology. En Comprehensive Biotechnology (pp. 994-1006). Elsevier. https://doi.org/10.1016/B978-0-444-64046-8.00109-9 Laurenz, J., Lietz, L., Brendelberger, H., Lehmann, K., & Georg, A. (2020). Noble Crayfish Are More Sensitive to Terbuthylazine than Parthenogenetic Marbled Crayfish. Water, Air, & Soil Pollution, 231(11), 548. https://doi.org/10.1007/s11270-020-04921-3 Lestari, A. D. A. & Farida Pulansari. (2024). Environmental Impact Analysis on Furniture Industry by Implementing Life Cycle Assessment (LCA) Method. Advance Sustainable Science Engineering and Technology, 7(1), 0250106. https://doi.org/10.26877/asset.v7i1.747 Li, X., Lin, Y., Liu, M., Meng, L., & Li, C. (2023). A review of research and application of polylactic acid composites. Journal of Applied Polymer Science, 140(7), e53477. https://doi.org/10.1002/app.53477 Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004 Liu, Q., Gao, J., Li, G., Zheng, Y., Li, R., & Yue, T. (2023). Bibliometric Analysis on Mercury Emissions from Coal-fired Power Plants: A Systematic Review and Future Prospect. In Review. https://doi.org/10.21203/rs.3.rs-2972030/v1 Lopes Silva, D. A., Nunes, A. O., Piekarski, C. M., Da Silva Moris, V. A., De Souza, L. S. M., & Rodrigues, T. O. (2019). Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustainable Production and Consumption, 20, 304-315. https://doi.org/10.1016/j.spc.2019.07.005 Lozano Miralles, J. A. (2022). Análisis de ciclo de vida (ACV) comparativo entre probetas obtenidas mediante fabricación tradicional por inyección (FI) y fabricación aditiva (FA). Técnica Industrial, 332, 50-57. https://doi.org/10.23800/10523 Lu, A., Ivantsova, E., & Martyniuk, C. J. (2023). A comparative review and computational assessment of acetochlor toxicity in fish: A novel endocrine disruptor? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 271, 109685. https://doi.org/10.1016/j.cbpc.2023.109685 Łuszkiewicz, D., Jędrusik, M., & Świerczok, A. (2021). Technology of mercury removal from exhaust from coal fired boilers. E3S Web of Conferences, 323, 00024. https://doi.org/10.1051/e3sconf/202132300024 Mahalle, L., Alemdar, A., Mihai, M., & Legros, N. (2014). A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites. The International Journal of Life Cycle Assessment, 19(6), 1305-1315. https://doi.org/10.1007/s11367-014-0731-4 Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., & Karim, N. (2022). Sustainable Fiber‐Reinforced Composites: A Review. Advanced Sustainable Systems, 6(11), 2200258. https://doi.org/10.1002/adsu.202200258 Mares, L. G., Villarruel, S. C., & Garcidueñas, M. G. R. (2018). Análisis de ciclo de vida: Factor clave para la innovación tecnológica de productos ambientalmente integrados. Repositorio de la Red Internacional de Investigadores en Competitividad, 12, 515-533. Mecheter, A., & Tarlochan, F. (2023). Fused Filament Fabrication Three-Dimensional Printing: Assessing the Influence of Geometric Complexity and Process Parameters on Energy and the Environment. Sustainability, 15(16), 12319. https://doi.org/10.3390/su151612319 Meskers, C., Bartie, N. J., & Reuter, M. A. (2024). Life cycle assessment (LCA). En Handbook of Recycling (pp. 701-721). Elsevier. https://doi.org/10.1016/B978-0-323-85514-3.00010-5 Miller, B. G. (2017a). Formation and Control of Nitrogen Oxides. En Clean Coal Engineering Technology (pp. 507-538). Elsevier. https://doi.org/10.1016/B978-0-12-811365-3.00010-7 Miller, B. G. (2017b). Formation and Control of Sulfur Oxides. En Clean Coal Engineering Technology (pp. 467-506). Elsevier. https://doi.org/10.1016/B978-0-12-811365-3.00009-0 Mohanty, A. K., Misra, M., & Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocomposites. Taylor & Francis. Montoya, J., & Negrete, J. (2023). CARACTERIZACIÓN DE LA FIBRA DEL PSEUDOTALLO DEL PLÁTANO COMO POTENCIAL REFUERZO PARA LA ELABORACIÓN DE MATERIALES. Universidad de Córdoba. Mumthas, A. C. S. I., Wickramasinghe, G. L. D., & Gunasekera, U. S. (2019). Effect of physical, chemical and biological extraction methods on the physical behaviour of banana pseudo-stem fibres: Based on fibres extracted from five common Sri Lankan cultivars. Journal of Engineered Fibers and Fabrics, 14, 1558925019865697. https://doi.org/10.1177/1558925019865697 Neacșa, A., Diniță, A., & Iacob, Ștefan V. (2025). Can the Dimensional Optimisation of 3D FDM-Manufactured Parts Be a Solution for a Correct Design? Materials, 18(2), 408. https://doi.org/10.3390/ma18020408 Nemecek, T., & Schnetzer, J. (2011). Methods of assessment of direct field emissions for LCIs of agricultural production systems. Neumann, D., Karl, M., Radtke, H., Matthias, V., Friedland, R., & Neumann, T. (2020). Quantifying the contribution of shipping NO x emissions to the marine nitrogen inventory – a case study for the western Baltic Sea. Ocean Science, 16(1), 115-134. https://doi.org/10.5194/os-16-115-2020 Ngatia, L., M. Grace Iii, J., Moriasi, D., & Taylor, R. (2019). Nitrogen and Phosphorus Eutrophication in Marine Ecosystems. En H. Bachari Fouzia (Ed.), Monitoring of Marine Pollution. IntechOpen. https://doi.org/10.5772/intechopen.81869 O’Donoughue, P. R., Heath, G. A., Dolan, S. L., & Vorum, M. (2014). Life Cycle Greenhouse Gas Emissions of Electricity Generated from Conventionally Produced Natural Gas: Systematic Review and Harmonization. Journal of Industrial Ecology, 18(1), 125-144. https://doi.org/10.1111/jiec.12084 Orlandi, R., Pucciarelli, M., Ragni, G., Serra, A., & Fantozzi, F. (2024). A Carbon Footprint Comparison Through LCA of Forging vs. Wire Arc Additive Manufacturing (WAAM) Processes for the Internal Casing of a Gas Turbine. Volume 2: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels, V002T03A007. https://doi.org/10.1115/GT2024-123183 Pan, X. (2011). Sulfur Oxides: Sources, Exposures and Health Effects. En Encyclopedia of Environmental Health (pp. 290-296). Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00069-6 Parlak, M., Taş, İ., Görgişen, C., & Gökalp, Z. (2024). Spatial distribution and health risk assessment for heavy metals of the soils around coal-fired power plants of northwest Turkey. International Journal of Environmental Analytical Chemistry, 104(20), 9708-9722. https://doi.org/10.1080/03067319.2023.2243231 Patel, B. Y., & Patel, H. K. (2022). Retting of banana pseudostem fibre using Bacillus strains to get excellent mechanical properties as biomaterial in textile & fiber industry. Heliyon, 8(9), e10652. https://doi.org/10.1016/j.heliyon.2022.e10652 Paternina reyes, M. J. (2023). Caracterización química, física y mecánica de materiales compuestos con matriz de ácido poliláctico y refuerzo particulado de cáscaras de marañón elaborados a través de la técnica de moldeo por deposición fundida [Universidad de Córdoba]. https://repositorio.unicordoba.edu.co/server/api/core/bitstreams/2976b566-74a2-48d4-80c7-24736c2e8e6e/content Paternina Reyes, M. J., Unfried Silgado, J., Santa Marín, J. F., Colorado Lopera, H. A., & Espitia Sanjuán, L. A. (2023). Cashew Nutshells: A Promising Filler for 3D Printing Filaments. Polymers, 15(22), 4347. https://doi.org/10.3390/polym15224347 Pei, B. (2013). Field measurement for lead emission in the plumes of coal-fired power plants. Acta Sci. Circumstantiae, 33, 1697-1702. Pelletier, N., Allacker, K., Pant, R., & Manfredi, S. (2014). The European Commission Organisation Environmental Footprint method: Comparison with other methods, and rationales for key requirements. The International Journal of Life Cycle Assessment, 19(2), 387-404. https://doi.org/10.1007/s11367-013-0609-x Petousis, M., Vidakis, N., Mountakis, N., Karapidakis, E., & Moutsopoulou, A. (2023). Functionality Versus Sustainability for PLA in MEX 3D Printing: The Impact of Generic Process Control Factors on Flexural Response and Energy Efficiency. Polymers, 15(5), 1232. https://doi.org/10.3390/polym15051232 Phiri, R., Mavinkere Rangappa, S., Siengchin, S., Oladijo, O. P., & Dhakal, H. N. (2023). Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research, 6(4), 436-450. https://doi.org/10.1016/j.aiepr.2023.04.004 Plhalova, L., Stepanova, S., Praskova, E., Hostovsky, M., Skoric, M., & Bedanova, I. (2012). The effects of subchronic exposure to terbuthylazine on zebrafish. Neuroendocrinol Lett, 33(3), 113-119. Popescu, C., Dissanayake, H., Mansi, E., & Stancu, A. (2024). Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability, 16(23), 10790. https://doi.org/10.3390/su162310790 Rahman, M. A., Haque, S., Rangarajalu, N. S., & Rajendran, D. R. (2024). Sustainability and Efficiency: The Green Potential of Additive Manufacturing. En S. Kunar, T. Jagadeesha, S. Rama Sree, K. V. S. R. Murthy, & M. Sreenivasa Reddy (Eds.), Advances in Additive Manufacturing (1.a ed., pp. 317-342). Wiley. https://doi.org/10.1002/9781394238316.ch18 Raja S., Rusho, M. A., Thimothy, P., Bahar, M. A., Mustafa Egla Kadhim, Shwan, S. A., Jawad, Z. N., Mustafa, M. A., & Kumar, A. P. (2024). Minimizing environmental footprint in FDM additive manufacturing: Analyzing process efficiency through advanced optimization techniques. Applied Chemical Engineering, 7(4). https://doi.org/10.59429/ace.v7i4.5533 Ramanujan, D., Bernstein, W. Z., Chandrasegaran, S. K., & Ramani, K. (2017). Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities. Journal of Mechanical Design, 139(11), 111415. https://doi.org/10.1115/1.4037479 Raza, U., Ahmed, A., Waheed, S., Abid, M., Tahir, M., Zahid, A., Ahmed, A., Bilal, M., Hussain, T., & Mustafa, G. (2025). Recent Advancements in Fused Deposition Modeling. Polymers for Advanced Technologies, 36(1), e70028. https://doi.org/10.1002/pat.70028 Rezvani Ghomi, E. R., Khosravi, F., Saedi Ardahaei, A. S., Dai, Y., Neisiany, R. E., Foroughi, F., Wu, M., Das, O., & Ramakrishna, S. (2021). The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854 Riesch, R., Tobler, M., & Plath, M. (2015). Hydrogen Sulfide-Toxic Habitats. En R. Riesch, M. Tobler, & M. Plath (Eds.), Extremophile Fishes (pp. 137-159). Springer International Publishing. https://doi.org/10.1007/978-3-319-13362-1_7 Rm, H. (2024). Design and Fabrication of Banana Fiber Reinforced Bio Composite. International Journal for Research in Applied Science and Engineering Technology, 12(5), 1902-1906. https://doi.org/10.22214/ijraset.2024.61961 Rodríguez, L. J., Fabbri, S., Orrego, C. E., & Owsianiak, M. (2020). Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly(lactic acid) and banana fiber. Journal of Environmental Management, 266, 110493. https://doi.org/10.1016/j.jenvman.2020.110493 Rodríguez, L. J., Ospina, S., Ribeiro, I., Peças, P., & Orrego, C. E. (2021). Banana fibre-biocomposite applied to bottle lid case—Life-cycle engineering model for material selection. International Journal of Sustainable Engineering, 14(5), 1181-1192. https://doi.org/10.1080/19397038.2021.1913531 Rojek, I., Mikołajewski, D., Macko, M., Szczepański, Z., & Dostatni, E. (2021). Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development. Materials, 14(11), 2737. https://doi.org/10.3390/ma14112737 Romani, A., Rognoli, V., & Levi, M. (2021). Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability, 13(13), 7269. https://doi.org/10.3390/su13137269 Romero Rivero, O. (2023). Efecto de la variación del contenido y la orientación de fibra en las propiedades mecánicas de un compuesto termoplástico reforzado con fibra de plátano obtenido mediante fabricación por filamento fundido con impregnación in-situ. Universidad de Córdoba. Rybaczewska-Błażejowska, M., & Jezierski, D. (2024). Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: A case study based on the electricity consumption mix in Europe. The International Journal of Life Cycle Assessment, 29(10), 1799-1817. https://doi.org/10.1007/s11367-024-02326-6 Sala, S., Biganzoli, F., Mengual, E. S., & Saouter, E. (2022). Toxicity impacts in the environmental footprint method: Calculation principles. The International Journal of Life Cycle Assessment, 27(4), 587-602. https://doi.org/10.1007/s11367-022-02033-0 Sam-Daliri, O., Flanagan, T., Modi, V., Finnegan, W., Harrison, N., & Ghabezi, P. (2025). Composite upcycling: An experimental study on mechanical behaviour of injection moulded parts prepared from recycled material extrusion printed parts, previously prepared using glass fibre polypropylene composite industry waste. Journal of Cleaner Production, 499, 145280. https://doi.org/10.1016/j.jclepro.2025.145280 Samuel, H. S., Ekpan, F.-D. M., & Ori, M. O. (2024). Biodegradable, Recyclable, and Renewable Polymers as Alternatives to Traditional Petroleum-based Plastics. Asian Journal of Environmental Research, 1(3), 152-165. https://doi.org/10.69930/ajer.v1i3.86 Shahroodi, Z., Momeni, V., Moshkriz, A., Rajabifar, N., & Darvishi, R. (2025). Mechanical and Morphological Perspectives on PLA‐Based Thermoplastic Vulcanizates (TPVs): A Brief Review. Macromolecular Materials and Engineering, 310(2), 2400209. https://doi.org/10.1002/mame.202400209 Sholokhova, A., Varžinskas, V., & Rutkaitė, R. (2024). Valorization of Agro-waste in Bio-based and Biodegradable Polymer Composites: A Comprehensive Review with Emphasis on Europe Perspective. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-024-02856-y Sojo, A. (s. f.). Análisis de Ciclo de Vida: Análisis de inventario. Sola, A., Rosa, R., & Ferrari, A. M. (2024). Environmental Impact of Fused Filament Fabrication: What Is Known from Life Cycle Assessment? Polymers, 16(14), 1986. https://doi.org/10.3390/polym16141986 Stara, A., Zuskova, E., Kouba, A., & Velisek, J. (2016). Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii). Science of The Total Environment, 566-567, 733-740. https://doi.org/10.1016/j.scitotenv.2016.05.113 Subagyo, A., & Chafidz, A. (2020). Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications. En A. I. O. Jideani & T. A. Anyasi (Eds.), Banana Nutrition—Function and Processing Kinetics. IntechOpen. https://doi.org/10.5772/intechopen.82204 Subramani, R., Ali Rusho, M., Sekhar, K. Ch., Mohammed, S. A., Abdulah, S. A., Hashim, R. D., Jawad, Z. N., Mustafa, M. A., & Kumar, A. P. (2024). Utilizing bio-energy and waste reduction techniques in FDM: Toward sustainable production practices. Applied Chemical Engineering, 7(4). https://doi.org/10.59429/ace.v7i4.5540 Sudprasert, P., Ogino, K., & Kanehashi, S. (2022). Cashew Nut Shell Liquid (CNSL)-Derived Epoxy Composite Reinforced by Cellulose Nanofiber. Journal of Fiber Science and Technology, 78(10), 161-168. https://doi.org/10.2115/fiberst.2022-0020 Sun, K., Song, Y., Zong, W., Tang, J., & Liu, R. (2020). Anthracene-induced DNA damage and oxidative stress: A combined study at molecular and cellular levels. Environmental Science and Pollution Research, 27(33), 41458-41474. https://doi.org/10.1007/s11356-020-10049-y Sundarakannan, R., Arumugaprabu, V., Manikandan, V., & Vigneshwaran, S. (2020). Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix. Materials Research Express, 6(12), 125349. https://doi.org/10.1088/2053-1591/ab6197 Suppen-Reynaga, N., Guerrero, A. B., Dominguez, E. R., Sacayón, E., & Solano, A. (2024). Life cycle assessment of bananas, melons, and watermelons from Costa Rica. Cleaner and Circular Bioeconomy, 9, 100120. https://doi.org/10.1016/j.clcb.2024.100120 Takeda, T., Suzuki, M., Kano, H., Matsumoto, M., & Umeda, Y. (2023). Clear evidence of the carcinogenic potential of anthracene: A 2‐year feeding study in rats and mice. Environmental Toxicology, 38(4), 709-726. https://doi.org/10.1002/tox.23722 Thorat, Y. V., Chavan, S. S., Mohite, D. D., & Pawar, U. S. (2024). Development of eco-friendly bio-composites using banana fibers for enhanced tensile and flexural properties. Materials Today: Proceedings, S2214785324002499. https://doi.org/10.1016/j.matpr.2024.04.061 Turconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555-565. https://doi.org/10.1016/j.rser.2013.08.013 (UPME), U. D. P. M. E. (2019). PLAN ENERGÉTICO NACIONAL 2020-2050. https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdf Urbaite, G. (2024). 3D Printing and Additive Manufacturing: Revolutionizing the Production Process. Luminis Applied Science and Engineering, 1(1), 73-83. https://doi.org/10.69760/lumin.202400001 Val, S., & Lambán, M. P. (2025). Enhancing Sustainability with LCA: A Comparative Analysis of Design and Manufacturing Processes. Processes, 13(1), 195. https://doi.org/10.3390/pr13010195 Veliz, K., Chico-Santamarta, L., & Ramirez, A. D. (2022). The Environmental Profile of Ecuadorian Export Banana: A Life Cycle Assessment. Foods, 11(20), 3288. https://doi.org/10.3390/foods11203288 Vink, E. T. H., Rábago, K. R., Glassner, D. A., & Gruber, P. R. (2003a). Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5 Walker, T. R. (2024). Consuming Plastics. En M. J. Hird, Consuming the Environment (1.a ed., pp. 105-117). Routledge. https://doi.org/10.4324/9781003412526-9 Wang, S. (2011). Tellurium, its resourcefulness and recovery. JOM, 63(8), 90-93. https://doi.org/10.1007/s11837-011-0146-7 Weligama Thuppahige, V. T., & Karim, M. A. (2022). A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Comprehensive Reviews in Food Science and Food Safety, 21(1), 689-718. https://doi.org/10.1111/1541-4337.12873 Wu, J., Guan, Z., & Ling, Y. (2023). Arsenic Emission Control from Coal Combustion Flue Gas. En S. M. Imamul Huq (Ed.), Arsenic in the Environment—Sources, Impacts and Remedies. IntechOpen. https://doi.org/10.5772/intechopen.1002351 Xia, Y., Gao, T., Liu, Y., Qi, M., Zhu, J.-M., Tong, H., Lv, Y., & Liu, C. (2025). Cd/Pb behavior during combustion in a coal-fired power plant and their spatiotemporal impacts on soils: New insights from Cd/Pb isotopes. Journal of Environmental Sciences, 150, 582-593. https://doi.org/10.1016/j.jes.2024.03.002 Yadav, J., Singh, V. P., & Kumar, A. (2024). Life Cycle Assessment of sustainable building materials. En C. S. Meena, A. Kumar, V. P. Singh, & A. Ghosh, Sustainable Technologies for Energy Efficient Buildings (1.a ed., pp. 64-101). CRC Press. https://doi.org/10.1201/9781003496656-4 Yaragatti, N., & Patnaik, A. (2021). A review on additive manufacturing of polymers composites. Materials Today: Proceedings, 44, 4150-4157. https://doi.org/10.1016/j.matpr.2020.10.490 Zgodavová, K., Lengyelová, K., Bober, P., Eguren, J. A., & Moreno, A. (2021). 3D Printing Optimization for Environmental Sustainability: Experimenting with Materials of Protective Face Shield Frames. Materials, 14(21), 6595. https://doi.org/10.3390/ma14216595 Zhao, C., Li, A., Zhang, G., Pan, Y., Meng, L., Yang, R., Li, Y., Zhang, Q., & Jiang, G. (2022). Parent and Halogenated Polycyclic Aromatic Hydrocarbons in the Serum of Coal-Fired Power Plant Workers: Levels, Sex Differences, Accumulation Trends, and Risks. Environmental Science & Technology, 56(17), 12431-12439. https://doi.org/10.1021/acs.est.2c03099 Ziemińska-Stolarska, A., Sobulska, M., Pietrzak, M., & Zbiciński, I. (2024). Application of Life Cycle Assessment to Analysis of Fibre Composite Manufacturing Technologies in Shipyards Industry. Processes, 12(3), 461. https://doi.org/10.3390/pr12030461 Živančević, K., Živanović, J., Baralić, K., Božić, D., Marić, Đ., Vukelić, D., Miljaković, E. A., Djordjevic, A. B., Ćurčić, M., Bulat, Z., Antonijević, B., & Đukić-Ćosić, D. (2024). Integrative investigation of hematotoxic effects induced by low doses of lead, cadmium, mercury and arsenic mixture: In vivo and in silico approach. Science of The Total Environment, 930, 172608. https://doi.org/10.1016/j.scitotenv.2024.172608 |
| dc.rights.none.fl_str_mv |
Copyright Universidad de Córdoba, 2025 |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Copyright Universidad de Córdoba, 2025 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Córdoba |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
| dc.publisher.place.none.fl_str_mv |
Montería, Córdoba, Colombia |
| dc.publisher.program.none.fl_str_mv |
Ingeniería Ambiental |
| publisher.none.fl_str_mv |
Universidad de Córdoba |
| institution |
Universidad de Córdoba |
| bitstream.url.fl_str_mv |
https://dspace8-unicordoba.metabuscador.org/bitstreams/f75a690c-6cba-4b58-b56f-584c5464b1a4/download https://dspace8-unicordoba.metabuscador.org/bitstreams/9d407adc-fcd5-4e5d-9b8f-619a1193a973/download https://dspace8-unicordoba.metabuscador.org/bitstreams/1bf7acc0-b8d8-4e37-b96c-a9febe0a56d7/download https://dspace8-unicordoba.metabuscador.org/bitstreams/9f559fbe-e02c-4f30-9cd4-408596098eda/download https://dspace8-unicordoba.metabuscador.org/bitstreams/673d517f-2b21-4c32-ab7d-ee907ceaa6c2/download https://dspace8-unicordoba.metabuscador.org/bitstreams/37fa7a86-0707-4407-a4b7-bce597b1528f/download https://dspace8-unicordoba.metabuscador.org/bitstreams/929b511c-fb28-44b2-91f4-17a6f2c514c3/download |
| bitstream.checksum.fl_str_mv |
b8d63e0abdd583acc7cffd0963e60cf8 8c0c0432fd4aba6870ee0dfde77dff10 73a5432e0b76442b22b026844140d683 7398beeddc0cca405c05790122f9938a c6d8584d3b9b5ca298e40a906834b212 fb476296b3e48c934c02fceaf059261a 45661f7eb64b255f378f4f1c7cc04419 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio institucional Universidad de Córdoba |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1849968238036779008 |
| spelling |
Soto Barrera, Viviana CeciliaFernández Hoyos, Daniel FernandoCampo Daza, Gabriel AntonioTavera Quiróz, María José2025-07-14T14:26:28Z2025-07-14T14:26:28Z2025-07-14https://repositorio.unicordoba.edu.co/handle/ucordoba/9314Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.coEsta investigación evaluó y comparó el desempeño ambiental de la fabricación de biocompuestos de matriz PLA reforzados con residuos agrícolas locales: fibra de pseudotallo de plátano (FP) y partículas de cáscara de nuez de marañón (PCNM), utilizando impresión 3D (FDM e impregnación in situ). El objetivo fue determinar la opción con menor impacto ambiental mediante la metodología de Análisis de Ciclo de Vida (ACV) según la norma ISO 14040/44, con un enfoque "cuna-a-producción" y una unidad funcional de 1 kg de biocompuesto. El proceso de inventario de ciclo de vida (ICV) incluyó la recopilación de datos primarios (entrevistas, procesos de laboratorio como secado, molienda, extrusión e impresión) y secundarios (literatura, bases de datos Ecoinvent 3.10), utilizando el software SimaPro y el método de evaluación Environmental Footprint 3.1. Los resultados indican que el biocompuesto PLA-FP presenta un desempeño ambiental más favorable que el PLA-PCNM, destacando que presenta una huella de carbono reducida de 5,13 kg CO2 eq/kg, atribuida principalmente a parámetros de impresión más eficientes energéticamente para el PLA-FP. Los puntos críticos identificados fueron el alto consumo de energía eléctrica en la etapa de impresión 3D (60-76.4% del impacto total) y la producción de PLA virgen (22.6-30.4%). Se demostró un beneficio ambiental adicional al usar FP cuando se evita la disposición convencional del residuo, mientras que el uso de PCNM no mostró una ventaja clara frente a su disposición actual en vertedero.This research evaluated and compared the environmental performance of manufacturing PLA-matrix biocomposites reinforced with local agricultural residues: banana pseudostem fiber (FP) and cashew nutshell particles (PCNM), using 3D printing (FDM and in-situ impregnation). The objective was to determine the option with the lowest environmental impact using the Life Cycle Assessment (LCA) methodology according to ISO 14040/44, with a "cradle-to-gate" approach and a functional unit of 1 kg of biocomposite. The life cycle inventory (LCI) process included the collection of primary data (interviews, laboratory processes such as drying, milling, extrusion, and printing) and secondary data (literature, Ecoinvent 3.10 database), using SimaPro software and the Environmental Footprint 3.1 assessment method. The results indicate that the PLA-FP biocomposite exhibits a more favorable environmental performance than PLA-PCNM, highlighting a carbon footprint 5.13 kg CO2 eq/kg lower, primarily attributed to more energy-efficient printing parameters for PLA-FP. The identified hotspots were the high electricity consumption during the 3D printing stage (accounting for 60-76.4% of the total impact) and virgin PLA production (22.6- 30.4%). An additional environmental benefit was demonstrated when using FP by avoiding conventional waste disposal, whereas the use of PCNM did not show a clear advantage over its current disposal in landfills.1 INTRODUCCIÓN 32 OBJETIVOS 52.1 Objetivo general 52.2 Objetivos específicos 53 REVISIÓN BIBLIOGRÁFICA 63.1 Material compuesto 63.2 Ácido poliláctico 73.3 Cascaras de nuez de marañón 73.4 Fibras de pseudotallo de plátano 83.5 Fabricación aditiva 93.6 Análisis de ciclo de vida (ACV) 93.7 Metodologías de evaluación de impacto de ciclo de vida (EICV) 123.8 ACV biocompuestos 133.9 Sostenibilidad y economía circular en la producción de materiales 144 ESTADO DEL ARTE 165 MATERIALES Y MÉTODOS 205.1 Descripción de la zona de estudio 215.2 Metodología para fase de definición de objetivos y alcance 225.2.1 Unidad funcional 225.2.2 Límites del sistema 235.2.3 Escenarios de comparación 275.3 Metodología para fase Análisis de inventario de ciclo de vida 285.3.1 Parámetro de modelado de datos 295.3.2 Etapa de cultivo, cosecha y procesamiento de marañón 295.3.3 Etapa de producción de partículas de cascara de nuez de marañón 325.3.4 Etapa de producción de biocompuesto (PLA-PCNM) 335.3.5 Etapa de cultivo y cosecha del plátano 365.3.6 Etapa de extracción de las fibras de pseudotallo de plátano 365.3.7 Etapa de producción del biocompuesto (PLA-FP) 375.4 Metodología para la fase de Evaluación de impacto del ciclo de vida 395.5 Metodología para la fase de Interpretación 405.5.1 Análisis de calidad de los datos 416 RESULTADOS Y DISCUSIONES 426.1 Inventario del ciclo de vida 436.2 Análisis de calidad de datos 466.3 Resultados de la evaluación del ciclo de vida 496.3.1 Análisis de contribución 496.4 Análisis comparativo de la evaluación de impactos 536.5 Puntos críticos ambientales 796.6 Influencia de los refuerzos de residuos agrícolas en los biocompuestos 817 CONCLUSIONES 838 RECOMENDACIONES 859 BIBLIOGRAFÍA 8710 ANEXOS 105PregradoIngeniero(a) AmbientalTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de IngenieríaMontería, Córdoba, ColombiaIngeniería AmbientalCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátanoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTextAbarikwu, S. O. (2013). Lead, Arsenic, Cadmium, Mercury: Occurrence, Toxicity and Diseases. En E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Pollutant Diseases, Remediation and Recycling (Vol. 4, pp. 351-386). Springer International Publishing. https://doi.org/10.1007/978-3-319-02387-8_7Agrawal, P., Mittal, A., Prakash, R., Kumar, M., Singh, T. B., & Tripathi, S. K. (2010). Assessment of Contamination of Soil due to Heavy Metals around Coal Fired Thermal Power Plants at Singrauli Region of India. Bulletin of Environmental Contamination and Toxicology, 85(2), 219-223. https://doi.org/10.1007/s00128-010-0043-8Andersen, J. H., Fossing, H., Hansen, J. W., Manscher, O. H., Murray, C., & Petersen, D. L. J. (2014). Nitrogen Inputs from Agriculture: Towards Better Assessments of Eutrophication Status in Marine Waters. AMBIO, 43(7), 906-913. https://doi.org/10.1007/s13280-014-0514-yAndreozzi, M., Forcellese, A., Gentili, S., Mancia, T., & Verdini, T. (2024). Comparative Life Cycle Assessment of molding process and 3D printing of High-Performance Long-fiber Reinforced Composites. Procedia CIRP, 122, 909-914. https://doi.org/10.1016/j.procir.2024.01.124Ángel Hidalgo-Salazar, M., Pablo Correa-Aguirre, J., Manuel Montalvo-Navarrete, J., Fernando Lopez-Rodriguez, D., & Felipe Rojas-González, A. (2020). Recycled Polypropylene-Coffee Husk and Coir Coconut Biocomposites: Morphological, Mechanical, Thermal and Environmental Studies. En G. Akın Evingür, Ö. Pekcan, & D. S. Achilias (Eds.), Thermosoftening Plastics. IntechOpen. https://doi.org/10.5772/intechopen.81635Appusamy, A. M., Prakash, E., Madheswaran, S., Rajamanickam, A., Selvakumar, V. K., & Chandrasekar, P. (2021). Characterization and Fabrication of ABS and PLA-Based Polymer Matrix Composites Using 3D Printing. En G. Kumaresan, N. S. Shanmugam, & V. Dhinakaran (Eds.), Advances in Materials Research (Vol. 5, pp. 499-510). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-8319-3_50Aydin, M., & Kaynak, B. (2023, mayo 15). Prediction of H2S Concentration Around Geothermal Power Plants Using Multiple Regression Analysis. https://doi.org/10.5194/egusphere-egu23-14483Babaee, S., Loughlin, D. H., & Kaplan, P. O. (2020). Incorporating upstream emissions into electric sector nitrogen oxide reduction targets. Cleaner Engineering and Technology, 1, 100017. https://doi.org/10.1016/j.clet.2020.100017Bach, V., Lehmann, A., Görmer, M., & Finkbeiner, M. (2018). Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility? Sustainability, 10(8), 2898. https://doi.org/10.3390/su10082898Badanayak, P., Jose, S., & Bose, G. (2023). Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. Journal of Natural Fibers, 20(1), 2168821. https://doi.org/10.1080/15440478.2023.2168821Badhotiya, G. K., Avikal, S., Soni, G., & Sengar, N. (2022). Analyzing barriers for the adoption of circular economy in the manufacturing sector. International Journal of Productivity and Performance Management, 71(3), 912-931. https://doi.org/10.1108/IJPPM-01-2021-0021Badreddine, S., Abdelhafidh, K., Dellali, M., Mahmoudi, E., Sheehan, D., & Hamouda, B. (2017). The effects of anthracene on biochemical responses of Mediterranean mussels Mytilus galloprovincialis. Chemistry and Ecology, 33(4), 309-324. https://doi.org/10.1080/02757540.2017.1309393Bajdur, W. M., Włodarczyk-Makuła, M., & Krukowska-Miler, A. (2024). Application of the Life Cycle Assessment (LCA) Method in Assessing the Environmental Impact of New Materials Derived from Waste Polymers in Terms of Sustainability. Sustainability, 16(22), 9759. https://doi.org/10.3390/su16229759Bałdowska-Witos, P., Kruszelnicka, W., Kasner, R., Tomporowski, A., Flizikowski, J., Kłos, Z., Piotrowska, K., & Markowska, K. (2020). Application of LCA Method for Assessment of Environmental Impacts of a Polylactide (PLA) Bottle Shaping. Polymers, 12(2), 388. https://doi.org/10.3390/polym12020388Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174, 106956. https://doi.org/10.1016/j.compositesb.2019.106956Barde, M., Auad, M., Jones, J., Yan, Y., Lu, N., Pillay, S., & Ning, H. (2022). Natural Fiber Composite with α-Resorcylic Acid Based Bio-Epoxy Matrix. Universal Journal of Materials Science, 10(2), 9-20. https://doi.org/10.13189/ujms.2022.100201Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205Behera, A. K., Pattnaik, S. S., Behera, D., Behera, S., Kumar, J., Manna, S., & Das, N. (2025). Enhancement of Green Composite Performance Through the Synergistic Influence of Cashew Nut Shell Liquid and Nanoclay on Natural Fiber Reinforcement. Journal of Applied Polymer Science, 142(12), e56640. https://doi.org/10.1002/app.56640Benavides, P. T., Lee, U., & Zarè-Mehrjerdi, O. (2020). Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. Journal of Cleaner Production, 277, 124010. https://doi.org/10.1016/j.jclepro.2020.124010Bertassini, A. C., Ometto, A. R., Severengiz, S., & Gerolamo, M. C. (2021). Circular economy and sustainability: The role of organizational behaviour in the transition journey. Business Strategy and the Environment, 30(7), 3160-3193. https://doi.org/10.1002/bse.2796Boone, L., Van Linden, V., De Meester, S., Vandecasteele, B., Muylle, H., Roldán-Ruiz, I., Nemecek, T., & Dewulf, J. (2016). Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of The Total Environment, 553, 551-564. https://doi.org/10.1016/j.scitotenv.2016.02.089Borda, F., La Rosa, A. D., Filice, L., & Gagliardi, F. (2024). Environmental comparison of opposing manufacturing strategies at changing of energy sources, EoL approaches and shape peculiarity for an automotive component. Advances in Materials and Processing Technologies, 1-21. https://doi.org/10.1080/2374068X.2024.2432724Brito De Figueirêdo, M. C., Potting, J., Lopes Serrano, L. A., Bezerra, M. A., Da Silva Barros, V., Gondim, R. S., & Nemecek, T. (2016). Environmental assessment of tropical perennial crops: The case of the Brazilian cashew. Journal of Cleaner Production, 112, 131-140. https://doi.org/10.1016/j.jclepro.2015.05.134Cardona, D., Tamayo, J. A., & Eslava-Garzón, J. S. (2024). Hacia una matriz energética sostenible en Colombia. Una revisión sistemática de la literatura. Información Tecnológica, 35(5), 1-16. https://doi.org/10.4067/S0718-07642024000500001Castañeda-Niño, J. P., Mina Hernandez, J. H., & Solanilla Duque, J. F. (2024). Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials. Polymers, 16(10), 1357. https://doi.org/10.3390/polym16101357Chairi, M., El Bahaoui, J., Hanafi, I., Mata Cabrera, F., & Di Bella, G. (2023). Composite Materials: A Review of Polymer and Metal Matrix Composites, Their Mechanical Characterization, and Mechanical Properties. En L. Li, A. B. Pereira, & A. L. Pereira (Eds.), Next Generation Fiber-Reinforced Composites—New Insights. IntechOpen. https://doi.org/10.5772/intechopen.106624Chung, K. W. Y., Blin, J., Lanvin, C., Martin, E., Valette, J., & Van De Steene, L. (2024). Pyrolysis of cashew nut shells-focus on extractives. Journal of Analytical and Applied Pyrolysis, 179, 106452. https://doi.org/10.1016/j.jaap.2024.106452Ciroth, A., Muller, S., Weidema, B., & Lesage, P. (2016). Empirically based uncertainty factors for the pedigree matrix in ecoinvent. The International Journal of Life Cycle Assessment, 21(9), 1338-1348. https://doi.org/10.1007/s11367-013-0670-5Cisneros-López, E. O., Pal, A. K., Rodriguez, A. U., Wu, F., Misra, M., Mielewski, D. F., Kiziltas, A., & Mohanty, A. K. (2020). Recycled poly(lactic acid)–based 3D printed sustainable biocomposites: A comparative study with injection molding. Materials Today Sustainability, 7-8, 100027. https://doi.org/10.1016/j.mtsust.2019.100027Coban, K., Ekici, S., & Karakoc, T. H. (2024). Life Cycle Assessment: A Brief Definition and Overview. En T. H. Karakoc, S. Ekici, & A. Dalkiran (Eds.), Life Cycle Assessment in Aviation (pp. 11-23). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-52772-2_2Cruz, T., Maranon, A., Hernandez, C., Alvarez, O., Ayala-García, C., & Porras, A. (2024). Exploring the potential of cashew nutshells: A critical review of alternative applications. BioResources, 19(3). https://doi.org/10.15376/biores.19.3.CruzDe Farias Braz, C. J., De Oliveira Dias, A. R., Figueiredo, S. N., Dos Santos Rosa, A. C. F., De Sousa Barros, I., Alves, A. T., De Lima Silva, S. M., De Carvalho, L. H., Barbosa, R., & Alves, T. S. (2024). Biodegradable composites filled with agro‐industrial waste and fertilizers for filament production and application in active manufacturing. Polymer Composites, pc.29375. https://doi.org/10.1002/pc.29375De Simone, F., Artaxo, P., Bencardino, M., Cinnirella, S., Carbone, F., D’Amore, F., Dommergue, A., Feng, X. B., Gencarelli, C. N., Hedgecock, I. M., Landis, M. S., Sprovieri, F., Suzuki, N., Wängberg, I., & Pirrone, N. (2017). Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: A modelling assessment. Atmospheric Chemistry and Physics, 17(3), 1881-1899. https://doi.org/10.5194/acp-17-1881-2017Deng Shuang Deng Shuang, Zhang Fan Zhang Fan, Liu Yu Liu Yu, Shi YingJie Shi YingJie, Wang HongMei Wang HongMei, Zhang Chen Zhang Chen, Wang XiangFeng Wang XiangFeng, & Cao Qing Cao Qing. (2013). Lead emission and speciation of coal-fired power plants in China. China Environmental Science, 33(7), 1199-1206.Díaz Ponce, M. A., Cervantes Molina, X. P., & Chesme Rios, C. L. (2023). Sostenibilidad en el Cultivo de Cacao (Theobroma Cacao L.) Por las Oportunidades de Economía Circular para la Provincia los Ríos. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 5182-5197. https://doi.org/10.37811/cl_rcm.v7i4.7342Ding, M., Shi, S., Qie, S., Li, J., & Xi, X. (2023). Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: A systematic review and meta-analysis. Frontiers in Pediatrics, 11, 1169733. https://doi.org/10.3389/fped.2023.1169733Dong, Y. (2024). Life Cycle Assessment in the Building and Construction Sector. En C. S. Goh & H.-Y. Chong, Rethinking Pathways to a Sustainable Built Environment (1.a ed., pp. 191-212). Routledge. https://doi.org/10.1201/9781003317890-12Driouach, L., Zarbane, K., & Beidouri, Z. (2023). The impacts of additive manufacturing technology on lean manufacturing. Journal of Achievements in Materials and Manufacturing Engineering, 120(1), 22-32. https://doi.org/10.5604/01.3001.0053.9641Dubey, K. A., & Bhardwaj, Y. K. (2021). High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations. En A. K. Tyagi & R. S. Ningthoujam (Eds.), Handbook on Synthesis Strategies for Advanced Materials (pp. 1-25). Springer Singapore. https://doi.org/10.1007/978-981-16-1892-5_1Egon, A., Bell, C., & Shad, R. (2024). Sustainability in Additive Manufacturing: Analyzing the Environmental Impact of Additive Manufacturing Processes. Chemistry and Materials Science. https://doi.org/10.20944/preprints202407.2573.v1Elsonbaty, A. A., MRashad, A., Abass, Omnia. Y., Y.Abdelghany, T., & MAlfauiomy, A. (2024). A Survey of Fused Deposition Modeling (FDM) Technology in 3D Printing. Journal of Engineering Research and Reports, 26(11), 304-312. https://doi.org/10.9734/jerr/2024/v26i111332Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012Farhan, M., Mohammad Taha, M., Yusuf, Y., Azwan Sundi, S., & Zakaria, N. H. (2024). Environmental Assessment on Fabrication of Bio-composite Filament Fused Deposition Modeling Through Life Cycle Analysis. Pertanika Journal of Science and Technology, 32(S2). https://doi.org/10.47836/pjst.32.S2.03Felfil Evo | Extrusora de filamento en Kit o ensamblado para impresora 3D. (s. f.). Felfil. Recuperado 14 de febrero de 2025, de https://felfil.com/es/felfil-evo/Fernández-López, L., González-García, P., Fernández-Ríos, A., Aldaco, R., Laso, J., Martínez-Ibáñez, E., Gutiérrez-Fernández, D., Pérez-Martínez, M. M., Marchisio, V., Figueroa, M., De Sousa, D. B., Méndez, D., & Margallo, M. (2024). Life cycle assessment of single cell protein production–A review of current technologies and emerging challenges. Cleaner and Circular Bioeconomy, 8, 100079. https://doi.org/10.1016/j.clcb.2024.100079Fico, D., Rizzo, D., Malinconico, F., & Esposito Corcione, C. (2024). A SUSTAINABLE APPROACH TO RECYCLING WASTE: EXAMPLES OF THE APPLICATION OF 3D PRINTING TO EXTEND THE LIFE CYCLE OF MATERIALS. Detritus, 28, 60-69. https://doi.org/10.31025/2611-4135/2024.19408Fogue Matchum, S., Sikame Tagne, N. R., Huisken Mejouyo, P. W., Tido Tiwa, S., Wenga, B., Njeugna, E., Drean, J.-Y., Bistac-Brogly, S., & Harzallah, O. (2024). Investigation of chemical, physical and morpho-mechanical properties of banana-plantain stalk fibers for ropes and woven fabrics used in composite and limited-lifespan geotextile. Heliyon, 10(8), e29656. https://doi.org/10.1016/j.heliyon.2024.e29656Foley, M. E., Sigler, V., & Gruden, C. L. (2008). A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. The ISME Journal, 2(1), 56-66. https://doi.org/10.1038/ismej.2007.99Fonseca, A., Ramalho, E., Gouveia, A., Figueiredo, F., & Nunes, J. (2023). Life Cycle Assessment of PLA Products: A Systematic Literature Review. Sustainability, 15(16), 12470. https://doi.org/10.3390/su151612470Friedli, H. R., Radke, L. F., & Lu, J. Y. (2001). Mercury in smoke from biomass fires. Geophysical Research Letters, 28(17), 3223-3226. https://doi.org/10.1029/2000GL012704Füchsl, S., Rheude, F., & Röder, H. (2022). Life cycle assessment (LCA) of thermal insulation materials: A critical review. Cleaner Materials, 5, 100119. https://doi.org/10.1016/j.clema.2022.100119García, G. F., Álvarez, H. B., Echeverría, R. S., De Alba, S. R., Rueda, V. M., Dosantos, E. C., & Cruz, G. V. (2017). Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico. Journal of the Air & Waste Management Association, 67(9), 973-985. https://doi.org/10.1080/10962247.2017.1314871Garnier, J., Riou, P., Le Gendre, R., Ramarson, A., Billen, G., Cugier, P., Schapira, M., Théry, S., Thieu, V., & Ménesguen, A. (2019). Managing the Agri-Food System of Watersheds to Combat Coastal Eutrophication: A Land-to-Sea Modelling Approach to the French Coastal English Channel. Geosciences, 9(10), 441. https://doi.org/10.3390/geosciences9100441Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782Ghabezi, P., Sam-Daliri, O., Flanagan, T., Walls, M., & Harrison, N. M. (2024). Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resources, Conservation and Recycling, 206, 107667. https://doi.org/10.1016/j.resconrec.2024.107667Gloria Opoku Darkoh. (2024). EVALUATING THE CIRCULAR ECONOMY AS A TOOL FOR ACHIEVING SUSTAINABILITY: BALANCING ENVIRONMENTAL, ECONOMIC, AND SOCIAL IMPACTS. EPRA International Journal of Socio-Economic and Environmental Outlook, 14-17. https://doi.org/10.36713/epra19532Godoy León, M. F., & Dewulf, J. (2020). Data quality assessment framework for critical raw materials. The case of cobalt. Resources, Conservation and Recycling, 157, 104564. https://doi.org/10.1016/j.resconrec.2019.104564Golsteijn, L., & Vieira, M. (2020). Applicability of the European Environmental Footprint (EF) methodology in Southern Mediterranean countries—Learnings and recommendations for enabling EF-compliant studies in regions outside of Europe. The International Journal of Life Cycle Assessment, 25(12), 2407-2416. https://doi.org/10.1007/s11367-019-01681-zGopinath, A., Kumar, M. S., & Elayaperumal, A. (2014). Experimental Investigations on Mechanical Properties Of Jute Fiber Reinforced Composites with Polyester and Epoxy Resin Matrices. Procedia Engineering, 97, 2052-2063. https://doi.org/10.1016/j.proeng.2014.12.448Guo, Y., Yang, Q., Yan, W., Li, B., Qian, K., Li, T., Xiao, W., & He, L. (2014). Controlled release of acetochlor from poly (butyl methacrylate-diacetone acrylamide) based formulation prepared by nanoemulsion polymerisation method and evaluation of the efficacy. International Journal of Environmental Analytical Chemistry, 94(10), 1001-1012. https://doi.org/10.1080/03067319.2014.930844Haylock, R., & Rosentrater, K. A. (2018). Cradle-to-Grave Life Cycle Assessment and Techno-Economic Analysis of Polylactic Acid Composites with Traditional and Bio-Based Fillers. Journal of Polymers and the Environment, 26(4), 1484-1503. https://doi.org/10.1007/s10924-017-1041-2Hu, C., Zhang, Y., Pang, X., & Chen, X. (2024). Poly(Lactic Acid): Recent Stereochemical Advances and New Materials Engineering. Advanced Materials, 2412185. https://doi.org/10.1002/adma.202412185Huang, M. H., Chen, W. H., Trinh, M. M., & Chang, M. B. (2023). Mass flows and characteristic of mercury emitted from coal-fired power plant equipped with seawater flue gas desulphurization. Sustainable Environment Research, 33(1), 8. https://doi.org/10.1186/s42834-023-00168-9Hussain, M., & Shafqat, A. R. (2025). Sustainability and Materials. En K. Shaker & Y. Nawab (Eds.), Engineering Materials (pp. 257-274). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-72263-9_11Imoisili, P. E., & Jen, T. C. (2024). Effect of Mercerization on the Crystallographic, Macromolecular, and Thermal Properties of Plantain Fibers for Fiber Reinforced Composite. Materials Science Forum, 1115, 63-70. https://doi.org/10.4028/p-ki55Mr(ISO), I. O. for S. (2006). Environmental management. Life cycle assessment. Requirements and guidelines (b). International Organization for Standardization.Jomova, K., Alomar, S. Y., Nepovimova, E., Kuca, K., & Valko, M. (2025). Heavy metals: Toxicity and human health effects. Archives of Toxicology, 99(1), 153-209. https://doi.org/10.1007/s00204-024-03903-2Jordaan, S. M., Xu, Q., & Hobbs, B. F. (2020). Grid-Scale Life Cycle Greenhouse Gas Implications of Renewable, Storage, and Carbon Pricing Options. Environmental Science & Technology, 54(17), 10435-10445. https://doi.org/10.1021/acs.est.0c01861Kai Che, Chong-Ming Chen, Qing-Yu Zheng, Hui Fan, Ming-Lei Wei, Peng Luo, & Jin-Xing Yu. (2022). Heavy Metal Emissions from Coal-fired Power Plants and Heavy Metal Pollution Characteristics and Health Risks in Surrounding Soils. Huan Jing Ke Xue= Huanjing Kexue, 43(10), 4578-4589.Kalkanis, K., Bourtsalas, A., & Psomopoulos, C. S. (2024). Life Cycle Assessment applied to waste-to-energy technologies. En Waste Valorization for Bioenergy and Bioproducts (pp. 527-543). Elsevier. https://doi.org/10.1016/B978-0-443-19171-8.00014-6Kaptan, A., & Kartal, F. (2024). Advancements in polylactic acid research: From material properties to sustainable applications. European Mechanical Science, 8(2), 104-114. https://doi.org/10.26701/ems.1440630Kavlak, G., & Graedel, T. E. (2013). Global anthropogenic tellurium cycles for 1940–2010. Resources, Conservation and Recycling, 76, 21-26. https://doi.org/10.1016/j.resconrec.2013.04.007Khalid, M., & Peng, Q. (2021). Sustainability and Environmental Impact of Additive Manufacturing: A Literature Review. Computer-Aided Design and Applications, 18(6), 1210-1232. https://doi.org/10.14733/cadaps.2021.1210-1232Khatib, I., Horyn, O., Bodnar, O., Lushchak, O., Rychter, P., & Falfushynska, H. (2023). Molecular and Biochemical Evidence of the Toxic Effects of Terbuthylazine and Malathion in Zebrafish. Animals, 13(6), 1029. https://doi.org/10.3390/ani13061029Kirschnick, U., Ravindran, B., Sieberer, M., Fauster, E., & Feuchter, M. (2025). The Fossil, the Green and the in-Between: Life Cycle Assessment of Manufacturing Composites with Varying Bio-Based Content. Chemistry and Materials Science. https://doi.org/10.20944/preprints202501.1145.v1Kiš, F., Vasin, J., Milovac, Ž., Zeremski, T., Milić, S., & Savić, J. (2024). Environmental impact assessment of rapeseed production using the LCA method: Part one: Life cycle inventory analysis. Selekcija i Semenarstvo, 30(1), 13-33. https://doi.org/10.5937/SelSem2401013KKomal, U. K., Lila, M. K., & Singh, I. (2020). PLA/banana fiber based sustainable biocomposites: A manufacturing perspective. Composites Part B: Engineering, 180, 107535. https://doi.org/10.1016/j.compositesb.2019.107535Kottuparambil, S., & Park, J. (2019). Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter. Scientific Reports, 9(1), 15323. https://doi.org/10.1038/s41598-019-51451-yKoziol, M., Wieczorek, J., Bogdan-Włodek, A., & Myalski, J. (2013). Evaluation of jute fiber preforms absorbability using optical profilographometer. Journal of Composite Materials, 47(19), 2309-2319. https://doi.org/10.1177/0021998312457197Kreiger, M., & Pearce, J. M. (2013). Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products. ACS Sustainable Chemistry & Engineering, 1(12), 1511-1519. https://doi.org/10.1021/sc400093kKumar, R., Singh, R., Kumar, V., & Ranjan, N. (2024). On secondary recycling of high-density polyethylene with reinforcement of stubble powder by a material extrusion process for construction applications. Journal of Thermoplastic Composite Materials, 08927057241309822. https://doi.org/10.1177/08927057241309822Laca, A., Laca, A., Herrero, M., & Díaz, M. (2019). Life Cycle Assessment in Biotechnology. En Comprehensive Biotechnology (pp. 994-1006). Elsevier. https://doi.org/10.1016/B978-0-444-64046-8.00109-9Laurenz, J., Lietz, L., Brendelberger, H., Lehmann, K., & Georg, A. (2020). Noble Crayfish Are More Sensitive to Terbuthylazine than Parthenogenetic Marbled Crayfish. Water, Air, & Soil Pollution, 231(11), 548. https://doi.org/10.1007/s11270-020-04921-3Lestari, A. D. A. & Farida Pulansari. (2024). Environmental Impact Analysis on Furniture Industry by Implementing Life Cycle Assessment (LCA) Method. Advance Sustainable Science Engineering and Technology, 7(1), 0250106. https://doi.org/10.26877/asset.v7i1.747Li, X., Lin, Y., Liu, M., Meng, L., & Li, C. (2023). A review of research and application of polylactic acid composites. Journal of Applied Polymer Science, 140(7), e53477. https://doi.org/10.1002/app.53477Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004Liu, Q., Gao, J., Li, G., Zheng, Y., Li, R., & Yue, T. (2023). Bibliometric Analysis on Mercury Emissions from Coal-fired Power Plants: A Systematic Review and Future Prospect. In Review. https://doi.org/10.21203/rs.3.rs-2972030/v1Lopes Silva, D. A., Nunes, A. O., Piekarski, C. M., Da Silva Moris, V. A., De Souza, L. S. M., & Rodrigues, T. O. (2019). Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustainable Production and Consumption, 20, 304-315. https://doi.org/10.1016/j.spc.2019.07.005Lozano Miralles, J. A. (2022). Análisis de ciclo de vida (ACV) comparativo entre probetas obtenidas mediante fabricación tradicional por inyección (FI) y fabricación aditiva (FA). Técnica Industrial, 332, 50-57. https://doi.org/10.23800/10523Lu, A., Ivantsova, E., & Martyniuk, C. J. (2023). A comparative review and computational assessment of acetochlor toxicity in fish: A novel endocrine disruptor? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 271, 109685. https://doi.org/10.1016/j.cbpc.2023.109685Łuszkiewicz, D., Jędrusik, M., & Świerczok, A. (2021). Technology of mercury removal from exhaust from coal fired boilers. E3S Web of Conferences, 323, 00024. https://doi.org/10.1051/e3sconf/202132300024Mahalle, L., Alemdar, A., Mihai, M., & Legros, N. (2014). A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites. The International Journal of Life Cycle Assessment, 19(6), 1305-1315. https://doi.org/10.1007/s11367-014-0731-4Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., & Karim, N. (2022). Sustainable Fiber‐Reinforced Composites: A Review. Advanced Sustainable Systems, 6(11), 2200258. https://doi.org/10.1002/adsu.202200258Mares, L. G., Villarruel, S. C., & Garcidueñas, M. G. R. (2018). Análisis de ciclo de vida: Factor clave para la innovación tecnológica de productos ambientalmente integrados. Repositorio de la Red Internacional de Investigadores en Competitividad, 12, 515-533.Mecheter, A., & Tarlochan, F. (2023). Fused Filament Fabrication Three-Dimensional Printing: Assessing the Influence of Geometric Complexity and Process Parameters on Energy and the Environment. Sustainability, 15(16), 12319. https://doi.org/10.3390/su151612319Meskers, C., Bartie, N. J., & Reuter, M. A. (2024). Life cycle assessment (LCA). En Handbook of Recycling (pp. 701-721). Elsevier. https://doi.org/10.1016/B978-0-323-85514-3.00010-5Miller, B. G. (2017a). Formation and Control of Nitrogen Oxides. En Clean Coal Engineering Technology (pp. 507-538). Elsevier. https://doi.org/10.1016/B978-0-12-811365-3.00010-7Miller, B. G. (2017b). Formation and Control of Sulfur Oxides. En Clean Coal Engineering Technology (pp. 467-506). Elsevier. https://doi.org/10.1016/B978-0-12-811365-3.00009-0Mohanty, A. K., Misra, M., & Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocomposites. Taylor & Francis.Montoya, J., & Negrete, J. (2023). CARACTERIZACIÓN DE LA FIBRA DEL PSEUDOTALLO DEL PLÁTANO COMO POTENCIAL REFUERZO PARA LA ELABORACIÓN DE MATERIALES. Universidad de Córdoba.Mumthas, A. C. S. I., Wickramasinghe, G. L. D., & Gunasekera, U. S. (2019). Effect of physical, chemical and biological extraction methods on the physical behaviour of banana pseudo-stem fibres: Based on fibres extracted from five common Sri Lankan cultivars. Journal of Engineered Fibers and Fabrics, 14, 1558925019865697. https://doi.org/10.1177/1558925019865697Neacșa, A., Diniță, A., & Iacob, Ștefan V. (2025). Can the Dimensional Optimisation of 3D FDM-Manufactured Parts Be a Solution for a Correct Design? Materials, 18(2), 408. https://doi.org/10.3390/ma18020408Nemecek, T., & Schnetzer, J. (2011). Methods of assessment of direct field emissions for LCIs of agricultural production systems.Neumann, D., Karl, M., Radtke, H., Matthias, V., Friedland, R., & Neumann, T. (2020). Quantifying the contribution of shipping NO x emissions to the marine nitrogen inventory – a case study for the western Baltic Sea. Ocean Science, 16(1), 115-134. https://doi.org/10.5194/os-16-115-2020Ngatia, L., M. Grace Iii, J., Moriasi, D., & Taylor, R. (2019). Nitrogen and Phosphorus Eutrophication in Marine Ecosystems. En H. Bachari Fouzia (Ed.), Monitoring of Marine Pollution. IntechOpen. https://doi.org/10.5772/intechopen.81869O’Donoughue, P. R., Heath, G. A., Dolan, S. L., & Vorum, M. (2014). Life Cycle Greenhouse Gas Emissions of Electricity Generated from Conventionally Produced Natural Gas: Systematic Review and Harmonization. Journal of Industrial Ecology, 18(1), 125-144. https://doi.org/10.1111/jiec.12084Orlandi, R., Pucciarelli, M., Ragni, G., Serra, A., & Fantozzi, F. (2024). A Carbon Footprint Comparison Through LCA of Forging vs. Wire Arc Additive Manufacturing (WAAM) Processes for the Internal Casing of a Gas Turbine. Volume 2: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels, V002T03A007. https://doi.org/10.1115/GT2024-123183Pan, X. (2011). Sulfur Oxides: Sources, Exposures and Health Effects. En Encyclopedia of Environmental Health (pp. 290-296). Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00069-6Parlak, M., Taş, İ., Görgişen, C., & Gökalp, Z. (2024). Spatial distribution and health risk assessment for heavy metals of the soils around coal-fired power plants of northwest Turkey. International Journal of Environmental Analytical Chemistry, 104(20), 9708-9722. https://doi.org/10.1080/03067319.2023.2243231Patel, B. Y., & Patel, H. K. (2022). Retting of banana pseudostem fibre using Bacillus strains to get excellent mechanical properties as biomaterial in textile & fiber industry. Heliyon, 8(9), e10652. https://doi.org/10.1016/j.heliyon.2022.e10652Paternina reyes, M. J. (2023). Caracterización química, física y mecánica de materiales compuestos con matriz de ácido poliláctico y refuerzo particulado de cáscaras de marañón elaborados a través de la técnica de moldeo por deposición fundida [Universidad de Córdoba]. https://repositorio.unicordoba.edu.co/server/api/core/bitstreams/2976b566-74a2-48d4-80c7-24736c2e8e6e/contentPaternina Reyes, M. J., Unfried Silgado, J., Santa Marín, J. F., Colorado Lopera, H. A., & Espitia Sanjuán, L. A. (2023). Cashew Nutshells: A Promising Filler for 3D Printing Filaments. Polymers, 15(22), 4347. https://doi.org/10.3390/polym15224347Pei, B. (2013). Field measurement for lead emission in the plumes of coal-fired power plants. Acta Sci. Circumstantiae, 33, 1697-1702.Pelletier, N., Allacker, K., Pant, R., & Manfredi, S. (2014). The European Commission Organisation Environmental Footprint method: Comparison with other methods, and rationales for key requirements. The International Journal of Life Cycle Assessment, 19(2), 387-404. https://doi.org/10.1007/s11367-013-0609-xPetousis, M., Vidakis, N., Mountakis, N., Karapidakis, E., & Moutsopoulou, A. (2023). Functionality Versus Sustainability for PLA in MEX 3D Printing: The Impact of Generic Process Control Factors on Flexural Response and Energy Efficiency. Polymers, 15(5), 1232. https://doi.org/10.3390/polym15051232Phiri, R., Mavinkere Rangappa, S., Siengchin, S., Oladijo, O. P., & Dhakal, H. N. (2023). Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research, 6(4), 436-450. https://doi.org/10.1016/j.aiepr.2023.04.004Plhalova, L., Stepanova, S., Praskova, E., Hostovsky, M., Skoric, M., & Bedanova, I. (2012). The effects of subchronic exposure to terbuthylazine on zebrafish. Neuroendocrinol Lett, 33(3), 113-119.Popescu, C., Dissanayake, H., Mansi, E., & Stancu, A. (2024). Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability, 16(23), 10790. https://doi.org/10.3390/su162310790Rahman, M. A., Haque, S., Rangarajalu, N. S., & Rajendran, D. R. (2024). Sustainability and Efficiency: The Green Potential of Additive Manufacturing. En S. Kunar, T. Jagadeesha, S. Rama Sree, K. V. S. R. Murthy, & M. Sreenivasa Reddy (Eds.), Advances in Additive Manufacturing (1.a ed., pp. 317-342). Wiley. https://doi.org/10.1002/9781394238316.ch18Raja S., Rusho, M. A., Thimothy, P., Bahar, M. A., Mustafa Egla Kadhim, Shwan, S. A., Jawad, Z. N., Mustafa, M. A., & Kumar, A. P. (2024). Minimizing environmental footprint in FDM additive manufacturing: Analyzing process efficiency through advanced optimization techniques. Applied Chemical Engineering, 7(4). https://doi.org/10.59429/ace.v7i4.5533Ramanujan, D., Bernstein, W. Z., Chandrasegaran, S. K., & Ramani, K. (2017). Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities. Journal of Mechanical Design, 139(11), 111415. https://doi.org/10.1115/1.4037479Raza, U., Ahmed, A., Waheed, S., Abid, M., Tahir, M., Zahid, A., Ahmed, A., Bilal, M., Hussain, T., & Mustafa, G. (2025). Recent Advancements in Fused Deposition Modeling. Polymers for Advanced Technologies, 36(1), e70028. https://doi.org/10.1002/pat.70028Rezvani Ghomi, E. R., Khosravi, F., Saedi Ardahaei, A. S., Dai, Y., Neisiany, R. E., Foroughi, F., Wu, M., Das, O., & Ramakrishna, S. (2021). The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854Riesch, R., Tobler, M., & Plath, M. (2015). Hydrogen Sulfide-Toxic Habitats. En R. Riesch, M. Tobler, & M. Plath (Eds.), Extremophile Fishes (pp. 137-159). Springer International Publishing. https://doi.org/10.1007/978-3-319-13362-1_7Rm, H. (2024). Design and Fabrication of Banana Fiber Reinforced Bio Composite. International Journal for Research in Applied Science and Engineering Technology, 12(5), 1902-1906. https://doi.org/10.22214/ijraset.2024.61961Rodríguez, L. J., Fabbri, S., Orrego, C. E., & Owsianiak, M. (2020). Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly(lactic acid) and banana fiber. Journal of Environmental Management, 266, 110493. https://doi.org/10.1016/j.jenvman.2020.110493Rodríguez, L. J., Ospina, S., Ribeiro, I., Peças, P., & Orrego, C. E. (2021). Banana fibre-biocomposite applied to bottle lid case—Life-cycle engineering model for material selection. International Journal of Sustainable Engineering, 14(5), 1181-1192. https://doi.org/10.1080/19397038.2021.1913531Rojek, I., Mikołajewski, D., Macko, M., Szczepański, Z., & Dostatni, E. (2021). Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development. Materials, 14(11), 2737. https://doi.org/10.3390/ma14112737Romani, A., Rognoli, V., & Levi, M. (2021). Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability, 13(13), 7269. https://doi.org/10.3390/su13137269Romero Rivero, O. (2023). Efecto de la variación del contenido y la orientación de fibra en las propiedades mecánicas de un compuesto termoplástico reforzado con fibra de plátano obtenido mediante fabricación por filamento fundido con impregnación in-situ. Universidad de Córdoba.Rybaczewska-Błażejowska, M., & Jezierski, D. (2024). Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: A case study based on the electricity consumption mix in Europe. The International Journal of Life Cycle Assessment, 29(10), 1799-1817. https://doi.org/10.1007/s11367-024-02326-6Sala, S., Biganzoli, F., Mengual, E. S., & Saouter, E. (2022). Toxicity impacts in the environmental footprint method: Calculation principles. The International Journal of Life Cycle Assessment, 27(4), 587-602. https://doi.org/10.1007/s11367-022-02033-0Sam-Daliri, O., Flanagan, T., Modi, V., Finnegan, W., Harrison, N., & Ghabezi, P. (2025). Composite upcycling: An experimental study on mechanical behaviour of injection moulded parts prepared from recycled material extrusion printed parts, previously prepared using glass fibre polypropylene composite industry waste. Journal of Cleaner Production, 499, 145280. https://doi.org/10.1016/j.jclepro.2025.145280Samuel, H. S., Ekpan, F.-D. M., & Ori, M. O. (2024). Biodegradable, Recyclable, and Renewable Polymers as Alternatives to Traditional Petroleum-based Plastics. Asian Journal of Environmental Research, 1(3), 152-165. https://doi.org/10.69930/ajer.v1i3.86Shahroodi, Z., Momeni, V., Moshkriz, A., Rajabifar, N., & Darvishi, R. (2025). Mechanical and Morphological Perspectives on PLA‐Based Thermoplastic Vulcanizates (TPVs): A Brief Review. Macromolecular Materials and Engineering, 310(2), 2400209. https://doi.org/10.1002/mame.202400209Sholokhova, A., Varžinskas, V., & Rutkaitė, R. (2024). Valorization of Agro-waste in Bio-based and Biodegradable Polymer Composites: A Comprehensive Review with Emphasis on Europe Perspective. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-024-02856-ySojo, A. (s. f.). Análisis de Ciclo de Vida: Análisis de inventario.Sola, A., Rosa, R., & Ferrari, A. M. (2024). Environmental Impact of Fused Filament Fabrication: What Is Known from Life Cycle Assessment? Polymers, 16(14), 1986. https://doi.org/10.3390/polym16141986Stara, A., Zuskova, E., Kouba, A., & Velisek, J. (2016). Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii). Science of The Total Environment, 566-567, 733-740. https://doi.org/10.1016/j.scitotenv.2016.05.113Subagyo, A., & Chafidz, A. (2020). Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications. En A. I. O. Jideani & T. A. Anyasi (Eds.), Banana Nutrition—Function and Processing Kinetics. IntechOpen. https://doi.org/10.5772/intechopen.82204Subramani, R., Ali Rusho, M., Sekhar, K. Ch., Mohammed, S. A., Abdulah, S. A., Hashim, R. D., Jawad, Z. N., Mustafa, M. A., & Kumar, A. P. (2024). Utilizing bio-energy and waste reduction techniques in FDM: Toward sustainable production practices. Applied Chemical Engineering, 7(4). https://doi.org/10.59429/ace.v7i4.5540Sudprasert, P., Ogino, K., & Kanehashi, S. (2022). Cashew Nut Shell Liquid (CNSL)-Derived Epoxy Composite Reinforced by Cellulose Nanofiber. Journal of Fiber Science and Technology, 78(10), 161-168. https://doi.org/10.2115/fiberst.2022-0020Sun, K., Song, Y., Zong, W., Tang, J., & Liu, R. (2020). Anthracene-induced DNA damage and oxidative stress: A combined study at molecular and cellular levels. Environmental Science and Pollution Research, 27(33), 41458-41474. https://doi.org/10.1007/s11356-020-10049-ySundarakannan, R., Arumugaprabu, V., Manikandan, V., & Vigneshwaran, S. (2020). Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix. Materials Research Express, 6(12), 125349. https://doi.org/10.1088/2053-1591/ab6197Suppen-Reynaga, N., Guerrero, A. B., Dominguez, E. R., Sacayón, E., & Solano, A. (2024). Life cycle assessment of bananas, melons, and watermelons from Costa Rica. Cleaner and Circular Bioeconomy, 9, 100120. https://doi.org/10.1016/j.clcb.2024.100120Takeda, T., Suzuki, M., Kano, H., Matsumoto, M., & Umeda, Y. (2023). Clear evidence of the carcinogenic potential of anthracene: A 2‐year feeding study in rats and mice. Environmental Toxicology, 38(4), 709-726. https://doi.org/10.1002/tox.23722Thorat, Y. V., Chavan, S. S., Mohite, D. D., & Pawar, U. S. (2024). Development of eco-friendly bio-composites using banana fibers for enhanced tensile and flexural properties. Materials Today: Proceedings, S2214785324002499. https://doi.org/10.1016/j.matpr.2024.04.061Turconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555-565. https://doi.org/10.1016/j.rser.2013.08.013(UPME), U. D. P. M. E. (2019). PLAN ENERGÉTICO NACIONAL 2020-2050. https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdfUrbaite, G. (2024). 3D Printing and Additive Manufacturing: Revolutionizing the Production Process. Luminis Applied Science and Engineering, 1(1), 73-83. https://doi.org/10.69760/lumin.202400001Val, S., & Lambán, M. P. (2025). Enhancing Sustainability with LCA: A Comparative Analysis of Design and Manufacturing Processes. Processes, 13(1), 195. https://doi.org/10.3390/pr13010195Veliz, K., Chico-Santamarta, L., & Ramirez, A. D. (2022). The Environmental Profile of Ecuadorian Export Banana: A Life Cycle Assessment. Foods, 11(20), 3288. https://doi.org/10.3390/foods11203288Vink, E. T. H., Rábago, K. R., Glassner, D. A., & Gruber, P. R. (2003a). Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5Walker, T. R. (2024). Consuming Plastics. En M. J. Hird, Consuming the Environment (1.a ed., pp. 105-117). Routledge. https://doi.org/10.4324/9781003412526-9Wang, S. (2011). Tellurium, its resourcefulness and recovery. JOM, 63(8), 90-93. https://doi.org/10.1007/s11837-011-0146-7Weligama Thuppahige, V. T., & Karim, M. A. (2022). A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Comprehensive Reviews in Food Science and Food Safety, 21(1), 689-718. https://doi.org/10.1111/1541-4337.12873Wu, J., Guan, Z., & Ling, Y. (2023). Arsenic Emission Control from Coal Combustion Flue Gas. En S. M. Imamul Huq (Ed.), Arsenic in the Environment—Sources, Impacts and Remedies. IntechOpen. https://doi.org/10.5772/intechopen.1002351Xia, Y., Gao, T., Liu, Y., Qi, M., Zhu, J.-M., Tong, H., Lv, Y., & Liu, C. (2025). Cd/Pb behavior during combustion in a coal-fired power plant and their spatiotemporal impacts on soils: New insights from Cd/Pb isotopes. Journal of Environmental Sciences, 150, 582-593. https://doi.org/10.1016/j.jes.2024.03.002Yadav, J., Singh, V. P., & Kumar, A. (2024). Life Cycle Assessment of sustainable building materials. En C. S. Meena, A. Kumar, V. P. Singh, & A. Ghosh, Sustainable Technologies for Energy Efficient Buildings (1.a ed., pp. 64-101). CRC Press. https://doi.org/10.1201/9781003496656-4Yaragatti, N., & Patnaik, A. (2021). A review on additive manufacturing of polymers composites. Materials Today: Proceedings, 44, 4150-4157. https://doi.org/10.1016/j.matpr.2020.10.490Zgodavová, K., Lengyelová, K., Bober, P., Eguren, J. A., & Moreno, A. (2021). 3D Printing Optimization for Environmental Sustainability: Experimenting with Materials of Protective Face Shield Frames. Materials, 14(21), 6595. https://doi.org/10.3390/ma14216595Zhao, C., Li, A., Zhang, G., Pan, Y., Meng, L., Yang, R., Li, Y., Zhang, Q., & Jiang, G. (2022). Parent and Halogenated Polycyclic Aromatic Hydrocarbons in the Serum of Coal-Fired Power Plant Workers: Levels, Sex Differences, Accumulation Trends, and Risks. Environmental Science & Technology, 56(17), 12431-12439. https://doi.org/10.1021/acs.est.2c03099Ziemińska-Stolarska, A., Sobulska, M., Pietrzak, M., & Zbiciński, I. (2024). Application of Life Cycle Assessment to Analysis of Fibre Composite Manufacturing Technologies in Shipyards Industry. Processes, 12(3), 461. https://doi.org/10.3390/pr12030461Živančević, K., Živanović, J., Baralić, K., Božić, D., Marić, Đ., Vukelić, D., Miljaković, E. A., Djordjevic, A. B., Ćurčić, M., Bulat, Z., Antonijević, B., & Đukić-Ćosić, D. (2024). Integrative investigation of hematotoxic effects induced by low doses of lead, cadmium, mercury and arsenic mixture: In vivo and in silico approach. Science of The Total Environment, 930, 172608. https://doi.org/10.1016/j.scitotenv.2024.172608Análisis de Ciclo de Vida (ACV)BiocompuestosImpresión 3DResiduos AgrícolasPLALife Cycle Assessment (LCA)Biocomposites3D PrintingAgricultural WastePLAPublicationORIGINALFernandezHoyosDaniel.pdfFernandezHoyosDaniel.pdfapplication/pdf2941029https://dspace8-unicordoba.metabuscador.org/bitstreams/f75a690c-6cba-4b58-b56f-584c5464b1a4/downloadb8d63e0abdd583acc7cffd0963e60cf8MD52trueAnonymousREADFormatodeautorización.pdfFormatodeautorización.pdfapplication/pdf540491https://dspace8-unicordoba.metabuscador.org/bitstreams/9d407adc-fcd5-4e5d-9b8f-619a1193a973/download8c0c0432fd4aba6870ee0dfde77dff10MD51falseLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://dspace8-unicordoba.metabuscador.org/bitstreams/1bf7acc0-b8d8-4e37-b96c-a9febe0a56d7/download73a5432e0b76442b22b026844140d683MD53falseAnonymousREADTEXTFernandezHoyosDaniel.pdf.txtFernandezHoyosDaniel.pdf.txtExtracted texttext/plain101848https://dspace8-unicordoba.metabuscador.org/bitstreams/9f559fbe-e02c-4f30-9cd4-408596098eda/download7398beeddc0cca405c05790122f9938aMD54falseAnonymousREADFormatodeautorización.pdf.txtFormatodeautorización.pdf.txtExtracted texttext/plain4245https://dspace8-unicordoba.metabuscador.org/bitstreams/673d517f-2b21-4c32-ab7d-ee907ceaa6c2/downloadc6d8584d3b9b5ca298e40a906834b212MD56falseTHUMBNAILFernandezHoyosDaniel.pdf.jpgFernandezHoyosDaniel.pdf.jpgGenerated Thumbnailimage/jpeg9119https://dspace8-unicordoba.metabuscador.org/bitstreams/37fa7a86-0707-4407-a4b7-bce597b1528f/downloadfb476296b3e48c934c02fceaf059261aMD55falseAnonymousREADFormatodeautorización.pdf.jpgFormatodeautorización.pdf.jpgGenerated Thumbnailimage/jpeg14923https://dspace8-unicordoba.metabuscador.org/bitstreams/929b511c-fb28-44b2-91f4-17a6f2c514c3/download45661f7eb64b255f378f4f1c7cc04419MD57falseucordoba/9314oai:dspace8-unicordoba.metabuscador.org:ucordoba/93142025-07-15 03:00:34.33https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025open.accesshttps://dspace8-unicordoba.metabuscador.orgRepositorio institucional Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |
