Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos

A pesar de la gran biodiversidad íctica colombiana, la piscicultura se limita a pocas especies, de las cuales gran parte son especies introducidas que podrían perturbar los ambientes naturales. Por tanto, es importante la diversificación con especies nativas, mediante el desarrollo de tecnologías de...

Full description

Autores:
Alarcón Martínez, Luis Fernando
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9228
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9228
https://repositorio.unicordoba.edu.co
Palabra clave:
Artemia
Alevinaje
Conservación
Alimentos vivos
Piscicultura
Artemia
Conservation
Fry
Food live
Fish culture
Rights
embargoedAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_1fe920a88c1c189070886e630156b8ed
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9228
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos
title Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos
spellingShingle Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos
Artemia
Alevinaje
Conservación
Alimentos vivos
Piscicultura
Artemia
Conservation
Fry
Food live
Fish culture
title_short Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos
title_full Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos
title_fullStr Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos
title_full_unstemmed Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos
title_sort Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos
dc.creator.fl_str_mv Alarcón Martínez, Luis Fernando
dc.contributor.advisor.none.fl_str_mv Atencio García, Víctor Julio
Madariaga Mendoza, Diana Luz
dc.contributor.author.none.fl_str_mv Alarcón Martínez, Luis Fernando
dc.contributor.jury.none.fl_str_mv Fernánadez Méndez, Christian Jesús
Ramírez Merlano, Juan Antonio
dc.subject.proposal.none.fl_str_mv Artemia
Alevinaje
Conservación
Alimentos vivos
Piscicultura
topic Artemia
Alevinaje
Conservación
Alimentos vivos
Piscicultura
Artemia
Conservation
Fry
Food live
Fish culture
dc.subject.keywords.none.fl_str_mv Artemia
Conservation
Fry
Food live
Fish culture
description A pesar de la gran biodiversidad íctica colombiana, la piscicultura se limita a pocas especies, de las cuales gran parte son especies introducidas que podrían perturbar los ambientes naturales. Por tanto, es importante la diversificación con especies nativas, mediante el desarrollo de tecnologías de producción sostenibles. El P. atricaudus es un Siluriforme que cuenta con características aprovechables para diversificar la piscicultura continental colombiana; además, es una especie que forma parte de la seguridad alimentaria de las poblaciones aledañas en el Bajo río Cauca. La larvicultura es una etapa crítica en la producción piscícola, en la que se viabilizan las larvas mediante un manejo adecuado de las condiciones y la alimentación, que garanticen mayores porcentajes de sobrevivencia e incrementen las posibilidades de éxito en las etapas posteriores del ciclo productivo de una especie. Este estudio tuvo como objetivo evaluar cuatro tipos de alimentos en la larvicultura de P. atricaudus. El experimento se desarrolló en el Instituto de Investigaciones Piscícolas de la Universidad de Córdoba (CINPIC) mediante dos ensayos. En el primer ensayo (manejo de la primera alimentación), se utilizaron 1200 larvas vitelínicas, distribuidas en 12 acuarios de 5 L de volumen útil (20 larvas/L). Durante diez días, fueron alimentadas con cuatro tipos de alimentos al inicio de la alimentación exógena: nauplios de Artemia (NA), zooplancton silvestre <400 µm (ZS<400 µm), zooplancton silvestre >400 µm (ZS>400 µm) y cistos de Artemia descapsulados (CA), todos suministrados a razón de 10 presas/mL. Posteriormente, se realizó un ensayo de alevinaje (ensayo 2), en el cual se evaluó el efecto de la primera alimentación en el alevinaje durante 23 días, con las dos mejores presas del ensayo anterior (NA y ZS>400 µm). Se manejó una densidad de 50 individuos/m3, realizándose una transición de tres días a dieta seca con 38.0% de proteína bruta. Se caracterizaron morfológicamente las larvas al inicio de la alimentación exógena mediante análisis merístico y morfométrico, se analizaron histológicamente los pliegues intestinales y se evaluó el desempeño zootécnico en ambos ensayos. Los resultados sugieren que P. atricaudus inicia la alimentación exógena a las 30 horas post-eclosión, con un ancho máximo de la abertura bucal de 611.4±11.7 µm, una longitud total de 5.2±0.01 mm y un peso total de 1.5±0.02 mg. En el primer ensayo, las mayores ganancias en longitud (13.7±0.2 mm) y peso (94.6±1.8 mg) se registraron en las larvas alimentadas con ZS>400 µm (p<0.05). Asimismo, este tratamiento presentó la mayor sobrevivencia (91.2±2.2%), con diferencias significativas respecto a NA (73.2±2.5%) y CA (47.0±8.7%). Al evaluar la influencia de la primera alimentación en el alevinaje, los individuos del tratamiento NA mostraron el mejor crecimiento (p<0.05), mientras que la sobrevivencia y resistencia al estrés no mostraron diferencias significativas (NA y ZS>400 µm; p>0.05). Los resultados del presente estudio sugieren que el manejo de la primera alimentación de P. atricaudus es posible con zooplancton silvestre mayor de 400 µm o con nauplios de Artemia, produciendo juveniles de buena calidad en la fase de alevinaje.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-27T21:17:13Z
dc.date.available.none.fl_str_mv 2025-06-27T21:17:13Z
2026-06-27
dc.date.issued.none.fl_str_mv 2025-06-27
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9228
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Institucional Unicórdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9228
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Institucional Unicórdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Adriaens, D., Aerts, P., & Verraes, W. (2001). Ontogenetic shift in mouth opening mechanisms in a catfish (Clariidae, Siluriformes): A response to increasing functional demands. Journal of Morphology, 247(3), 197–216. https://doi.org/10.1002/1097-4687(200103)247:3<197::AID-JMOR1012>3.0.CO;2-S
Ahmad, A. L., Chin, J. Y., Mohd Harun, M. H. Z., & Low, S. C. (2022). Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. Journal of Water Process Engineering, 46, 102553. https://doi.org/10.1016/j.jwpe.2021.102553
Arashiro, D. R., Yasui, G. S., Calado, L. L., Do Nascimento, N. F., Alves do Santos, S. C., Shiguemoto, G. F., Monzani, P. S., & Senhorini, J. A. (2020). Capturing, induced spawning, and first feeding of wild-caught Pseudopimelodus mangurus, an endangered catfish species. Latin American Journal of Aquatic Research, 48(3), 440–445. https://doi.org/10.3856/vol48-issue3-fulltext-2357
Araújo, F. G., & Rosa, P. V. (2017). Docosahexaenoic acid (C22:6n-3) alters cortisol response after air exposure in Prochilodus lineatus (Valenciennes) larvae fed on enriched Artemia. Aquaculture Nutrition, 23(6), 1216–1224. https://doi.org/10.1111/anu.12490
Arevalo, E., Cabral, H. N., Villeneuve, B., Possémé, C., & Lepage, M. (2023). Fish larvae dynamics in temperate estuaries: A review on processes, patterns and factors that determine recruitment. Fish and Fisheries, 24(3), 466–487. https://doi.org/10.1111/faf.12740
Atencio-Garcia, V., Garcia Arteaga, Y., Pérez morales, J., Pardo-Carrasco, S., & Prieto-Guevara, M. (2016). EFECTO DE LA DENSIDAD DE SIEMBRA EN EL MANEJO DE LA PRIMERA ALIMENTACIÓN DE LARVAS DE BAGRE BLANCO Sorubim cuspicaudus. Sabia, 1(3), 32–45.
Atencio-García, V. J., Kerguelén, E., Wadnipar, L., & Narváez, A. (2003). Manejo de la primera alimentación de bocachico (Prochilodus magdalenae). Revista MVZ Córdoba, 8(1), 254–260.
Atencio-García, V., Padilla-Izquierdo, D., Robles-González, J., Prieto-Guevara, M., Pardo-Carrasco, S., & Espinosa-Araujo, J. (2023). Damage to Sorubim cuspicaudus Sperm Cryopreserved with Ethylene Glycol. Animals, 13(2), 235. https://doi.org/10.3390/ani13020235
Azfar Ismail, M., Kamarudin, M. S., Syukri, F., Nur Ain, S., & Latif, K. (2019). Changes in the mouth morpho-histology of hybrid Malaysian mahseer (Barbonymus gonionotus ♀ × Tor tambroides ♂) during the larval development. Aquaculture Reports, 15, 100210. https://doi.org/10.1016/j.aqrep.2019.100210
Azra, M. N., Noor, M. I. M., Burlakovs, J., Abdullah, M. F., Abd Latif, Z., & Yik Sung, Y. (2022). Trends and New Developments in Artemia Research. Animals, 12(18), 2321. https://doi.org/10.3390/ani12182321
Beerli, E. L. (2002). Alimentacao e comportamento de Pós-Larvas de Pacú [Mestrado]. Universidade Federal de Lavras.
Benini, E., Engrola, S., Politis, S. N., Sørensen, S. R., Nielsen, A., Conceição, L. E. C., Santos, A., & Tomkiewicz, J. (2022). Transition from endogenous to exogenous feeding in hatchery-cultured European eel larvae. Aquaculture Reports, 24, 101159. https://doi.org/10.1016/j.aqrep.2022.101159
Budi, D. S., Priyadi, A., Permana, A., Herjayanto, Muh., Slembrouck, J., Mubarak, A. S., & Mustofa, I. (2024). Sustainable captive breeding practices for native Indonesian freshwater fish. Animal Reproduction Science, 271, 107623. https://doi.org/10.1016/j.anireprosci.2024.107623
Carrera-Quintana, S. C., Gentile, P., & Girón-Hernández, J. (2022). An overview on the aquaculture development in Colombia: Current status, opportunities and challenges. Aquaculture, 561, 738583. https://doi.org/10.1016/j.aquaculture.2022.738583
Carter, J. E., Sporre, M. A., & Eytan, R. I. (2022). Larviculture, allometric growth patterns, and gape morphology of the Florida blenny, Chasmodes saburrae. Aquaculture, 554, 738153. https://doi.org/10.1016/j.aquaculture.2022.738153
DANE. (2021). ACUICULTURA EN COLOMBIA Cadena de la Acuicultura.
DoNascimiento, C., Herrera-Collazos, E. E., Herrera-R., G. A., Ortega-Lara, A., Villa-Navarro, F. A., Usma Oviedo, J. S., & Maldonado-Ocampo, J. A. (2017). Checklist of the freshwater fishes of Colombia: a Darwin Core alternative to the updating problem. ZooKeys, 708, 25–138. https://doi.org/10.3897/zookeys.708.13897
Duarte, L., García, E., Tejada, K., Cuello, F., Gil-Manrique, B., De León, G., Curiel, J., Cuervo, C., Vargas, O., Isaza, E., Manjarrés-Martínez, L., & Reyes-Ardila, H. (2022). Estadísticas de desembarco y esfuerzo de las pesquerías artesanales de Colombia - Enero a Octubre del 2022.
FAO. (2024). El estado mundial de la pesca y la acuicultura 2024. La transformación azul en acción. (FAO, Ed.). FAO. https://doi.org/10.4060/cd0683es
Fricke, R., Eschmeyer, W., & Fong, J. D. (2023, October 2). Eschmeyer´s Catalog of Fishes. Genera/Species by Family/Subfamily In.
Frisch, D., Lejeusne, C., Hayashi, M., Bidwell, M. T., Sánchez‐Fontenla, J., & Green, A. J. (2021). Brine chemistry matters: Isolation by environment and by distance explain population genetic structure of Artemia franciscana in saline lakes. Freshwater Biology, 66(8), 1546–1559. https://doi.org/10.1111/fwb.13737
Froehlich, H. E., Gentry, R. R., & Halpern, B. S. (2017). Conservation aquaculture: Shifting the narrative and paradigm of aquaculture’s role in resource management. Biological Conservation, 215, 162–168. https://doi.org/10.1016/j.biocon.2017.09.012
Gaspar, W., Niño, A., Alejos, R., & Ynga, G. (2021). MANUAL PARA LA PRODUCCIÓN DE Artemia franciscana COMO ALIMENTO PARA LARVAS Y JUVENILES DE PECES (1st ed., Vol. 48). Instituto del Mar del Perú. https://hdl.handle.net/20.500.12958/3521
Giacomini, H. C., Shuter, B. J., & Lester, N. P. (2013). Predator bioenergetics and the prey size spectrum: Do foraging costs determine fish production? Journal of Theoretical Biology, 332, 249–260. https://doi.org/10.1016/j.jtbi.2013.05.004
Giebichenstein, J., Giebichenstein, J., Hasler, M., Schulz, C., & Ueberschär, B. (2022). Comparing the performance of four commercial microdiets in an early weaning protocol for European seabass larvae ( Dicentrarchus labrax ). Aquaculture Research, 53(2), 544–558. https://doi.org/10.1111/are.15598
Gisbert, E., Luz, R. K., Fernández, I., Pradhan, P. K., Salhi, M., Mozanzadeh, M. T., Kumar, A., Kotzamanis, Y., Castro‐Ruiz, D., Bessonart, M., & Darias, M. J. (2022). Development, nutrition, and rearing practices of relevant catfish species (Siluriformes) at early stages. Reviews in Aquaculture, 14(1), 73–105. https://doi.org/10.1111/raq.12586
Hamre, K., Yúfera, M., Rønnestad, I., Boglione, C., Conceição, L. E. C., & Izquierdo, M. (2013). Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Reviews in Aquaculture, 5(s1). https://doi.org/10.1111/j.1753-5131.2012.01086.x
Henry, J., Bai, Y., Williams, D., Logozzo, A., Ford, A., & Wlodkowic, D. (2022). Impact of test chamber design on spontaneous behavioral responses of model crustacean zooplankton Artemia franciscana. Lab Animal, 51(3), 81–88. https://doi.org/10.1038/s41684-021-00908-7
Herrera-Cruz, E., Vásquez-Machado, G., Estrada-Posada, A., Pardo-Camacho, K. I., Atencio-García, V., & Yepes-Blandón, J. A. (2023). Use of probiotics in the catfish Sorubim cuspicaudus larviculture. Revista Colombiana de Biotecnología, 25(2), 50–61. https://doi.org/10.15446/rev.colomb.biote.v25n2.110786
Ismi, S., & Budi, D. S. (2022). Some Hatchery Parameters of Three Species of Groupers: Tiger Grouper (Epinephelus fuscoguttatus), Humpback Grouper (Cromileptes altivelis), and Leopard Coral Grouper (Plectropomus leopardus). HAYATI Journal of Biosciences, 29(6), 762–770. https://doi.org/10.4308/hjb.29.6.762-770
Jiménez-Velásquez, C., Atencio-Garcia, V., Ayazo-Genes, J. E., Espinosa-Araujo, J., & Prieto-Guevara, M. (2021). Management of the First Feeding of Dorada Brycon sinuensis with Two Species of Cladocerans. Applied Sciences, 11(20), 9379. https://doi.org/10.3390/app11209379
Jomori, R. K., Carneiro, D. J., Malheiros, E. B., & Portella, M. C. (2003). Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture, 221(1–4), 277–287. https://doi.org/10.1016/S0044-8486(03)00069-3
Jomori, R. K., Luz, R. K., & Célia Portella, M. (2012). Effect of Salinity on Larval Rearing of Pacu, Piaractus mesopotamicus, a Freshwater Species. Journal of the World Aquaculture Society, 43(3), 423–432. https://doi.org/10.1111/j.1749-7345.2012.00570.x
Joshua, W. J., Kamarudin, M. S., Ikhsan, N., Md Yusoff, F., & Zulperi, Z. (2022). Development of enriched Artemia and Moina in larviculture of fish and crustaceans: a review. Latin American Journal of Aquatic Research, 50(2), 144–157. https://doi.org/10.3856/vol50-issue2-fulltext-2840
Karlsen, Ø., van der Meeren, T., Rønnestad, I., Mangor-Jensen, A., Galloway, T. F., Kjørsvik, E., & Hamre, K. (2015). Copepods enhance nutritional status, growth and development in Atlantic cod (Gadus morhua L.) larvae — can we identify the underlying factors? PeerJ, 3, e902. https://doi.org/10.7717/peerj.902
Kong, Y., Li, M., Chu, G., Liu, H., Shan, X., Wang, G., & Han, G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531, 735852. https://doi.org/10.1016/j.aquaculture.2020.735852
Kotani, T., Yokota, M., Fushimi, H., & Watanabe, S. (2011). How to determine the appropriate mortality in experimental larval rearing? Fisheries Science, 77(2), 255–261. https://doi.org/10.1007/s12562-011-0329-8
Kupren, K., Palińska‐Żarska, K., Krejszeff, S., & Żarski, D. (2019). Early development and allometric growth in hatchery‐reared Eurasian perch, Perca fluviatilis L. Aquaculture Research, 50(9), 2528–2536. https://doi.org/10.1111/are.14208
Lahnsteiner, F., Lahnsteiner, E., & Duenser, A. (2023). Suitability of Different Live Feed for First Feeding of Freshwater Fish Larvae. Aquaculture Journal, 3(2), 107–120. https://doi.org/10.3390/aquacj3020010
Lavens, P., & Sorgeloos, P. (2000). The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture, 181(3–4), 397–403. https://doi.org/10.1016/S0044-8486(99)00233-1
Le, T. H., Hoa, N. Van, Sorgeloos, P., & Van Stappen, G. (2019). Artemia feeds: a review of brine shrimp production in the Mekong Delta, Vietnam. Reviews in Aquaculture, 11(4), 1169–1175. https://doi.org/10.1111/raq.12285
Lefevre, S., Wang, T., Jensen, A., Cong, N. V., Huong, D. T. T., Phuong, N. T., & Bayley, M. (2014). Air‐breathing fishes in aquaculture. What can we learn from physiology? Journal of Fish Biology, 84(3), 705–731. https://doi.org/10.1111/jfb.12302
Leis, J. M., & Trnski, T. (1989). The larvae of Indo-Pacific shorefishes. New South Wales University Press. https://nla.gov.au/nla.cat-vn2412534
Ljubobratović, U., Fazekas, G., Koljukaj, A., Ristović, T., Vass, V., Ardó, L., Stanisavljević, N., Vukotić, G., Pešić, M., Milinčić, D., Kostić, A., & Lukić, J. (2021). Pike-perch larvae growth in response to administration of lactobacilli-enriched inert feed during first feeding. Aquaculture, 542, 736901. https://doi.org/10.1016/j.aquaculture.2021.736901
López-López, V. V., Rodríguez M. de O., G. A., Galavíz, M. A., Román Reyes, C., Dabrowski, K., Haws, M. C., & Medina-Hernández, E. A. (2017). Comparative histological description of the digestive and visual system development of larval chame Dormitator latifrons (Pisces: Eleotridae). Latin American Journal of Aquatic Research, 43(3), 484–494. https://doi.org/10.3856/vol43-issue3-fulltext-10
Madkour, K., Dawood, M. A. O., & Sewilam, H. (2023). The Use of Artemia for Aquaculture Industry: An Updated Overview. Annals of Animal Science, 23(1), 3–10. https://doi.org/10.2478/aoas-2022-0041
Manickam, N., Bhavan, P. S., Santhanam, P., & Muralisankar, T. (2020). Influence of wild mixed zooplankton on growth and muscle biochemical composition of the freshwater prawn Macrobrachium rosenbergii post larvae. Aquaculture, 522, 735110. https://doi.org/10.1016/j.aquaculture.2020.735110
Melaku, S., Geremew, A., Getahun, A., Mengestou, S., & Belay, A. (2024). Challenges and prospects of using live feed substitutes for larval fish. Fisheries and Aquatic Sciences, 27(8), 475–487. https://doi.org/10.47853/FAS.2024.e45
Miladinov, G. (2023). Impacts of population growth and economic development on food security in low-income and middle-income countries. Frontiers in Human Dynamics, 5. https://doi.org/10.3389/fhumd.2023.1121662
Mischke, C. C., Wise, D. J., & Byars, T. S. (2009). Evaluation of Zooplankton in Hatchery Diets for Channel Catfish Fry. North American Journal of Aquaculture, 71(4), 312–314. https://doi.org/10.1577/A08-029.1
Mokhtar, D. M., & Hassan AH, E. (2015). Light and Scanning Electron Microscopic Studies on the Intestine of Grass Carp (Ctenopharyngodon idella): I-Anterior Intestine. Journal of Aquaculture Research & Development, 6(11). https://doi.org/10.4172/2155-9546.1000374
Mozanzadeh, M. T., Bahabadi, M. N., Morshedi, V., Azodi, M., Agh, N., & Gisbert, E. (2021). Weaning strategies affect larval performance in yellowfin seabream (Acanthopagrus latus). Aquaculture, 539, 736673. https://doi.org/10.1016/j.aquaculture.2021.736673
Nakatani, K., Agostinho, A., Baumgartner, G., Bialetski, A., Vanderlei, P., Cavicchioli, M., & Pavanelli, C. (2001). Ovos e larvas de peixes de água doce, desenvolvimento e manual de indendifición. Universidade Estadual de Maringá, NUPELIA, Electrobrás
Nyang’ate Onura, C., Van den Broeck, W., Nevejan, N., Muendo, P., & Van Stappen, G. (2018). Growth performance and intestinal morphology of African catfish (Clarias gariepinus, Burchell, 1822) larvae fed on live and dry feeds. Aquaculture, 489, 70–79. https://doi.org/10.1016/j.aquaculture.2018.01.046
Parparov, A. (2010). Water Quality Assessment, Trophic Classification and Water Resources Management. Journal of Water Resource and Protection, 02(10), 907–915. https://doi.org/10.4236/jwarp.2010.210108
Peng, D., Liang, X.-F., Wang, Y., & Tang, S. (2023). Introduction of Artemia nauplii during Chinese perch (Siniperca chuatsi) first feeding: Effects on larvae growth, survival, gene expression and activity of critical digestive enzymes. Aquaculture, 573, 739619. https://doi.org/10.1016/j.aquaculture.2023.739619
Pepe-Victoriano, R., Miranda, L., Ortega, A., & Merino, G. E. (2021). Descriptive morphology and allometric growth of the larval development of Sarda chiliensis chiliensis (Cuvier, 1832) in a hatchery in northern Chile. Aquaculture Reports, 19, 100576. https://doi.org/10.1016/j.aqrep.2020.100576
Pepin, P. (2024). Foraging by larval fish: a full stomach is indicative of high performance but random encounters with prey are also important. ICES Journal of Marine Science, 81(4), 790–806. https://doi.org/10.1093/icesjms/fsae037
Pham-Huy, C., & Pham Huy, B. (2022). Food and Lifestyle in Health and Disease. CRC Press. https://doi.org/10.1201/9781003220817
Pradhan, P. K., Jena, J., Mitra, G., Sood, N., & Gisbert, E. (2014). Effects of different weaning strategies on survival, growth and digestive system development in butter catfish Ompok bimaculatus (Bloch) larvae. Aquaculture, 424–425, 120–130. https://doi.org/10.1016/j.aquaculture.2013.12.041
Prieto, M. J., Logato, P. V. R., Moraes, G. F. de, Okamura, D., & Araújo, F. G. de. (2006). Tipo de alimento, sobrevivência e desempenho inicial de pós-larvas de pacu (Piaractus mesopotamicus). Ciência e Agrotecnologia, 30(5), 1002–1007. https://doi.org/10.1590/S1413-70542006000500026
Prieto-Guevara, M., Hernández B, J., Gómez R, C., Pardo C, S., Atencio-García, V., & Rosa, P. V. (2013). Efecto de tres tipos de presas vivas en la larvicultura de bagre blanco (Sorubim cuspicaudus). Revista MVZ Córdoba, 18(3), 3790–3798. https://doi.org/10.21897/rmvz.149
Prieto-Guevara-Martha, & Atencio-García, V. (2008). Zooplancton en la larvicultura de peces neotropicales. Revista MVZ Córdoba, 13(2). https://doi.org/10.21897/rmvz.401
Rajabi, S., Ramazani, A., Hamidi, M., & Naji, T. (2015). Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU Journal of Pharmaceutical Sciences, 23(1), 20. https://doi.org/10.1186/s40199-015-0105-x
Ramírez-Merlano, J. A., Otero-Paternina, A. M., Corredor-Santamaría, W., Medina-Robles, V. M., Cruz-Casallas, P. E., & Velasco-Santamaría, Y. M. (2010). Utilización de organismos vivos como primera alimentación de larvas de yaque (Leiarius marmoratus) bajo condiciones de laboratorio. Orinoquia, 14(1), 45–58.
Restrepo-Gómez, A. M., Rangel-Medrano, J. D., Márquez, E. J., & Ortega-Lara, A. (2020). Two new species of Pseudopimelodus Bleeker, 1858 (Siluriformes: Pseudopimelodidae) from the Magdalena Basin, Colombia. PeerJ, 8, e9723. https://doi.org/10.7717/peerj.9723
Rivas-Lara, T. S., Gómez-Vanega, H. D., Palacios-Valdés, J., Rentería-Cuesta, V. M., & Lozano-Rentería, L. (2019). Estudio biológico y pesquero de Pseudopimelodus schultzi (Dahl, 1955) en la cuenca media y baja del río Atrato, Chocó. Biodiversidad Neotropical, 9(1), 1–13. https://doi.org/10.18636/bioneotropical.v9i1.544
Rocha, G. S., Katan, T., Parrish, C. C., & Kurt Gamperl, A. (2017). Effects of wild zooplankton versus enriched rotifers and Artemia on the biochemical composition of Atlantic cod (Gadus morhua) larvae. Aquaculture, 479, 100–113. https://doi.org/10.1016/j.aquaculture.2017.05.025
Rønnestad, I., Yúfera, M., Ueberschär, B., Ribeiro, L., Sæle, Ø., & Boglione, C. (2013). Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Reviews in Aquaculture, 5(s1). https://doi.org/10.1111/raq.12010
Samat, N. A., Yusoff, F. M., Rasdi, N. W., & Karim, M. (2020). Enhancement of Live Food Nutritional Status with Essential Nutrients for Improving Aquatic Animal Health: A Review. Animals, 10(12), 2457. https://doi.org/10.3390/ani10122457
Sewaka, M., Trullas, C., Chotiko, A., Rodkhum, C., Chansue, N., Boonanuntanasarn, S., & Pirarat, N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish & Shellfish Immunology, 86, 260–268. https://doi.org/10.1016/j.fsi.2018.11.026
Shiguemoto, G. F., Arashiro, D. R., Levy-Pereira, N., Santos, S. C. A., Senhorini, J. A., Monzani, P. S., & Yasui, G. S. (2021). Domestication strategies for the endangered catfish species Pseudopimelodus mangurus Valenciennes, 1835 (Siluriformes: Pseudopimelodidae). Brazilian Journal of Biology, 81(2), 301–308. https://doi.org/10.1590/1519-6984.224913
Shirota, A. (1970). Studies on the mouth size of fish larvae. Nippon Suisan Gakkaishi, 36(353–368).
Shishanov, G. A., & Lippo, I. E. (2024). Decapsulation of artemia cysts (Artemia sp.) using different versions of sodium hypochlorite solutions (NaOCL). Rybovodstvo i Rybnoe Hozjajstvo (Fish Breeding and Fisheries), 11, 803–811. https://doi.org/10.33920/sel-09-2411-05
Syafariyah, N. K., Sulmartiwi, L., & Budi, D. S. (2023). Incubation temperature effects on some hatching parameters of silver rasbora (Rasbora argyrotaenia) egg. Journal of Applied Aquaculture, 35(1), 16–26. https://doi.org/10.1080/10454438.2021.1928580
Vadstein, O., Attramadal, K. J. K., Bakke, I., & Olsen, Y. (2018). K-Selection as Microbial Community Management Strategy: A Method for Improved Viability of Larvae in Aquaculture. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02730
Valbuena, R., Zapata-Berruecos, B., & Otero-Paternina, A. (2013). Evaluación de la primera alimentación en larvas de capaz Pimelodus grosskopfii bajo condiciones de laboratorio. Revista MVZ Córdoba, 18(2), 3518–3524. https://doi.org/10.21897/rmvz.176
Wang, P., Chen, S., Chen, Z., Huo, W., Huang, R., Huang, W., Peng, J., & Yang, X. (2019). Benefit–risk assessment of commonly consumed fish species from South China Sea based on methyl mercury and DHA. Environmental Geochemistry and Health, 41(5), 2055–2066. https://doi.org/10.1007/s10653-019-00254-1
Wijayanti, G. E., Setyawan, P., & Kurniawati, I. D. (2017). A SIMPLE PARAFFIN EMBEDDED PROTOCOL FOR FISH EGG, EMBRYO, AND LARVAE. Scripta Biologica, 4(2), 85. https://doi.org/10.20884/1.sb.2017.4.2.420
Wittenrich, M. L., & Turingan, R. G. (2011). Linking functional morphology and feeding performance in larvae of two coral-reef fishes. Environmental Biology of Fishes, 92(3), 295–312. https://doi.org/10.1007/s10641-011-9840-0
Zhang, Y., Lu, R., Qin, C., & Nie, G. (2020). Precision nutritional regulation and aquaculture. Aquaculture Reports, 18, 100496. https://doi.org/10.1016/j.aqrep.2020.100496
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Medicina Veterinaria y Zootecnia
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Maestría en Acuicultura Tropical
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/443bc8ad-d86e-4e38-98b1-e9dac2f62311/download
https://repositorio.unicordoba.edu.co/bitstreams/0f03ac4f-95e2-4548-9e62-f872e5f2d4c0/download
https://repositorio.unicordoba.edu.co/bitstreams/4f5041f7-3e45-436d-94ab-424ab66575c3/download
https://repositorio.unicordoba.edu.co/bitstreams/6ebf1a38-cecc-4d06-887a-d533c8a6e711/download
https://repositorio.unicordoba.edu.co/bitstreams/be870982-8fda-44a2-9926-7ba520e50a2d/download
https://repositorio.unicordoba.edu.co/bitstreams/7b87aeb9-8129-470c-b391-1858bfe627cb/download
https://repositorio.unicordoba.edu.co/bitstreams/1db14029-d142-4964-9123-75455ae88ca7/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
f02c60d686c8953ee4d2ab568c9b81a0
f505e99dee3da043a8a3794e049205cd
8829779fe6c2836abcec77494ed66f4e
c7c21867603a4b753864474e7bfd3289
0710e6a679b3d3ccb31f4456985631b9
15e5fd61a5b135fc0f8e3b29323d035c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636117023883264
spelling Atencio García, Víctor Julio2a6da80d-2a7e-431d-8b91-e9ea69d8b9f7-1Madariaga Mendoza, Diana Luzc349da50-3b16-4db6-a3b6-330d78ae9053-1Alarcón Martínez, Luis Fernandod4caf221-4419-46b9-b443-60a8e5a3d9ce-1Fernánadez Méndez, Christian Jesúsefc6bff9-c04d-411b-b0ae-5f1c4d16fe60-1Ramírez Merlano, Juan Antonio761b0e38-387e-4112-9158-c3611e2636f8-12025-06-27T21:17:13Z2026-06-272025-06-27T21:17:13Z2025-06-27https://repositorio.unicordoba.edu.co/handle/ucordoba/9228Universidad de CórdobaRepositorio Institucional Unicórdobahttps://repositorio.unicordoba.edu.coA pesar de la gran biodiversidad íctica colombiana, la piscicultura se limita a pocas especies, de las cuales gran parte son especies introducidas que podrían perturbar los ambientes naturales. Por tanto, es importante la diversificación con especies nativas, mediante el desarrollo de tecnologías de producción sostenibles. El P. atricaudus es un Siluriforme que cuenta con características aprovechables para diversificar la piscicultura continental colombiana; además, es una especie que forma parte de la seguridad alimentaria de las poblaciones aledañas en el Bajo río Cauca. La larvicultura es una etapa crítica en la producción piscícola, en la que se viabilizan las larvas mediante un manejo adecuado de las condiciones y la alimentación, que garanticen mayores porcentajes de sobrevivencia e incrementen las posibilidades de éxito en las etapas posteriores del ciclo productivo de una especie. Este estudio tuvo como objetivo evaluar cuatro tipos de alimentos en la larvicultura de P. atricaudus. El experimento se desarrolló en el Instituto de Investigaciones Piscícolas de la Universidad de Córdoba (CINPIC) mediante dos ensayos. En el primer ensayo (manejo de la primera alimentación), se utilizaron 1200 larvas vitelínicas, distribuidas en 12 acuarios de 5 L de volumen útil (20 larvas/L). Durante diez días, fueron alimentadas con cuatro tipos de alimentos al inicio de la alimentación exógena: nauplios de Artemia (NA), zooplancton silvestre <400 µm (ZS<400 µm), zooplancton silvestre >400 µm (ZS>400 µm) y cistos de Artemia descapsulados (CA), todos suministrados a razón de 10 presas/mL. Posteriormente, se realizó un ensayo de alevinaje (ensayo 2), en el cual se evaluó el efecto de la primera alimentación en el alevinaje durante 23 días, con las dos mejores presas del ensayo anterior (NA y ZS>400 µm). Se manejó una densidad de 50 individuos/m3, realizándose una transición de tres días a dieta seca con 38.0% de proteína bruta. Se caracterizaron morfológicamente las larvas al inicio de la alimentación exógena mediante análisis merístico y morfométrico, se analizaron histológicamente los pliegues intestinales y se evaluó el desempeño zootécnico en ambos ensayos. Los resultados sugieren que P. atricaudus inicia la alimentación exógena a las 30 horas post-eclosión, con un ancho máximo de la abertura bucal de 611.4±11.7 µm, una longitud total de 5.2±0.01 mm y un peso total de 1.5±0.02 mg. En el primer ensayo, las mayores ganancias en longitud (13.7±0.2 mm) y peso (94.6±1.8 mg) se registraron en las larvas alimentadas con ZS>400 µm (p<0.05). Asimismo, este tratamiento presentó la mayor sobrevivencia (91.2±2.2%), con diferencias significativas respecto a NA (73.2±2.5%) y CA (47.0±8.7%). Al evaluar la influencia de la primera alimentación en el alevinaje, los individuos del tratamiento NA mostraron el mejor crecimiento (p<0.05), mientras que la sobrevivencia y resistencia al estrés no mostraron diferencias significativas (NA y ZS>400 µm; p>0.05). Los resultados del presente estudio sugieren que el manejo de la primera alimentación de P. atricaudus es posible con zooplancton silvestre mayor de 400 µm o con nauplios de Artemia, produciendo juveniles de buena calidad en la fase de alevinaje.Despite Colombia's vast ichthyological biodiversity, aquaculture is limited to a few species, many of which are introduced and may disrupt natural environments. Therefore, diversification with native species is essential through the development of sustainable production technologies. The Pseudopimelodus. atricaudus, a Siluriform species, possesses advantageous characteristics for expanding Colombia's inland aquaculture. Additionally, this species plays a crucial role in the food security of communities near the Lower Cauca River. Larviculture is a critical stage in fish production, where larvae viability is ensured through proper environmental and feeding management, increasing survival rates and enhancing the likelihood of success in later stages of the production cycle. This study aimed to evaluate four types of feed in the larviculture of P. atricaudus. The experiment was conducted at the Fish Research Institute of the University of Córdoba (CINPIC) in two trials. In the first trial (first feeding management), 1,200 yolk-sac larvae were distributed in 12 aquaria with a usable volume of 5 L (20 larvae/L). For ten days, they were fed with four different prey types at the onset of exogenous feeding: Artemia nauplii (NA), wild zooplankton <400 µm (ZS<400 µm), wild zooplankton >400 µm (ZS>400 µm), and decapsulated Artemia cysts (CA), all provided at a density of 10 prey/mL. Subsequently, a fry trial (Trial 2) was conducted to assess the effect of initial feeding on the fry over 23 days, using the two best-performing prey from the previous trial (NA and ZS>400 µm). A stocking density of 50 individuals/m³ was used, transitioning to a dry diet with 38.0% crude protein over three days. Morphological characterization of larvae at the onset of exogenous feeding was performed through meristic and morphometric analysis, intestinal folds were histologically examined, and zootechnical performance was evaluated in both trials. Results suggest that P. atricaudus begins exogenous feeding at 30 hours post-hatching, with a maximum mouth gape width of 611.4±11.7 µm, a total length of 5.2±0.01 mm, and a total weight of 1.5±0.02 mg. In the first trial, the highest gains in length (13.7±0.2 mm) and weight (94.6±1.8 mg) were recorded in larvae fed ZS>400 µm (p<0.05). Likewise, this treatment resulted in the highest survival rate (91.2±2.2%), with significant differences compared to NA (73.2±2.5%) and CA (47.0±8.7%). When evaluating the influence of first feeding on the fry, individuals from the NA treatment exhibited the highest growth (p<0.05), whereas survival and stress resistance showed no significant differences (NA and ZS>400 µm; p>0.05). The findings of this study suggest that the first feeding of P. atricaudus can be successfully managed with wild zooplankton larger than 400 µm or Artemia nauplii, yielding high-quality juveniles during the fry.INTRODUCCIÓNOBJETIVOSObjetivo generalObjetivos especificosTaxonomía de P. atricaudusBioecologia de P. atricaudusManejo de primera alimentación y larviculturaArtemia como alimento vivoZooplancton silvestreDesafíos en la larvicultura de nuevas especies de pecesMATERIALES Y MÉTODOSLocalizaciónObtención de larvas de primera alimentación exógenaCaracterización morfológica y morfométrica de larvas de P. atricaudus al inicio de alimentación exógenaENSAYO DE MANEJO DE LA PRIMERA ALIMENTACIÓNAnálisis del crecimiento, sobrevivencia y resistencia al estrés en el manejo de la primera alimentación de P. atricaudusCaracterísticas del intestino de larvas de P. atricaudusENSAYO DE ALEVINAJEAnálisis del crecimiento, sobrevivencia y prueba de resistencia al estrés en el alevinaje de P. atricaudusCALIDAD DEL AGUAANÁLISIS ESTADÍSTICOASPECTOS ÉTICOSRESULTADOSCARACTERIZACIÓN MORFOLÓGICA Y MORFOMÉTRICA DE LARVAS DE P. atricaudus AL INICIO DE LA PRIMERA ALIMENTACIÓN EXÓGENAENSAYO DE MANEJO DE LA PRIMERA ALIMENTACIÓN EXÓGENAParámetros zootécnicosHistología intestinalCalidad del aguaENSAYO DE ALEVINAJECalidad del aguaDISCUSIÓNCARACTERÍSTICAS MORFOLÓGICAS Y MORFOMÉTRICAS DE P. atricaudus AL INICIO DE LA ALIMENTACIÓN EXÓGENADESEMPEÑO ZOOTÉCNICO EN EL MANEJO DE LA PRIMERA ALIMENTACIÓNDESEMPEÑO ZOOTÉCNICO EN EL ALEVINAJECALIDAD DEL AGUACONCLUSIONESREFERENCIASANEXOSMaestríaMagíster en Acuicultura Tropical Trabajos de Investigación y/o ExtensiónspaUniversidad de CórdobaFacultad de Medicina Veterinaria y ZootecniaMontería, Córdoba, ColombiaMaestría en Acuicultura TropicalCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfLarvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdriaens, D., Aerts, P., & Verraes, W. (2001). Ontogenetic shift in mouth opening mechanisms in a catfish (Clariidae, Siluriformes): A response to increasing functional demands. Journal of Morphology, 247(3), 197–216. https://doi.org/10.1002/1097-4687(200103)247:3<197::AID-JMOR1012>3.0.CO;2-SAhmad, A. L., Chin, J. Y., Mohd Harun, M. H. Z., & Low, S. C. (2022). Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. Journal of Water Process Engineering, 46, 102553. https://doi.org/10.1016/j.jwpe.2021.102553Arashiro, D. R., Yasui, G. S., Calado, L. L., Do Nascimento, N. F., Alves do Santos, S. C., Shiguemoto, G. F., Monzani, P. S., & Senhorini, J. A. (2020). Capturing, induced spawning, and first feeding of wild-caught Pseudopimelodus mangurus, an endangered catfish species. Latin American Journal of Aquatic Research, 48(3), 440–445. https://doi.org/10.3856/vol48-issue3-fulltext-2357Araújo, F. G., & Rosa, P. V. (2017). Docosahexaenoic acid (C22:6n-3) alters cortisol response after air exposure in Prochilodus lineatus (Valenciennes) larvae fed on enriched Artemia. Aquaculture Nutrition, 23(6), 1216–1224. https://doi.org/10.1111/anu.12490Arevalo, E., Cabral, H. N., Villeneuve, B., Possémé, C., & Lepage, M. (2023). Fish larvae dynamics in temperate estuaries: A review on processes, patterns and factors that determine recruitment. Fish and Fisheries, 24(3), 466–487. https://doi.org/10.1111/faf.12740Atencio-Garcia, V., Garcia Arteaga, Y., Pérez morales, J., Pardo-Carrasco, S., & Prieto-Guevara, M. (2016). EFECTO DE LA DENSIDAD DE SIEMBRA EN EL MANEJO DE LA PRIMERA ALIMENTACIÓN DE LARVAS DE BAGRE BLANCO Sorubim cuspicaudus. Sabia, 1(3), 32–45.Atencio-García, V. J., Kerguelén, E., Wadnipar, L., & Narváez, A. (2003). Manejo de la primera alimentación de bocachico (Prochilodus magdalenae). Revista MVZ Córdoba, 8(1), 254–260.Atencio-García, V., Padilla-Izquierdo, D., Robles-González, J., Prieto-Guevara, M., Pardo-Carrasco, S., & Espinosa-Araujo, J. (2023). Damage to Sorubim cuspicaudus Sperm Cryopreserved with Ethylene Glycol. Animals, 13(2), 235. https://doi.org/10.3390/ani13020235Azfar Ismail, M., Kamarudin, M. S., Syukri, F., Nur Ain, S., & Latif, K. (2019). Changes in the mouth morpho-histology of hybrid Malaysian mahseer (Barbonymus gonionotus ♀ × Tor tambroides ♂) during the larval development. Aquaculture Reports, 15, 100210. https://doi.org/10.1016/j.aqrep.2019.100210Azra, M. N., Noor, M. I. M., Burlakovs, J., Abdullah, M. F., Abd Latif, Z., & Yik Sung, Y. (2022). Trends and New Developments in Artemia Research. Animals, 12(18), 2321. https://doi.org/10.3390/ani12182321Beerli, E. L. (2002). Alimentacao e comportamento de Pós-Larvas de Pacú [Mestrado]. Universidade Federal de Lavras.Benini, E., Engrola, S., Politis, S. N., Sørensen, S. R., Nielsen, A., Conceição, L. E. C., Santos, A., & Tomkiewicz, J. (2022). Transition from endogenous to exogenous feeding in hatchery-cultured European eel larvae. Aquaculture Reports, 24, 101159. https://doi.org/10.1016/j.aqrep.2022.101159Budi, D. S., Priyadi, A., Permana, A., Herjayanto, Muh., Slembrouck, J., Mubarak, A. S., & Mustofa, I. (2024). Sustainable captive breeding practices for native Indonesian freshwater fish. Animal Reproduction Science, 271, 107623. https://doi.org/10.1016/j.anireprosci.2024.107623Carrera-Quintana, S. C., Gentile, P., & Girón-Hernández, J. (2022). An overview on the aquaculture development in Colombia: Current status, opportunities and challenges. Aquaculture, 561, 738583. https://doi.org/10.1016/j.aquaculture.2022.738583Carter, J. E., Sporre, M. A., & Eytan, R. I. (2022). Larviculture, allometric growth patterns, and gape morphology of the Florida blenny, Chasmodes saburrae. Aquaculture, 554, 738153. https://doi.org/10.1016/j.aquaculture.2022.738153DANE. (2021). ACUICULTURA EN COLOMBIA Cadena de la Acuicultura.DoNascimiento, C., Herrera-Collazos, E. E., Herrera-R., G. A., Ortega-Lara, A., Villa-Navarro, F. A., Usma Oviedo, J. S., & Maldonado-Ocampo, J. A. (2017). Checklist of the freshwater fishes of Colombia: a Darwin Core alternative to the updating problem. ZooKeys, 708, 25–138. https://doi.org/10.3897/zookeys.708.13897Duarte, L., García, E., Tejada, K., Cuello, F., Gil-Manrique, B., De León, G., Curiel, J., Cuervo, C., Vargas, O., Isaza, E., Manjarrés-Martínez, L., & Reyes-Ardila, H. (2022). Estadísticas de desembarco y esfuerzo de las pesquerías artesanales de Colombia - Enero a Octubre del 2022.FAO. (2024). El estado mundial de la pesca y la acuicultura 2024. La transformación azul en acción. (FAO, Ed.). FAO. https://doi.org/10.4060/cd0683esFricke, R., Eschmeyer, W., & Fong, J. D. (2023, October 2). Eschmeyer´s Catalog of Fishes. Genera/Species by Family/Subfamily In.Frisch, D., Lejeusne, C., Hayashi, M., Bidwell, M. T., Sánchez‐Fontenla, J., & Green, A. J. (2021). Brine chemistry matters: Isolation by environment and by distance explain population genetic structure of Artemia franciscana in saline lakes. Freshwater Biology, 66(8), 1546–1559. https://doi.org/10.1111/fwb.13737Froehlich, H. E., Gentry, R. R., & Halpern, B. S. (2017). Conservation aquaculture: Shifting the narrative and paradigm of aquaculture’s role in resource management. Biological Conservation, 215, 162–168. https://doi.org/10.1016/j.biocon.2017.09.012Gaspar, W., Niño, A., Alejos, R., & Ynga, G. (2021). MANUAL PARA LA PRODUCCIÓN DE Artemia franciscana COMO ALIMENTO PARA LARVAS Y JUVENILES DE PECES (1st ed., Vol. 48). Instituto del Mar del Perú. https://hdl.handle.net/20.500.12958/3521Giacomini, H. C., Shuter, B. J., & Lester, N. P. (2013). Predator bioenergetics and the prey size spectrum: Do foraging costs determine fish production? Journal of Theoretical Biology, 332, 249–260. https://doi.org/10.1016/j.jtbi.2013.05.004Giebichenstein, J., Giebichenstein, J., Hasler, M., Schulz, C., & Ueberschär, B. (2022). Comparing the performance of four commercial microdiets in an early weaning protocol for European seabass larvae ( Dicentrarchus labrax ). Aquaculture Research, 53(2), 544–558. https://doi.org/10.1111/are.15598Gisbert, E., Luz, R. K., Fernández, I., Pradhan, P. K., Salhi, M., Mozanzadeh, M. T., Kumar, A., Kotzamanis, Y., Castro‐Ruiz, D., Bessonart, M., & Darias, M. J. (2022). Development, nutrition, and rearing practices of relevant catfish species (Siluriformes) at early stages. Reviews in Aquaculture, 14(1), 73–105. https://doi.org/10.1111/raq.12586Hamre, K., Yúfera, M., Rønnestad, I., Boglione, C., Conceição, L. E. C., & Izquierdo, M. (2013). Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Reviews in Aquaculture, 5(s1). https://doi.org/10.1111/j.1753-5131.2012.01086.xHenry, J., Bai, Y., Williams, D., Logozzo, A., Ford, A., & Wlodkowic, D. (2022). Impact of test chamber design on spontaneous behavioral responses of model crustacean zooplankton Artemia franciscana. Lab Animal, 51(3), 81–88. https://doi.org/10.1038/s41684-021-00908-7Herrera-Cruz, E., Vásquez-Machado, G., Estrada-Posada, A., Pardo-Camacho, K. I., Atencio-García, V., & Yepes-Blandón, J. A. (2023). Use of probiotics in the catfish Sorubim cuspicaudus larviculture. Revista Colombiana de Biotecnología, 25(2), 50–61. https://doi.org/10.15446/rev.colomb.biote.v25n2.110786Ismi, S., & Budi, D. S. (2022). Some Hatchery Parameters of Three Species of Groupers: Tiger Grouper (Epinephelus fuscoguttatus), Humpback Grouper (Cromileptes altivelis), and Leopard Coral Grouper (Plectropomus leopardus). HAYATI Journal of Biosciences, 29(6), 762–770. https://doi.org/10.4308/hjb.29.6.762-770Jiménez-Velásquez, C., Atencio-Garcia, V., Ayazo-Genes, J. E., Espinosa-Araujo, J., & Prieto-Guevara, M. (2021). Management of the First Feeding of Dorada Brycon sinuensis with Two Species of Cladocerans. Applied Sciences, 11(20), 9379. https://doi.org/10.3390/app11209379Jomori, R. K., Carneiro, D. J., Malheiros, E. B., & Portella, M. C. (2003). Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture, 221(1–4), 277–287. https://doi.org/10.1016/S0044-8486(03)00069-3Jomori, R. K., Luz, R. K., & Célia Portella, M. (2012). Effect of Salinity on Larval Rearing of Pacu, Piaractus mesopotamicus, a Freshwater Species. Journal of the World Aquaculture Society, 43(3), 423–432. https://doi.org/10.1111/j.1749-7345.2012.00570.xJoshua, W. J., Kamarudin, M. S., Ikhsan, N., Md Yusoff, F., & Zulperi, Z. (2022). Development of enriched Artemia and Moina in larviculture of fish and crustaceans: a review. Latin American Journal of Aquatic Research, 50(2), 144–157. https://doi.org/10.3856/vol50-issue2-fulltext-2840Karlsen, Ø., van der Meeren, T., Rønnestad, I., Mangor-Jensen, A., Galloway, T. F., Kjørsvik, E., & Hamre, K. (2015). Copepods enhance nutritional status, growth and development in Atlantic cod (Gadus morhua L.) larvae — can we identify the underlying factors? PeerJ, 3, e902. https://doi.org/10.7717/peerj.902Kong, Y., Li, M., Chu, G., Liu, H., Shan, X., Wang, G., & Han, G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531, 735852. https://doi.org/10.1016/j.aquaculture.2020.735852Kotani, T., Yokota, M., Fushimi, H., & Watanabe, S. (2011). How to determine the appropriate mortality in experimental larval rearing? Fisheries Science, 77(2), 255–261. https://doi.org/10.1007/s12562-011-0329-8Kupren, K., Palińska‐Żarska, K., Krejszeff, S., & Żarski, D. (2019). Early development and allometric growth in hatchery‐reared Eurasian perch, Perca fluviatilis L. Aquaculture Research, 50(9), 2528–2536. https://doi.org/10.1111/are.14208Lahnsteiner, F., Lahnsteiner, E., & Duenser, A. (2023). Suitability of Different Live Feed for First Feeding of Freshwater Fish Larvae. Aquaculture Journal, 3(2), 107–120. https://doi.org/10.3390/aquacj3020010Lavens, P., & Sorgeloos, P. (2000). The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture, 181(3–4), 397–403. https://doi.org/10.1016/S0044-8486(99)00233-1Le, T. H., Hoa, N. Van, Sorgeloos, P., & Van Stappen, G. (2019). Artemia feeds: a review of brine shrimp production in the Mekong Delta, Vietnam. Reviews in Aquaculture, 11(4), 1169–1175. https://doi.org/10.1111/raq.12285Lefevre, S., Wang, T., Jensen, A., Cong, N. V., Huong, D. T. T., Phuong, N. T., & Bayley, M. (2014). Air‐breathing fishes in aquaculture. What can we learn from physiology? Journal of Fish Biology, 84(3), 705–731. https://doi.org/10.1111/jfb.12302Leis, J. M., & Trnski, T. (1989). The larvae of Indo-Pacific shorefishes. New South Wales University Press. https://nla.gov.au/nla.cat-vn2412534Ljubobratović, U., Fazekas, G., Koljukaj, A., Ristović, T., Vass, V., Ardó, L., Stanisavljević, N., Vukotić, G., Pešić, M., Milinčić, D., Kostić, A., & Lukić, J. (2021). Pike-perch larvae growth in response to administration of lactobacilli-enriched inert feed during first feeding. Aquaculture, 542, 736901. https://doi.org/10.1016/j.aquaculture.2021.736901López-López, V. V., Rodríguez M. de O., G. A., Galavíz, M. A., Román Reyes, C., Dabrowski, K., Haws, M. C., & Medina-Hernández, E. A. (2017). Comparative histological description of the digestive and visual system development of larval chame Dormitator latifrons (Pisces: Eleotridae). Latin American Journal of Aquatic Research, 43(3), 484–494. https://doi.org/10.3856/vol43-issue3-fulltext-10Madkour, K., Dawood, M. A. O., & Sewilam, H. (2023). The Use of Artemia for Aquaculture Industry: An Updated Overview. Annals of Animal Science, 23(1), 3–10. https://doi.org/10.2478/aoas-2022-0041Manickam, N., Bhavan, P. S., Santhanam, P., & Muralisankar, T. (2020). Influence of wild mixed zooplankton on growth and muscle biochemical composition of the freshwater prawn Macrobrachium rosenbergii post larvae. Aquaculture, 522, 735110. https://doi.org/10.1016/j.aquaculture.2020.735110Melaku, S., Geremew, A., Getahun, A., Mengestou, S., & Belay, A. (2024). Challenges and prospects of using live feed substitutes for larval fish. Fisheries and Aquatic Sciences, 27(8), 475–487. https://doi.org/10.47853/FAS.2024.e45Miladinov, G. (2023). Impacts of population growth and economic development on food security in low-income and middle-income countries. Frontiers in Human Dynamics, 5. https://doi.org/10.3389/fhumd.2023.1121662Mischke, C. C., Wise, D. J., & Byars, T. S. (2009). Evaluation of Zooplankton in Hatchery Diets for Channel Catfish Fry. North American Journal of Aquaculture, 71(4), 312–314. https://doi.org/10.1577/A08-029.1Mokhtar, D. M., & Hassan AH, E. (2015). Light and Scanning Electron Microscopic Studies on the Intestine of Grass Carp (Ctenopharyngodon idella): I-Anterior Intestine. Journal of Aquaculture Research & Development, 6(11). https://doi.org/10.4172/2155-9546.1000374Mozanzadeh, M. T., Bahabadi, M. N., Morshedi, V., Azodi, M., Agh, N., & Gisbert, E. (2021). Weaning strategies affect larval performance in yellowfin seabream (Acanthopagrus latus). Aquaculture, 539, 736673. https://doi.org/10.1016/j.aquaculture.2021.736673Nakatani, K., Agostinho, A., Baumgartner, G., Bialetski, A., Vanderlei, P., Cavicchioli, M., & Pavanelli, C. (2001). Ovos e larvas de peixes de água doce, desenvolvimento e manual de indendifición. Universidade Estadual de Maringá, NUPELIA, ElectrobrásNyang’ate Onura, C., Van den Broeck, W., Nevejan, N., Muendo, P., & Van Stappen, G. (2018). Growth performance and intestinal morphology of African catfish (Clarias gariepinus, Burchell, 1822) larvae fed on live and dry feeds. Aquaculture, 489, 70–79. https://doi.org/10.1016/j.aquaculture.2018.01.046Parparov, A. (2010). Water Quality Assessment, Trophic Classification and Water Resources Management. Journal of Water Resource and Protection, 02(10), 907–915. https://doi.org/10.4236/jwarp.2010.210108Peng, D., Liang, X.-F., Wang, Y., & Tang, S. (2023). Introduction of Artemia nauplii during Chinese perch (Siniperca chuatsi) first feeding: Effects on larvae growth, survival, gene expression and activity of critical digestive enzymes. Aquaculture, 573, 739619. https://doi.org/10.1016/j.aquaculture.2023.739619Pepe-Victoriano, R., Miranda, L., Ortega, A., & Merino, G. E. (2021). Descriptive morphology and allometric growth of the larval development of Sarda chiliensis chiliensis (Cuvier, 1832) in a hatchery in northern Chile. Aquaculture Reports, 19, 100576. https://doi.org/10.1016/j.aqrep.2020.100576Pepin, P. (2024). Foraging by larval fish: a full stomach is indicative of high performance but random encounters with prey are also important. ICES Journal of Marine Science, 81(4), 790–806. https://doi.org/10.1093/icesjms/fsae037Pham-Huy, C., & Pham Huy, B. (2022). Food and Lifestyle in Health and Disease. CRC Press. https://doi.org/10.1201/9781003220817Pradhan, P. K., Jena, J., Mitra, G., Sood, N., & Gisbert, E. (2014). Effects of different weaning strategies on survival, growth and digestive system development in butter catfish Ompok bimaculatus (Bloch) larvae. Aquaculture, 424–425, 120–130. https://doi.org/10.1016/j.aquaculture.2013.12.041Prieto, M. J., Logato, P. V. R., Moraes, G. F. de, Okamura, D., & Araújo, F. G. de. (2006). Tipo de alimento, sobrevivência e desempenho inicial de pós-larvas de pacu (Piaractus mesopotamicus). Ciência e Agrotecnologia, 30(5), 1002–1007. https://doi.org/10.1590/S1413-70542006000500026Prieto-Guevara, M., Hernández B, J., Gómez R, C., Pardo C, S., Atencio-García, V., & Rosa, P. V. (2013). Efecto de tres tipos de presas vivas en la larvicultura de bagre blanco (Sorubim cuspicaudus). Revista MVZ Córdoba, 18(3), 3790–3798. https://doi.org/10.21897/rmvz.149Prieto-Guevara-Martha, & Atencio-García, V. (2008). Zooplancton en la larvicultura de peces neotropicales. Revista MVZ Córdoba, 13(2). https://doi.org/10.21897/rmvz.401Rajabi, S., Ramazani, A., Hamidi, M., & Naji, T. (2015). Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU Journal of Pharmaceutical Sciences, 23(1), 20. https://doi.org/10.1186/s40199-015-0105-xRamírez-Merlano, J. A., Otero-Paternina, A. M., Corredor-Santamaría, W., Medina-Robles, V. M., Cruz-Casallas, P. E., & Velasco-Santamaría, Y. M. (2010). Utilización de organismos vivos como primera alimentación de larvas de yaque (Leiarius marmoratus) bajo condiciones de laboratorio. Orinoquia, 14(1), 45–58.Restrepo-Gómez, A. M., Rangel-Medrano, J. D., Márquez, E. J., & Ortega-Lara, A. (2020). Two new species of Pseudopimelodus Bleeker, 1858 (Siluriformes: Pseudopimelodidae) from the Magdalena Basin, Colombia. PeerJ, 8, e9723. https://doi.org/10.7717/peerj.9723Rivas-Lara, T. S., Gómez-Vanega, H. D., Palacios-Valdés, J., Rentería-Cuesta, V. M., & Lozano-Rentería, L. (2019). Estudio biológico y pesquero de Pseudopimelodus schultzi (Dahl, 1955) en la cuenca media y baja del río Atrato, Chocó. Biodiversidad Neotropical, 9(1), 1–13. https://doi.org/10.18636/bioneotropical.v9i1.544Rocha, G. S., Katan, T., Parrish, C. C., & Kurt Gamperl, A. (2017). Effects of wild zooplankton versus enriched rotifers and Artemia on the biochemical composition of Atlantic cod (Gadus morhua) larvae. Aquaculture, 479, 100–113. https://doi.org/10.1016/j.aquaculture.2017.05.025Rønnestad, I., Yúfera, M., Ueberschär, B., Ribeiro, L., Sæle, Ø., & Boglione, C. (2013). Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Reviews in Aquaculture, 5(s1). https://doi.org/10.1111/raq.12010Samat, N. A., Yusoff, F. M., Rasdi, N. W., & Karim, M. (2020). Enhancement of Live Food Nutritional Status with Essential Nutrients for Improving Aquatic Animal Health: A Review. Animals, 10(12), 2457. https://doi.org/10.3390/ani10122457Sewaka, M., Trullas, C., Chotiko, A., Rodkhum, C., Chansue, N., Boonanuntanasarn, S., & Pirarat, N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish & Shellfish Immunology, 86, 260–268. https://doi.org/10.1016/j.fsi.2018.11.026Shiguemoto, G. F., Arashiro, D. R., Levy-Pereira, N., Santos, S. C. A., Senhorini, J. A., Monzani, P. S., & Yasui, G. S. (2021). Domestication strategies for the endangered catfish species Pseudopimelodus mangurus Valenciennes, 1835 (Siluriformes: Pseudopimelodidae). Brazilian Journal of Biology, 81(2), 301–308. https://doi.org/10.1590/1519-6984.224913Shirota, A. (1970). Studies on the mouth size of fish larvae. Nippon Suisan Gakkaishi, 36(353–368).Shishanov, G. A., & Lippo, I. E. (2024). Decapsulation of artemia cysts (Artemia sp.) using different versions of sodium hypochlorite solutions (NaOCL). Rybovodstvo i Rybnoe Hozjajstvo (Fish Breeding and Fisheries), 11, 803–811. https://doi.org/10.33920/sel-09-2411-05Syafariyah, N. K., Sulmartiwi, L., & Budi, D. S. (2023). Incubation temperature effects on some hatching parameters of silver rasbora (Rasbora argyrotaenia) egg. Journal of Applied Aquaculture, 35(1), 16–26. https://doi.org/10.1080/10454438.2021.1928580Vadstein, O., Attramadal, K. J. K., Bakke, I., & Olsen, Y. (2018). K-Selection as Microbial Community Management Strategy: A Method for Improved Viability of Larvae in Aquaculture. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02730Valbuena, R., Zapata-Berruecos, B., & Otero-Paternina, A. (2013). Evaluación de la primera alimentación en larvas de capaz Pimelodus grosskopfii bajo condiciones de laboratorio. Revista MVZ Córdoba, 18(2), 3518–3524. https://doi.org/10.21897/rmvz.176Wang, P., Chen, S., Chen, Z., Huo, W., Huang, R., Huang, W., Peng, J., & Yang, X. (2019). Benefit–risk assessment of commonly consumed fish species from South China Sea based on methyl mercury and DHA. Environmental Geochemistry and Health, 41(5), 2055–2066. https://doi.org/10.1007/s10653-019-00254-1Wijayanti, G. E., Setyawan, P., & Kurniawati, I. D. (2017). A SIMPLE PARAFFIN EMBEDDED PROTOCOL FOR FISH EGG, EMBRYO, AND LARVAE. Scripta Biologica, 4(2), 85. https://doi.org/10.20884/1.sb.2017.4.2.420Wittenrich, M. L., & Turingan, R. G. (2011). Linking functional morphology and feeding performance in larvae of two coral-reef fishes. Environmental Biology of Fishes, 92(3), 295–312. https://doi.org/10.1007/s10641-011-9840-0Zhang, Y., Lu, R., Qin, C., & Nie, G. (2020). Precision nutritional regulation and aquaculture. Aquaculture Reports, 18, 100496. https://doi.org/10.1016/j.aqrep.2020.100496ArtemiaAlevinajeConservaciónAlimentos vivosPisciculturaArtemiaConservationFryFood liveFish culturePublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/443bc8ad-d86e-4e38-98b1-e9dac2f62311/download73a5432e0b76442b22b026844140d683MD51ORIGINALAlarcónLuis.pdfAlarcónLuis.pdfapplication/pdf1872422https://repositorio.unicordoba.edu.co/bitstreams/0f03ac4f-95e2-4548-9e62-f872e5f2d4c0/downloadf02c60d686c8953ee4d2ab568c9b81a0MD52FORMATO DE AUTORIZACIÓN.pdfFORMATO DE AUTORIZACIÓN.pdfapplication/pdf3077205https://repositorio.unicordoba.edu.co/bitstreams/4f5041f7-3e45-436d-94ab-424ab66575c3/downloadf505e99dee3da043a8a3794e049205cdMD53TEXTAlarcónLuis.pdf.txtAlarcónLuis.pdf.txtExtracted texttext/plain99096https://repositorio.unicordoba.edu.co/bitstreams/6ebf1a38-cecc-4d06-887a-d533c8a6e711/download8829779fe6c2836abcec77494ed66f4eMD54FORMATO DE AUTORIZACIÓN.pdf.txtFORMATO DE AUTORIZACIÓN.pdf.txtExtracted texttext/plain4302https://repositorio.unicordoba.edu.co/bitstreams/be870982-8fda-44a2-9926-7ba520e50a2d/downloadc7c21867603a4b753864474e7bfd3289MD56THUMBNAILAlarcónLuis.pdf.jpgAlarcónLuis.pdf.jpgGenerated Thumbnailimage/jpeg6609https://repositorio.unicordoba.edu.co/bitstreams/7b87aeb9-8129-470c-b391-1858bfe627cb/download0710e6a679b3d3ccb31f4456985631b9MD55FORMATO DE AUTORIZACIÓN.pdf.jpgFORMATO DE AUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg14413https://repositorio.unicordoba.edu.co/bitstreams/1db14029-d142-4964-9123-75455ae88ca7/download15e5fd61a5b135fc0f8e3b29323d035cMD57ucordoba/9228oai:repositorio.unicordoba.edu.co:ucordoba/92282025-06-28 15:13:44.395https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025embargohttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K