Evaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel Cordoba

La Fitorremediación, es una tecnología innovadora y amigable con el medio ambiente, la cual promueve el desarrollo y aplicación de técnicas que permiten recuperar suelos contaminados con metales pesados. Esta investigación desarrolló un proceso de remediación evaluando el cultivo de Jatropha curcas...

Full description

Autores:
Ruiz Lora, Anselmo Luis
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9456
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9456
https://repositorio.unicordoba.edu.co
Palabra clave:
Bioacumulación
Descontaminación
Fitorremediación
Minería aurífera
Phytoremediation
Bioaccumulation
Decontamination
Gold mining
Rights
embargoedAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_164203fbd6744252767e2690e6c60eff
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9456
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.none.fl_str_mv Evaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel Cordoba
title Evaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel Cordoba
spellingShingle Evaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel Cordoba
Bioacumulación
Descontaminación
Fitorremediación
Minería aurífera
Phytoremediation
Bioaccumulation
Decontamination
Gold mining
title_short Evaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel Cordoba
title_full Evaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel Cordoba
title_fullStr Evaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel Cordoba
title_full_unstemmed Evaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel Cordoba
title_sort Evaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel Cordoba
dc.creator.fl_str_mv Ruiz Lora, Anselmo Luis
dc.contributor.advisor.none.fl_str_mv Marrugo Negrete, Jesé Luis
dc.contributor.author.none.fl_str_mv Ruiz Lora, Anselmo Luis
dc.contributor.jury.none.fl_str_mv Rodríguez Díaz, Yim James
Vergara Rivera, Carlos
dc.subject.proposal.none.fl_str_mv Bioacumulación
Descontaminación
Fitorremediación
Minería aurífera
topic Bioacumulación
Descontaminación
Fitorremediación
Minería aurífera
Phytoremediation
Bioaccumulation
Decontamination
Gold mining
dc.subject.keywords.none.fl_str_mv Phytoremediation
Bioaccumulation
Decontamination
Gold mining
description La Fitorremediación, es una tecnología innovadora y amigable con el medio ambiente, la cual promueve el desarrollo y aplicación de técnicas que permiten recuperar suelos contaminados con metales pesados. Esta investigación desarrolló un proceso de remediación evaluando el cultivo de Jatropha curcas como una estrategia de recuperación de suelos degradados y contaminados con mercurio en el municipio de Ayapel Córdoba, con el fin de mitigar los impactos causados al medio ambiente y la salud de sus habitantes por la actividad de minería aurífera que se desarrolla en este municipio. El área donde se llevó a cabo el proceso de fitorremediación corresponde a un terreno de 2.4 hectáreas degradado y contaminado con mercurio ubicado en la parte sur de la ciénaga de Ayapel. Se aplicó un diseño experimental completamente al azar, con 4 tratamientos y 3 repeticiones. Se midieron variables morfométricas como altura y grosor del tallo, numero de hojas y brotes, área foliar y clorofila. Se hallaron altas concentraciones de Hg total en las parcelas 5 (4.141,31 µg/kg) y 9 (2.702,87 µg/kg), niveles que superan ampliamente los límites establecidos por la OMS y la EPA para suelos agrícolas (US EPA, 2025). El tratamiento 3 mostró la mayor acumulación de Hg en raíces con una media de 609,0 µg/kg, superando ampliamente los tratamientos 1 y 2, que registran valores medios de 263,0 µg/kg y 267,0 µg/kg respectivamente. La fitorremediación, aplicada a través del cultivo de Jatropha curcas L., constituyó una estrategia técnicamente viable y ambientalmente pertinente para enfrentar la degradación, así como la contaminación por mercurio en suelos tropicales, particularmente en territorios impactados por minería aurífera artesanal como Ayapel, Córdoba.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-22T16:33:24Z
dc.date.available.none.fl_str_mv 2025-07-22T16:33:24Z
2028-07-18
dc.date.issued.none.fl_str_mv 2025-07-15
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9456
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Institucional Unicórdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9456
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Institucional Unicórdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abdullahi, Z., & Abdulrahman, A. A. (2021). Field accumulation and translocation of potentially toxic elements (PTEs) from industrial soil by the biodiesel plant, Jatropha curcas. Bayero Journal of Pure and Applied Sciences, 14(1), 195-206. https://doi.org/10.4314/bajopas.v14i1.23
Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075
Álvarez, P. M., Alés, F. J. A., & García, J. F. M. (2019). Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. Journal of environmental management, 231, 886-895. https://doi.org/10.1016/j.jenvman.2018.10.052
Ameh, E. G., & Aina, D. O. (2020). Search for autochthonous plants as accumulators and translocators in a toxic metal-polluted coal mine soil in Okaba, Nigeria. Scientific African, 10, e00630. https://doi.org/10.1016/j.sciaf.2020.e00630
Antoniadis, V., Shaheen, S. M., Stärk, H. J., Wennrich, R., Levizou, E., Merbach, I., & Rinklebe, J. (2021). Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environment International, 146, 106233. https://doi.org/10.1016/j.envint.2020.106233
Awotedu, O. L., & Ogunbamowo, P. O. (2019). Comparative heavy metal uptake and phytoremediation potential of three Jatropha species. Environment & Ecosystem Science (EES), 3(2), 26-30. http://doi.org/10.26480/ees.02.2019.26.30
Beltrán, M. E. P., & Gómez, A. M. R. (2015). Metales pesados (Cd, Cr y Hg): su impacto en el ambiente y posibles estrategias biotecnológicas para su remediación. I3+, 2(2), 82-112. https://doi.org/10.24267/issn.2346-2329
Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479(2), 233-248. https://doi.org/10.1016/S0003-2670(02)01550-7
Bolívar-Anillo, Hernando José, Contreras-Zentella, Martha Lucinda, & Teherán-Sierra, Luis Guillermo. (2016). Burkholderia tropica una bacteria con gran potencial para su uso en la agricultura. TIP. Revista especializada en ciencias químico-biológicas, 19(2), 102-108. https://doi.org/10.1016/j.recqb.2016.06.003
Borker, A. R., Mane, A. V., Saratale, G. D., & Pathade, G. R. (2013). Phytoremediation potential of Eichhornia crassipes for the treatment of cadmium in relation with biochemical and water parameters. Emirates Journal of Food & Agriculture (EJFA), 25(6), 443-456. https://doi.org/10.9755/ejfa.v25i6.13970
Bravo, M., Luna, J., Quesada, C., Segura, M., Pérez, J. (2016). Actividad minera y su impacto en la salud humana. Revista Ciencia UNEMI, 9(17), 92-100. https://core.ac.uk/download/pdf/276552164.pdf
Carvalho Dos Santos, M., & Lenzi, E. (2000). The use of aquatic macrophytes (Eichhornia crassipes) as a biological filter in the treatment of lead contaminated effluents. Environmental Technology, 21(6), 615-622. https://doi.org/10.1080/09593330.2000.9618946
Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36(5), 1429-1443. https://doi.org/10.2134/jeq2006.0514
Cherian, S., & Oliveira, M. M. (2005). Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental science & technology, 39(24), 9377-9390. https://doi.org/10.1021/es051134l
CIAT. (1993). Manual de Análisis de Suelos y Tejido Vegetal. Documento de trabajo No. 129. Palmira. 103p. http://ciat-library.ciat.cgiar.org/Articulos_Ciat/Digital/S593.M2_Manual_de_an%C3%A1lisis_de_suelos_y_tejido_vegetal_Una_gu%C3%ADa_te%C3%B3rica_y_pr%C3%A1ctica_de_metodologia.pdf
Contraloría General de la República. (2012). Cerca del 80% de la minería en Colombia es ilegal, advierte la Contraloría. Obtenido de Villegas, 2013 y Juarez, 2016.
Contraloría General de la República. (2013). La explotación ilícita de los recursos minerales en Colombia Casos del Valle del Cauca, Choco efectos sociales y ambientales.
Contreras, Y. A. (2021). Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones. [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio institucional de la Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/79356
Cuadros T, D. (2010) Uso, efectos y recuperación del mercurio en la minería aluvial en Madre de Dios. Ministerio de Energía y Minas Dirección general de minería oficina desconcentrada Madre de Dios.
CVS/INGEOMINAS. (2005). Inventario y diagnóstico minero ambiental del Departamento de Córdoba. Monografía municipio Ayapel. Convenio interadministrativo 029 – 2003. Bogotá D.C.
CVS. (2014). Diagnóstico minero – ambiental de la minería de oro y sus efectos ambientales en el Departamento de Córdoba – Periodo 2009 a 2014. Informe de Pasantía, Ingeniería Ambiental, U. de Córdoba, Montería, Colombia.
Diels, L., De Smet, M., Hooyberghs, L. y Corbisier, P. (1999). Heavy metals bioremediation of soil. Molecular biotechnology, 12, 149-158. https://doi.org/10.1385/MB:12:2:149
Echeverry, D. L. O., & Díaz, S. R. (2016). Minería aurífera ilegal en el resguardo indígena alto Andágueda. Novum Jus, 10(1), 135-149. https://doi.org/10.14718/NovumJus.2016.10.1.6
Erusani, A. S., Arofah, N., Azahra, F., Nurhasni, N., & Inayah, T. (2024). Phytoremediation of mercury and cyanide contaminated soils by physic nut (jatropha curcas l.) and citronella grass (cymbopogon nardus). Jurnal Ilmu Lingkungan, 22(6), 1581-1593. https://doi.org/10.14710/jil.22.6.1581-1593
Esdaile, LJ, & Chalker, JM (2018). El problema del mercurio en la minería de oro artesanal y a pequeña escala. Chemistry–A European Journal , 24 (27), 6905-6916. https://doi.org/10.1002/chem.201704840
Favas, P. J., Pratas, J., & Prasad, M. N. V. (2012). Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Science of the total Environment, 433, 390-397. https://doi.org/10.1016/j.scitotenv.2012.06.091
Fernández, S., Poschenrieder, C., Marcenò, C., G allego, J. R., Jiménez-Gámez, D., Bueno, A., & Afif, E. (2017). Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. Journal of Geochemical Exploration, 174, 10-20. https://doi.org/10.1016/j.gexplo.2016.05.015
Flores Calla, S. S. (2017). Evaluación de la Capacidad de Fitorremediación de Chenopodium Album L. (Liccha) en Aguas Contaminadas con Mercurio, Plomo y Cadmio. https://repositorio.ucsm.edu.pe/items/bda75599-fbe1-4b6e-aa01-646342725cad
Garbisu, C., & Alkorta, I. (2003). Basic concepts on heavy metal soil bioremediation. ejmp & ep European Journal of Mineral Processing and Environmental Protection., 3(1), 58-66. https://www.911metallurgist.com/wp-content/uploads/2015/12/Basic-concepts-on-heavy-metal-soil-bioremediation.pdf
García, J. F. M., González, M. D. C. C., López, M. D. C. B., Torres, M. G., Barbin, D., & Mateos, P. Á. (2020). Metal accumulation by Jatropha curcas L. adult plants grown on heavy metal-contaminated soil. Plants, 9(4), 418. https://doi.org/10.3390/plants9040418
González Pérez, L. E. (2020). Fitorremediación a escala piloto de suelos contaminados con mercurio y cobre usando Jatropha curcas L en zona minera el Alacrán. Tesis de Maestría, Universidad de Córdoba-Colombia. [Tesis de Maestría, Universidad de Córdoba]. Repositorio Institucional de la Universidad de Córdoba. https://repositorio.unicordoba.edu.co/entities/publication/fd448a22-38c0-4116-8441-aa4925134fc2
Greipsson, S. (2011). Ecología de la Restauración. Jones & Bartlett Learning. https://www.researchgate.net/publication/270279766_Phytoremediation
Grifoni, M., Pedron, F., Petruzzelli, G., Rosellini, I., Barbafieri, M., Franchi, E. & Bagatin, R. (2017). Evaluación de la fitoextracción de mercurio y arsénico en cosechas repetidas en un suelo industrial multicontaminado. AIMS Environmental Science, 4 (2). https://doi.org/10.3390/environments4040067
Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación (6ª ed.). México: McGraw Hill Interamericana Editores S.A. de C.V. https://dialnet.unirioja.es/servlet/libro?codigo=775008
Hernández-Sampieri, R., & Mendoza, C. (2020). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta.
Hinton, J., & Veiga, M. (2001). Mercury contaminated sites: a review of remedial solutions. In Proceedings of the NIMD (National Institute for Minamata Disease) Forum Minamata, Japan. 73-84. http://www.mcilvainecompany.com/Decision_Tree/subscriber/Tree/DescriptionTextLinks/Minamata_Forum_2001.pdf
Huang, G-Y., & Wang, Y.-S. (2010). Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals. Journal of Hazardous Materials, 182(1-3), 848-854. https://doi.org/10.1016/j.jhazmat.2010.06.121
Hussain, B., Abbas, Y., Ur-Rahman, S., Ali, H., Zafar, M., Ali, S., Ashraf, M. N., Zehra, Q., Truifo Leva Espinoza, S., & Díaz Valderrama, J. R. (2023). Especiación, fraccionamiento, biodisponibilidad y transferencia de metales y metaloides hacia las plantas. En Soil Pollution (Cap. 2). Elsevier. https://doi.org/10.1016/B978-0-323-91675-2.00026-3
Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2014). Estudio nacional del agua. Obtenido de http://documentacion.ideam.gov.co /openbiblio/bvirtual/023080/ENA_2014.pdf
Jiménez, A. M. G. (2005). Interacción del mercurio con los componentes de las aguas residuales. [Trabajo de grado, Universidad Nacional de Colombia]. Repositorio Institucional de la Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/2754
Juárez, F. (2016). La minería ilegal en Colombia: un conflicto de narrativas. El Agora USB, 16(1), 135-146. http://www.scielo.org.co/scielo.php?pid=S1657-80312016000100007&script=sci_arttext
Kavamura, V. N., & Esposito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology advances, 28(1), 61-69. https://doi.org/10.1016/j.biotechadv.2009.09.002
Kelley, C., Gaither, K. K., Baca-Spry, A., & Cruickshank, B. J. (2000). Incorporation of phytoremediation strategies into the introductory chemistry laboratory. The Chemical Educator, 5, 140-143. https://doi.org/10.1007/s00897000383a
Lam, E. J., Cánovas, M., Gálvez, M. E., Montofré, Í. L., Keith, B. F., & Faz, Á. (2017). Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. Journal of Geochemical Exploration, 182, 210-217. https://doi.org/10.1016/j.gexplo.2017.06.015
Li, Y. M., Chaney, R., Brewer, E., Roseberg, R., Angle, J. S., Baker, A., & Nelkin, J. (2003). Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant and soil, 249 (1), 107-115.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350-382). Academic Press
Lillo, J. (2011). Impactos de la minería en el medio natural. Grupo de Geología Universidad Rey Juan Carlos. https://reformaminera.wordpress.com/wp-content/uploads/2008/06/impactos-de-la-mineria-en-el-medio-natural.pdf
Liu, Z., Chen, B., Wang, L. A., Urbanovich, O., Nagorskaya, L., Li, X., & Tang, L. (2020). A review on phytoremediation of mercury contaminated soils. Journal of Hazardous Materials, 400, 123138. https://doi.org/10.1016/j.jhazmat.2020.123138
Maiti, R. K., Piñero, J. L. H., & Oreja, J. A. G. (2004). Plant based bioremediation and mechanisms of heavy metal. Proceedings of the Indian National Science Academy. Part B, Reviews and Tracts - Biological Sciences, 70(1), 1-12. https://www.researchgate.net/profile/Jose-Gonzalez-Oreja/publication/230583638_Plant_based_bioremediation_and_mechanisms_of_heavy_metal_tolerance_of_plants_a_review/links/00b495200cc36e5d4c000000/Plant-based-bioremediation-and-mechanisms-of-heavy-metal-tolerance-of-plants-a-review.pdf
Mamani Pari, G. (2013). Nivel de conocimiento sobre medidas preventivas y efectos tóxicos del Mercurio en trabajadores de la mina la Rinconada, Puno-2012. [Trabajo de grado, Universidad Nacional del Altiplano]. Repositorio Institucional de la Universidad Nacional del Altiplano. https://repositorio.unap.edu.pe/bitstream/handle/20.500.14082/2169/Mamani_Pari_Gleny.pdf?sequence=1&isAllowed=y
Marinho, C. H. (2017). Procesos de adsorción-desorción asociados a metales pesados en un sistema macromareal patagónico [Tesis doctoral, Universidad Nacional del Comahue]. Repositorio Digital Institucional de la Universidad Nacional del Comahue. http://rdi.uncoma.edu.ar/handle/uncomaid/16115
Marrugo, J. N., Durango, J. H., Pinedo, J. H., Olivero, J. V., & Díez, S. (2015). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58-63. https://doi.org/10.1016/j.chemosphere.2014.12.073
Marrugo, J. N., Marrugo, S. M., Pinedo, J. H., Durango, J. H., & Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of the total environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117
Marrugo, J. N., Durango, J. H., Pinedo, J. H., Enamorado, G. M., & Díez, S. (2016). Mercury uptake and effects on growth in Jatropha curcas. Journal of Environmental Sciences, 48, 120-125. https://doi.org/10.1016/j.jes.2015.10.036
Marrugo, J. N., Pinedo, J. H., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021
Marrugo, S. M., Turull, M., Montes, G. E., Pico, M. V., Marrugo, J. L. N., & Díez, S. (2021). Phytoremediation of mercury in soils impacted by gold mining: A case-study of Colombia. In Bioremediation for Environmental Sustainability, 145-160. Elsevier. https://doi.org/10.1016/B978-0-12-820524-2.00007-9
Massoukou, R. P., Poirier, V., Nguema Ndoutoumou, P., & Epule, T. E. (2024). Growing Jatropha curcas L. Improves the Chemical Characteristics of Degraded Tropical Soils. Forests, 15(10), 1709. https://doi.org/10.3390/f15101709
McGrath, SP, Zhao, FJ y Lombi, E. (2001). Procesos vegetales y rizosfera implicados en la fitorremediación de suelos contaminados con metales. Plant and floor , 232 (1), 207-214.
Memon, A. R., & Schröder, P. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 16, 162-175. https://doi.org/10.1007/s11356-008-0079-z
Ministerio de Ambiente y Desarrollo Sostenible. (2018). Decreto 356 de 2018. https: https://www.minambiente.gov.co/documento-normativa/decreto-356-de-2018/
Miretzky, P., Saralegui, A., & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57(8), 997-1005. https://doi.org/10.1016/j.chemosphere.2004.07.024
MME/Unicor. (2017). Concentraciones de mercurio en aire y en suelo, en las zonas de influencia minera de los diez principales departamentos productores de oro en Colombia. Convenio GGC 524. Informe Ejecutivo. 33p.
Moon, J. K., Kim, P. G., Lee, K. Y., Kwon, J. H., & Hong, Y. (2023). Development of an in situ equilibrium polydimethylsiloxane passive sampler for measuring volatile organic compounds in soil vapor. Chemosphere, 325, 138419. https://doi.org/10.1016/j.chemosphere.2023.138419
Moreno-Jiménez, E., Esteban, E., Carpena-Ruiz, R. O., & Peñalosa, J. M. (2009). Arsenic-and mercury-induced phytotoxicity in the Mediterranean shrubs Pistacia lentiscus and Tamarix gallica grown in hydroponic culture. Ecotoxicology and Environmental Safety, 72(6), 1781-1789. https://doi.org/10.1016/j.ecoenv.2009.04.022
Mujahid, F., Shafaqat, A., Rizwan, M., Qasim, A., Abbas, F., Bukhari, S. A. H., Rashid, S., & Longhua, W. (2017). Citric acid assisted phytoextraction of chromium by sunflower: Morphological, physiological and biochemical alterations in plants. Ecotoxicology and Environmental Safety, 145, 357–365. https://doi.org/10.1016/j.ecoenv.2017.07.016
Munive Cerrón, Rubén, Loli Figueroa, Oscar, Azabache Leyton, Andrés, Gamarra Sánchez, Gilberto. (2018). Fitorremediación con Maíz (Zea mays L.) y compost de Stevia en suelos degradados por contaminación con metales pesados. Scientia Agropecuaria, 9(4), 551-560. https://doi.org/10.17268/sci.agropecu.2018.04.11
Navari, F. I. & Quartacci, M. (2011). Phytoremediation of metals. Minerva Biotechnol. 13, 73-83. https://www.researchgate.net/publication/279769731_Phytoremediation_of_metals_Tolerance_mechanisms_against_oxidative_stress
Odoh, C. K., Zabbey, N., Sam, K., & Eze, C. N. (2019). Status, progress and challenges of phytoremediation-An African scenario. Journal of environmental management, 237, 365-378. https://doi.org/10.1016/j.jenvman.2019.02.090
Oyarzun, R., Higueras, P., & Lillo, J. (2011). Minería ambiental: una introducción a los impactos y su remedación. Ediciones GEMM-Aula2puntonet. https://docta.ucm.es/entities/publication/9e793c84-119a-400b-a861-7a7f97685d81
Pabón, S. E., Benítez, R., Sarria, R. A., & Gallo, J. A. (2020). Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión. Entre Ciencia e Ingeniería, 14(27), 9-18. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1909-83672020000100009
Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184, 105-126. https://doi.org/10.1007/s11270-007-9401-5
Paisio, C. E., González, P. S., Talano, M. A., & Agostini, E. (2012). Remediación biológica de mercurio: recientes avances. Revista Latinoamericana de Biotecnología Ambiental y Algal, 3(2), 119-146. https://www.solabiaa.org/ojs3/index.php/RELBAA/article/view/38
Palchetti, E., Grassi, C., Masoni, A., Zubieta, C. G., Valenzi, E., Whittaker, A., ... & Vecchio, V. (2016). Effects of lead (Pb) on Jatropha curcas L. growth under hydroponic conditions. Journal of Agriculture and Environment for International Development (JAEID), 110(2), 205-216. https://doi.org/10.12895/jaeid.2016110.449
Pandey, V. C., Bajpai, O., & Singh, N. (2016). Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 54, 58-73. https://doi.org/10.1016/j.rser.2015.09.078
Paz, J. F., Lu, H., Fu, S., Mendez, A., & Gasco, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid earth, 5(1), 65-75. https://doi.org/10.5194/se-5-65-2014
Pérez, E. H., Muñoz Gómez, F. A., & Sarria Villa, R. A. (2022). Métodos para el diagnóstico ambiental de suelos. Editorial Universidad del Cauca. https://books.google.es/books?id=kXbREAAAQBAJ
Pinedo-Hernández, J., Marrugo-Negrete, J., y Díez, S. (2015). Especiación y biodisponibilidad del mercurio en sedimentos impactados por la minería de oro en Colombia. Chemosphere, 119,1289-1295. https://doi.org/10.1016/j.chemosphere.2014.09.044
Pompelli, M. F., Antunes, W. C., Ferreira, D. T., Cavalcante, P. G., Wanderley-Filho, H. C. L., & Endres, L. (2012). Allometric models for non-destructive leaf area estimation of Jatropha curcas. Biomass and bioenergy, 36, 77-85. https://doi.org/10.1016/j.biombioe.2011.10.010
Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41, 935-944. https://www.researchgate.net/profile/Muthukrishnan-Jayarama-2/publication/230641722_Rajendran_P_Muthukrishnan_JM_Gunasekaran_P_2003_Microbes_in_heavy_metal_remediation_Indian_Journal_of_Experimental_Biology_Vol41_935-944/links/583d85fe08aeda696806daae/Rajendran-P-Muthukrishnan-JM-Gunasekaran-P-2003-Microbes-in-heavy-metal-remediation-Indian-Journal-of-Experimental-Biology-Vol41-935-944.pdf
Rathika, R., Srinivasán, P., Alkahtani, J., Al-Humaid, L. A., Alwahibi, M. S., Mythili, R., & Selvankumar, T. (2021). Influence of biochar and EDTA on enhanced phytoremediation of lead-contaminated soil by Brassica juncea. Chemosphere, 263, 129513. https://doi.org/10.1016/j.chemosphere.2020.129513
Redacción Protección Laboral (2017). Minería artesanal y de pequeña escala (MAPE), Infra-mundo laboral. Interempresas. https://www.interempresas.net/Proteccion-laboral/Articulos/212825-Mineria-artesanal-y-de-pequena-escala-(MAPE)-infra-mundo-laboral.html
Reyes, Y., Vergara, I., Torres, O., Díaz-Lagos, M., & González, E. (2016). Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. Revista Ingeniería Investigación y Desarrollo, 16 (2), 66-77. https://dialnet.unirioja.es/servlet/articulo?codigo=6096110
Román-Dañobeytia, F., Huayllani, M., Michi, A., Ibarra, F., Loayza-Muro, R., Vázquez, T., & García, M. (2015). Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon. Ecological Engineering, 85, 39-46. https://doi.org/10.1016/j.ecoleng.2015.09.075
Rudas G., Espitia J., Mena J., Pardo L., Fierro J., Olivero J., C., Guerrero K., Caballero K., Vargas F., Negrete, R. (2013). Minería en Colombia: Institucionalidad, Territorio, Paradojas y Conflictos. Contraloría General de la República.
Rulkens, W., Tichy, R., Grotenhuis, J. (1998). Remediation of polluted soil and sediments: perspectives and failures. Water Science and Technology, 37(8) 27-35. https://doi.org/10.1016/S0273-1223(98)00232-7
Saadoun, I. M., & Al-Ghzawi, Z. D. (2005). Bioremediation of petroleum contamination. Biorem Aquat Terr Ecosyst, 132, 173-212. http://www.growingempowered.org/wp-content/uploads/2016/02/Bioremediation-of-Aquatic-Terrestrial-Ecosystems%E2%80%8E.pdf#page=188
Salazar, C. C., Salas, M. M., Paternina, R. U., Marrugo, J. N., & Díez, S. (2021). Mercury species in fish from a tropical river highly impacted by gold mining at the Colombian Pacific region. Chemosphere, 264, 128478. https://doi.org/10.1016/j.chemosphere.2020.128478
Sánchez, S. F. (2013). La protección penal del Medio Ambiente: análisis del artículo 338 del Código Penal colombiano (CP) sobre minería ilegal. Diálogos De Saberes, 119-134
Sarmiento, M. I., Idrovo, Á. J., Restrepo, M., Díaz, M. D. P., & González, A. (1999). Evaluación del impacto de la contaminación del embalse del Muña sobre la salud humana. Revista de Salud Pública, 1(2), 159-171.
Sarwar, N., Saifullah, Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90(6), 925-937. https://doi.org/10.1002/jsfa.3916
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., ... & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116
Seleiman, M. F., Ahmad, A., Alshehrei, F. M., AL-Huqail, A. A., Aloufi, A. S., Al-Suhaibani, N., & El-Hendawy, S. (2024). Arbuscular mycorrhizal remediation of heavy metals contaminated soils. In Bio-organic Amendments for Heavy Metal Remediation. Elsevier. 677-691. https://doi.org/10.1016/B978-0-443-21610-7.00010-0
Shah, N., Irshad, M., Murad, W. et al. IAA is more effective than EDTA in enhancing phytoremediation potential for cadmium and copper contaminated soils. BMC Plant Biol 24, 815 (2024). https://doi.org/10.1186/s12870-024-05329-5
Solís, L. Y. R., Andrade, A. T., Polo, M. H. M., Romero, M. C., Coto, C. L., Ávila, C. A., & Rojas, K. J. (2023). Arbuscular mycorrhizal fungi colonization of Jatropha curcas roots and its impact on growth and survival under greenhouse-induced hydric stress. Agriculture, 13(12), 2197. https://doi.org/10.3390/agriculture13122197
Soto, C., Gutiérrez, S., Rey-León, A., & González, E. (2010). Biotransformación de metales pesados presentes en lodos ribereños de los ríos Bogotá y Tunjuelo. Nova, 8(14), 195–205. https://doi.org/10.22490/24629448.450
Sun, L., Ma, Y., Wang, H., Huang, W., Wang, X., Han, L., Sun, W., Han, E., & Wang, B. (2018). Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar. Biochemical and Biophysical Research Communications, 497(4), 997–1002. https://doi.org/10.1016/j.bbrc.2018.02.133
Swain, G., Adhikari, P., & Mohanty, P. (2014). Phytoremediation of copper and cadmium from water using water hyacinth, Eichhornia crassipes. International Journal of Agricultural Science and Technology, 2(1), 1–7. https://doi.org/10.14355/ijast.2014.0301.01
Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International journal of chemical engineering, 2011(1), 939161. https://doi.org/10.1155/2011/939161
Tiodar, E. D., Văcar, C. L., & Podar, D. (2021). Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: challenges and perspectives. International Journal of Environmental Research and Public Health, 18(5), 2435. https://doi.org/10.3390/ijerph18052435
Toral, O. C., Iglesias, J., Montes de Oca, S., Sotolongo, J., García, S., & Torsti, M. (2008). Jatropha curcas L., una especie arbórea con potencial energético en Cuba. Pastos y Forrajes, 31(3), 191-207.
Uçüncü, E., Tunca, E., Fikirdeşici, S., Ozkan, A. D., & Altindağ, A. (2013). Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor. Bulletin of Environmental Contamination and Toxicology, 91(5), 600–604. https://doi.org/10.1007/s00128-013-1107-3
UNEP (2018) “Minamata Convention on Mercury Fact Sheet”
USEPA (2007) Method 3015A for use of Microwave assisted acid digestion of sediments, sludges, soils, and oils. U.S. Environmental Protection Agency, Cincinnati, OH.
UNODC (2020). Explotación de oro de aluvión: evidencia a partir de percepción remota. Oficina de las Naciones Unidas contra la Droga y el Delito (UNODC) y Gobierno de Colombia, 19.
US Environmental Protection Agency (EPA). (2025). What EPA is Doing to Reduce Mercury Pollution, and Exposures to Mercury. https://www.epa.gov/mercury/what-epa-doing-reduce-mercury-pollution-and-exposures-mercury
Villegas, G. (2013). La minería en Colombia en un alto porcentaje es ilegal. Congreso de la República de Colombia. Obtenido de www.senado.gov.co/: http://senado.gov.co/sala-de-prensa/opinion-de-senadores/item/16562-la-mineria-en-colombia-enun-alto-porcentaje-es-ilegal
Wang, J., Feng, X., Anderson, CW, Qiu, G., Ping, L. y Bao, Z. (2011). Fitoextracción mejorada con tiosulfato de amonio de suelos contaminados con mercurio: Resultados de un estudio en invernadero. Journal of Hazardous Materials, 186 (1), 119-127. https://doi.org/10.1016/j.jhazmat.2010.10.097
Wang, HQ, Zhao, Q., Zeng, DH, Hu, YL & Yu, ZY (2015). Remediación de un suelo contaminado con magnesio mediante enmiendas químicas y lixiviación. Degradación de la Tierra y Desarrollo, 26 (6), 613-619. https://doi.org/10.1002/ldr.2362
Wang, Z., Liu, X., & Qin, H. (2019). Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. Journal of Geochemical Exploration, 200, 159–166. https://doi.org/10.1016/j.gexplo.2019.02.005
Wang, Y., Chen, L., Chen, Y., Xue, Y., Liu, G., Zheng, X., ... & Zhong, H. (2023). Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.). Science of The Total Environment, 874, 162459. https://doi.org/10.1016/j.scitotenv.2023.162459
Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment international, 31(5), 755-762. https://doi.org/10.1016/j.envint.2005.02.004
Yao, S., Zhou, B., Duan, M., Cao, T., Wen, Z., Chen, X., Wang, H., Wang, M., Cheng, W., Zhu, H., Yang, Q., & Li, Y. (2023). Combination of biochar and Trichoderma harzianum can improve the phytoremediation efficiency of Brassica juncea and the rhizosphere micro-ecology in cadmium and arsenic contaminated soil. Plants, 12(16), 2939. https://doi.org/10.3390/plants1216293
Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment, 368(2-3), 456-464. https://doi.org/10.1016/j.scitotenv.2006.01.016
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Cordoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.program.none.fl_str_mv Maestría en Ciencias Ambientales
publisher.none.fl_str_mv Universidad de Cordoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://dspace8-unicordoba.metabuscador.org/bitstreams/064f2c50-5c3e-4ea6-a103-6d48dbee3fc1/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/ad0c4a21-fe35-40c7-bd39-f4594d3dd84a/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/f6408c6b-169b-4c17-bab3-79b6b48931cd/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/1c3e777d-868d-43a7-aef7-fc0e3f8191f4/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/876b04fe-e958-4d5f-832d-5e8d5da6a469/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/5af14a2f-c34d-4ffc-b4d0-ce3aa19a839d/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/ae3f4bfa-142f-414e-a8c8-6ca131f3a30a/download
bitstream.checksum.fl_str_mv 269b8c76e01cbbb589ba1bab3036466c
81aac67afed436e3c674d5fb8cfb5fb0
73a5432e0b76442b22b026844140d683
16125a1ce0450191e7f43802b77aeaba
d99a5cd31700cd4f91f39cfebc8c57c7
c75627a12ef0dbc505c75e30a3f6446a
a1e91b855fa1eca1c919da62c911b52d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1849968423149240320
spelling Marrugo Negrete, Jesé LuisRuiz Lora, Anselmo LuisRodríguez Díaz, Yim JamesVergara Rivera, Carlos2025-07-22T16:33:24Z2028-07-182025-07-22T16:33:24Z2025-07-15https://repositorio.unicordoba.edu.co/handle/ucordoba/9456Universidad de CórdobaRepositorio Institucional Unicórdobahttps://repositorio.unicordoba.edu.coLa Fitorremediación, es una tecnología innovadora y amigable con el medio ambiente, la cual promueve el desarrollo y aplicación de técnicas que permiten recuperar suelos contaminados con metales pesados. Esta investigación desarrolló un proceso de remediación evaluando el cultivo de Jatropha curcas como una estrategia de recuperación de suelos degradados y contaminados con mercurio en el municipio de Ayapel Córdoba, con el fin de mitigar los impactos causados al medio ambiente y la salud de sus habitantes por la actividad de minería aurífera que se desarrolla en este municipio. El área donde se llevó a cabo el proceso de fitorremediación corresponde a un terreno de 2.4 hectáreas degradado y contaminado con mercurio ubicado en la parte sur de la ciénaga de Ayapel. Se aplicó un diseño experimental completamente al azar, con 4 tratamientos y 3 repeticiones. Se midieron variables morfométricas como altura y grosor del tallo, numero de hojas y brotes, área foliar y clorofila. Se hallaron altas concentraciones de Hg total en las parcelas 5 (4.141,31 µg/kg) y 9 (2.702,87 µg/kg), niveles que superan ampliamente los límites establecidos por la OMS y la EPA para suelos agrícolas (US EPA, 2025). El tratamiento 3 mostró la mayor acumulación de Hg en raíces con una media de 609,0 µg/kg, superando ampliamente los tratamientos 1 y 2, que registran valores medios de 263,0 µg/kg y 267,0 µg/kg respectivamente. La fitorremediación, aplicada a través del cultivo de Jatropha curcas L., constituyó una estrategia técnicamente viable y ambientalmente pertinente para enfrentar la degradación, así como la contaminación por mercurio en suelos tropicales, particularmente en territorios impactados por minería aurífera artesanal como Ayapel, Córdoba.Phytoremediation is an innovative and environmentally friendly technology that promotes the development and application of techniques for the recovery of soils contaminated with heavy metals. This research developed a remediation process evaluating the cultivation of Jatropha curcas as a recovery strategy for degraded and mercury-contaminated soils in the municipality of Ayapel, Córdoba. This strategy aims to mitigate the impacts on the environment and the health of its inhabitants caused by the gold mining activity carried out in this municipality. The area where the phytoremediation process was carried out corresponds to a 2.4-hectare degraded and mercury-contaminated plot located in the southern part of the Ayapel swamp. A completely randomized experimental design was applied, with 4 treatments and 3 replications. Morphometric variables such as stem height and thickness, number of leaves and shoots, leaf area, and chlorophyll were measured. High concentrations of total Hg were found in plots 5 (4,141.31 µg/kg) and 9 (2,702.87 µg/kg), levels that far exceed the limits established by the WHO and the EPA for agricultural soils (US EPA, 2025). Treatment 3 showed the highest accumulation of Hg in roots with an average of 609.0 µg/kg, far exceeding treatments 1 and 2, which recorded average values of 263.0 µg/kg and 267.0 µg/kg, respectively. Phytoremediation, applied through the cultivation of Jatropha curcas L., constituted a technically viable and environmentally relevant strategy to address degradation, as well as mercury contamination, in tropical soils, particularly in territories impacted by artisanal gold mining such as Ayapel, Córdoba.1. INTRODUCCIÓN2. MARCO DE REFERENCIA2.1. ANTECEDENTES2.2. MARCO TEÓRICO2.3. MARCO CONCEPTUAL3. OBJETIVOS3.1. OBJETIVO GENERAL3.2. OBJETIVOS ESPECÍFICOS4. MARCO METODOLÓGICO4.1. TIPO DE INVESTIGACIÓN4.2. ÁREA Y/O OBJETO DE ESTUDIO4.3. FASES DE LA INVESTIGACIÓN4.3.1. Fase I4.3.2. Fase II4.3.3. Fase III5. RESULTADOS Y DISCUSIÓN6. CONCLUSIONES Y RECOMENDACIONESREFERENCIASANEXOSMaestríaMagíster en Ciencias AmbientalesTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CordobaFacultad de Ciencias BásicasMaestría en Ciencias AmbientalesCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEvaluación de Jatropha curcas L. como estrategia de recuperación de suelos degradados y contaminados por mercurio en Ayapel CordobaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdullahi, Z., & Abdulrahman, A. A. (2021). Field accumulation and translocation of potentially toxic elements (PTEs) from industrial soil by the biodiesel plant, Jatropha curcas. Bayero Journal of Pure and Applied Sciences, 14(1), 195-206. https://doi.org/10.4314/bajopas.v14i1.23Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075Álvarez, P. M., Alés, F. J. A., & García, J. F. M. (2019). Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. Journal of environmental management, 231, 886-895. https://doi.org/10.1016/j.jenvman.2018.10.052Ameh, E. G., & Aina, D. O. (2020). Search for autochthonous plants as accumulators and translocators in a toxic metal-polluted coal mine soil in Okaba, Nigeria. Scientific African, 10, e00630. https://doi.org/10.1016/j.sciaf.2020.e00630Antoniadis, V., Shaheen, S. M., Stärk, H. J., Wennrich, R., Levizou, E., Merbach, I., & Rinklebe, J. (2021). Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environment International, 146, 106233. https://doi.org/10.1016/j.envint.2020.106233Awotedu, O. L., & Ogunbamowo, P. O. (2019). Comparative heavy metal uptake and phytoremediation potential of three Jatropha species. Environment & Ecosystem Science (EES), 3(2), 26-30. http://doi.org/10.26480/ees.02.2019.26.30Beltrán, M. E. P., & Gómez, A. M. R. (2015). Metales pesados (Cd, Cr y Hg): su impacto en el ambiente y posibles estrategias biotecnológicas para su remediación. I3+, 2(2), 82-112. https://doi.org/10.24267/issn.2346-2329Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479(2), 233-248. https://doi.org/10.1016/S0003-2670(02)01550-7Bolívar-Anillo, Hernando José, Contreras-Zentella, Martha Lucinda, & Teherán-Sierra, Luis Guillermo. (2016). Burkholderia tropica una bacteria con gran potencial para su uso en la agricultura. TIP. Revista especializada en ciencias químico-biológicas, 19(2), 102-108. https://doi.org/10.1016/j.recqb.2016.06.003Borker, A. R., Mane, A. V., Saratale, G. D., & Pathade, G. R. (2013). Phytoremediation potential of Eichhornia crassipes for the treatment of cadmium in relation with biochemical and water parameters. Emirates Journal of Food & Agriculture (EJFA), 25(6), 443-456. https://doi.org/10.9755/ejfa.v25i6.13970Bravo, M., Luna, J., Quesada, C., Segura, M., Pérez, J. (2016). Actividad minera y su impacto en la salud humana. Revista Ciencia UNEMI, 9(17), 92-100. https://core.ac.uk/download/pdf/276552164.pdfCarvalho Dos Santos, M., & Lenzi, E. (2000). The use of aquatic macrophytes (Eichhornia crassipes) as a biological filter in the treatment of lead contaminated effluents. Environmental Technology, 21(6), 615-622. https://doi.org/10.1080/09593330.2000.9618946Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36(5), 1429-1443. https://doi.org/10.2134/jeq2006.0514Cherian, S., & Oliveira, M. M. (2005). Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental science & technology, 39(24), 9377-9390. https://doi.org/10.1021/es051134lCIAT. (1993). Manual de Análisis de Suelos y Tejido Vegetal. Documento de trabajo No. 129. Palmira. 103p. http://ciat-library.ciat.cgiar.org/Articulos_Ciat/Digital/S593.M2_Manual_de_an%C3%A1lisis_de_suelos_y_tejido_vegetal_Una_gu%C3%ADa_te%C3%B3rica_y_pr%C3%A1ctica_de_metodologia.pdfContraloría General de la República. (2012). Cerca del 80% de la minería en Colombia es ilegal, advierte la Contraloría. Obtenido de Villegas, 2013 y Juarez, 2016.Contraloría General de la República. (2013). La explotación ilícita de los recursos minerales en Colombia Casos del Valle del Cauca, Choco efectos sociales y ambientales.Contreras, Y. A. (2021). Uso de plantas hiperacumuladoras en minería conceptos y aplicaciones. [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio institucional de la Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/79356Cuadros T, D. (2010) Uso, efectos y recuperación del mercurio en la minería aluvial en Madre de Dios. Ministerio de Energía y Minas Dirección general de minería oficina desconcentrada Madre de Dios.CVS/INGEOMINAS. (2005). Inventario y diagnóstico minero ambiental del Departamento de Córdoba. Monografía municipio Ayapel. Convenio interadministrativo 029 – 2003. Bogotá D.C.CVS. (2014). Diagnóstico minero – ambiental de la minería de oro y sus efectos ambientales en el Departamento de Córdoba – Periodo 2009 a 2014. Informe de Pasantía, Ingeniería Ambiental, U. de Córdoba, Montería, Colombia.Diels, L., De Smet, M., Hooyberghs, L. y Corbisier, P. (1999). Heavy metals bioremediation of soil. Molecular biotechnology, 12, 149-158. https://doi.org/10.1385/MB:12:2:149Echeverry, D. L. O., & Díaz, S. R. (2016). Minería aurífera ilegal en el resguardo indígena alto Andágueda. Novum Jus, 10(1), 135-149. https://doi.org/10.14718/NovumJus.2016.10.1.6Erusani, A. S., Arofah, N., Azahra, F., Nurhasni, N., & Inayah, T. (2024). Phytoremediation of mercury and cyanide contaminated soils by physic nut (jatropha curcas l.) and citronella grass (cymbopogon nardus). Jurnal Ilmu Lingkungan, 22(6), 1581-1593. https://doi.org/10.14710/jil.22.6.1581-1593Esdaile, LJ, & Chalker, JM (2018). El problema del mercurio en la minería de oro artesanal y a pequeña escala. Chemistry–A European Journal , 24 (27), 6905-6916. https://doi.org/10.1002/chem.201704840Favas, P. J., Pratas, J., & Prasad, M. N. V. (2012). Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Science of the total Environment, 433, 390-397. https://doi.org/10.1016/j.scitotenv.2012.06.091Fernández, S., Poschenrieder, C., Marcenò, C., G allego, J. R., Jiménez-Gámez, D., Bueno, A., & Afif, E. (2017). Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. Journal of Geochemical Exploration, 174, 10-20. https://doi.org/10.1016/j.gexplo.2016.05.015Flores Calla, S. S. (2017). Evaluación de la Capacidad de Fitorremediación de Chenopodium Album L. (Liccha) en Aguas Contaminadas con Mercurio, Plomo y Cadmio. https://repositorio.ucsm.edu.pe/items/bda75599-fbe1-4b6e-aa01-646342725cadGarbisu, C., & Alkorta, I. (2003). Basic concepts on heavy metal soil bioremediation. ejmp & ep European Journal of Mineral Processing and Environmental Protection., 3(1), 58-66. https://www.911metallurgist.com/wp-content/uploads/2015/12/Basic-concepts-on-heavy-metal-soil-bioremediation.pdfGarcía, J. F. M., González, M. D. C. C., López, M. D. C. B., Torres, M. G., Barbin, D., & Mateos, P. Á. (2020). Metal accumulation by Jatropha curcas L. adult plants grown on heavy metal-contaminated soil. Plants, 9(4), 418. https://doi.org/10.3390/plants9040418González Pérez, L. E. (2020). Fitorremediación a escala piloto de suelos contaminados con mercurio y cobre usando Jatropha curcas L en zona minera el Alacrán. Tesis de Maestría, Universidad de Córdoba-Colombia. [Tesis de Maestría, Universidad de Córdoba]. Repositorio Institucional de la Universidad de Córdoba. https://repositorio.unicordoba.edu.co/entities/publication/fd448a22-38c0-4116-8441-aa4925134fc2Greipsson, S. (2011). Ecología de la Restauración. Jones & Bartlett Learning. https://www.researchgate.net/publication/270279766_PhytoremediationGrifoni, M., Pedron, F., Petruzzelli, G., Rosellini, I., Barbafieri, M., Franchi, E. & Bagatin, R. (2017). Evaluación de la fitoextracción de mercurio y arsénico en cosechas repetidas en un suelo industrial multicontaminado. AIMS Environmental Science, 4 (2). https://doi.org/10.3390/environments4040067Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación (6ª ed.). México: McGraw Hill Interamericana Editores S.A. de C.V. https://dialnet.unirioja.es/servlet/libro?codigo=775008Hernández-Sampieri, R., & Mendoza, C. (2020). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta.Hinton, J., & Veiga, M. (2001). Mercury contaminated sites: a review of remedial solutions. In Proceedings of the NIMD (National Institute for Minamata Disease) Forum Minamata, Japan. 73-84. http://www.mcilvainecompany.com/Decision_Tree/subscriber/Tree/DescriptionTextLinks/Minamata_Forum_2001.pdfHuang, G-Y., & Wang, Y.-S. (2010). Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals. Journal of Hazardous Materials, 182(1-3), 848-854. https://doi.org/10.1016/j.jhazmat.2010.06.121Hussain, B., Abbas, Y., Ur-Rahman, S., Ali, H., Zafar, M., Ali, S., Ashraf, M. N., Zehra, Q., Truifo Leva Espinoza, S., & Díaz Valderrama, J. R. (2023). Especiación, fraccionamiento, biodisponibilidad y transferencia de metales y metaloides hacia las plantas. En Soil Pollution (Cap. 2). Elsevier. https://doi.org/10.1016/B978-0-323-91675-2.00026-3Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2014). Estudio nacional del agua. Obtenido de http://documentacion.ideam.gov.co /openbiblio/bvirtual/023080/ENA_2014.pdfJiménez, A. M. G. (2005). Interacción del mercurio con los componentes de las aguas residuales. [Trabajo de grado, Universidad Nacional de Colombia]. Repositorio Institucional de la Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/2754Juárez, F. (2016). La minería ilegal en Colombia: un conflicto de narrativas. El Agora USB, 16(1), 135-146. http://www.scielo.org.co/scielo.php?pid=S1657-80312016000100007&script=sci_arttextKavamura, V. N., & Esposito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology advances, 28(1), 61-69. https://doi.org/10.1016/j.biotechadv.2009.09.002Kelley, C., Gaither, K. K., Baca-Spry, A., & Cruickshank, B. J. (2000). Incorporation of phytoremediation strategies into the introductory chemistry laboratory. The Chemical Educator, 5, 140-143. https://doi.org/10.1007/s00897000383aLam, E. J., Cánovas, M., Gálvez, M. E., Montofré, Í. L., Keith, B. F., & Faz, Á. (2017). Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. Journal of Geochemical Exploration, 182, 210-217. https://doi.org/10.1016/j.gexplo.2017.06.015Li, Y. M., Chaney, R., Brewer, E., Roseberg, R., Angle, J. S., Baker, A., & Nelkin, J. (2003). Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant and soil, 249 (1), 107-115.Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350-382). Academic PressLillo, J. (2011). Impactos de la minería en el medio natural. Grupo de Geología Universidad Rey Juan Carlos. https://reformaminera.wordpress.com/wp-content/uploads/2008/06/impactos-de-la-mineria-en-el-medio-natural.pdfLiu, Z., Chen, B., Wang, L. A., Urbanovich, O., Nagorskaya, L., Li, X., & Tang, L. (2020). A review on phytoremediation of mercury contaminated soils. Journal of Hazardous Materials, 400, 123138. https://doi.org/10.1016/j.jhazmat.2020.123138Maiti, R. K., Piñero, J. L. H., & Oreja, J. A. G. (2004). Plant based bioremediation and mechanisms of heavy metal. Proceedings of the Indian National Science Academy. Part B, Reviews and Tracts - Biological Sciences, 70(1), 1-12. https://www.researchgate.net/profile/Jose-Gonzalez-Oreja/publication/230583638_Plant_based_bioremediation_and_mechanisms_of_heavy_metal_tolerance_of_plants_a_review/links/00b495200cc36e5d4c000000/Plant-based-bioremediation-and-mechanisms-of-heavy-metal-tolerance-of-plants-a-review.pdfMamani Pari, G. (2013). Nivel de conocimiento sobre medidas preventivas y efectos tóxicos del Mercurio en trabajadores de la mina la Rinconada, Puno-2012. [Trabajo de grado, Universidad Nacional del Altiplano]. Repositorio Institucional de la Universidad Nacional del Altiplano. https://repositorio.unap.edu.pe/bitstream/handle/20.500.14082/2169/Mamani_Pari_Gleny.pdf?sequence=1&isAllowed=yMarinho, C. H. (2017). Procesos de adsorción-desorción asociados a metales pesados en un sistema macromareal patagónico [Tesis doctoral, Universidad Nacional del Comahue]. Repositorio Digital Institucional de la Universidad Nacional del Comahue. http://rdi.uncoma.edu.ar/handle/uncomaid/16115Marrugo, J. N., Durango, J. H., Pinedo, J. H., Olivero, J. V., & Díez, S. (2015). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58-63. https://doi.org/10.1016/j.chemosphere.2014.12.073Marrugo, J. N., Marrugo, S. M., Pinedo, J. H., Durango, J. H., & Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of the total environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117Marrugo, J. N., Durango, J. H., Pinedo, J. H., Enamorado, G. M., & Díez, S. (2016). Mercury uptake and effects on growth in Jatropha curcas. Journal of Environmental Sciences, 48, 120-125. https://doi.org/10.1016/j.jes.2015.10.036Marrugo, J. N., Pinedo, J. H., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021Marrugo, S. M., Turull, M., Montes, G. E., Pico, M. V., Marrugo, J. L. N., & Díez, S. (2021). Phytoremediation of mercury in soils impacted by gold mining: A case-study of Colombia. In Bioremediation for Environmental Sustainability, 145-160. Elsevier. https://doi.org/10.1016/B978-0-12-820524-2.00007-9Massoukou, R. P., Poirier, V., Nguema Ndoutoumou, P., & Epule, T. E. (2024). Growing Jatropha curcas L. Improves the Chemical Characteristics of Degraded Tropical Soils. Forests, 15(10), 1709. https://doi.org/10.3390/f15101709McGrath, SP, Zhao, FJ y Lombi, E. (2001). Procesos vegetales y rizosfera implicados en la fitorremediación de suelos contaminados con metales. Plant and floor , 232 (1), 207-214.Memon, A. R., & Schröder, P. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 16, 162-175. https://doi.org/10.1007/s11356-008-0079-zMinisterio de Ambiente y Desarrollo Sostenible. (2018). Decreto 356 de 2018. https: https://www.minambiente.gov.co/documento-normativa/decreto-356-de-2018/Miretzky, P., Saralegui, A., & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57(8), 997-1005. https://doi.org/10.1016/j.chemosphere.2004.07.024MME/Unicor. (2017). Concentraciones de mercurio en aire y en suelo, en las zonas de influencia minera de los diez principales departamentos productores de oro en Colombia. Convenio GGC 524. Informe Ejecutivo. 33p.Moon, J. K., Kim, P. G., Lee, K. Y., Kwon, J. H., & Hong, Y. (2023). Development of an in situ equilibrium polydimethylsiloxane passive sampler for measuring volatile organic compounds in soil vapor. Chemosphere, 325, 138419. https://doi.org/10.1016/j.chemosphere.2023.138419Moreno-Jiménez, E., Esteban, E., Carpena-Ruiz, R. O., & Peñalosa, J. M. (2009). Arsenic-and mercury-induced phytotoxicity in the Mediterranean shrubs Pistacia lentiscus and Tamarix gallica grown in hydroponic culture. Ecotoxicology and Environmental Safety, 72(6), 1781-1789. https://doi.org/10.1016/j.ecoenv.2009.04.022Mujahid, F., Shafaqat, A., Rizwan, M., Qasim, A., Abbas, F., Bukhari, S. A. H., Rashid, S., & Longhua, W. (2017). Citric acid assisted phytoextraction of chromium by sunflower: Morphological, physiological and biochemical alterations in plants. Ecotoxicology and Environmental Safety, 145, 357–365. https://doi.org/10.1016/j.ecoenv.2017.07.016Munive Cerrón, Rubén, Loli Figueroa, Oscar, Azabache Leyton, Andrés, Gamarra Sánchez, Gilberto. (2018). Fitorremediación con Maíz (Zea mays L.) y compost de Stevia en suelos degradados por contaminación con metales pesados. Scientia Agropecuaria, 9(4), 551-560. https://doi.org/10.17268/sci.agropecu.2018.04.11Navari, F. I. & Quartacci, M. (2011). Phytoremediation of metals. Minerva Biotechnol. 13, 73-83. https://www.researchgate.net/publication/279769731_Phytoremediation_of_metals_Tolerance_mechanisms_against_oxidative_stressOdoh, C. K., Zabbey, N., Sam, K., & Eze, C. N. (2019). Status, progress and challenges of phytoremediation-An African scenario. Journal of environmental management, 237, 365-378. https://doi.org/10.1016/j.jenvman.2019.02.090Oyarzun, R., Higueras, P., & Lillo, J. (2011). Minería ambiental: una introducción a los impactos y su remedación. Ediciones GEMM-Aula2puntonet. https://docta.ucm.es/entities/publication/9e793c84-119a-400b-a861-7a7f97685d81Pabón, S. E., Benítez, R., Sarria, R. A., & Gallo, J. A. (2020). Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión. Entre Ciencia e Ingeniería, 14(27), 9-18. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1909-83672020000100009Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184, 105-126. https://doi.org/10.1007/s11270-007-9401-5Paisio, C. E., González, P. S., Talano, M. A., & Agostini, E. (2012). Remediación biológica de mercurio: recientes avances. Revista Latinoamericana de Biotecnología Ambiental y Algal, 3(2), 119-146. https://www.solabiaa.org/ojs3/index.php/RELBAA/article/view/38Palchetti, E., Grassi, C., Masoni, A., Zubieta, C. G., Valenzi, E., Whittaker, A., ... & Vecchio, V. (2016). Effects of lead (Pb) on Jatropha curcas L. growth under hydroponic conditions. Journal of Agriculture and Environment for International Development (JAEID), 110(2), 205-216. https://doi.org/10.12895/jaeid.2016110.449Pandey, V. C., Bajpai, O., & Singh, N. (2016). Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 54, 58-73. https://doi.org/10.1016/j.rser.2015.09.078Paz, J. F., Lu, H., Fu, S., Mendez, A., & Gasco, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid earth, 5(1), 65-75. https://doi.org/10.5194/se-5-65-2014Pérez, E. H., Muñoz Gómez, F. A., & Sarria Villa, R. A. (2022). Métodos para el diagnóstico ambiental de suelos. Editorial Universidad del Cauca. https://books.google.es/books?id=kXbREAAAQBAJPinedo-Hernández, J., Marrugo-Negrete, J., y Díez, S. (2015). Especiación y biodisponibilidad del mercurio en sedimentos impactados por la minería de oro en Colombia. Chemosphere, 119,1289-1295. https://doi.org/10.1016/j.chemosphere.2014.09.044Pompelli, M. F., Antunes, W. C., Ferreira, D. T., Cavalcante, P. G., Wanderley-Filho, H. C. L., & Endres, L. (2012). Allometric models for non-destructive leaf area estimation of Jatropha curcas. Biomass and bioenergy, 36, 77-85. https://doi.org/10.1016/j.biombioe.2011.10.010Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41, 935-944. https://www.researchgate.net/profile/Muthukrishnan-Jayarama-2/publication/230641722_Rajendran_P_Muthukrishnan_JM_Gunasekaran_P_2003_Microbes_in_heavy_metal_remediation_Indian_Journal_of_Experimental_Biology_Vol41_935-944/links/583d85fe08aeda696806daae/Rajendran-P-Muthukrishnan-JM-Gunasekaran-P-2003-Microbes-in-heavy-metal-remediation-Indian-Journal-of-Experimental-Biology-Vol41-935-944.pdfRathika, R., Srinivasán, P., Alkahtani, J., Al-Humaid, L. A., Alwahibi, M. S., Mythili, R., & Selvankumar, T. (2021). Influence of biochar and EDTA on enhanced phytoremediation of lead-contaminated soil by Brassica juncea. Chemosphere, 263, 129513. https://doi.org/10.1016/j.chemosphere.2020.129513Redacción Protección Laboral (2017). Minería artesanal y de pequeña escala (MAPE), Infra-mundo laboral. Interempresas. https://www.interempresas.net/Proteccion-laboral/Articulos/212825-Mineria-artesanal-y-de-pequena-escala-(MAPE)-infra-mundo-laboral.htmlReyes, Y., Vergara, I., Torres, O., Díaz-Lagos, M., & González, E. (2016). Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. Revista Ingeniería Investigación y Desarrollo, 16 (2), 66-77. https://dialnet.unirioja.es/servlet/articulo?codigo=6096110Román-Dañobeytia, F., Huayllani, M., Michi, A., Ibarra, F., Loayza-Muro, R., Vázquez, T., & García, M. (2015). Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon. Ecological Engineering, 85, 39-46. https://doi.org/10.1016/j.ecoleng.2015.09.075Rudas G., Espitia J., Mena J., Pardo L., Fierro J., Olivero J., C., Guerrero K., Caballero K., Vargas F., Negrete, R. (2013). Minería en Colombia: Institucionalidad, Territorio, Paradojas y Conflictos. Contraloría General de la República.Rulkens, W., Tichy, R., Grotenhuis, J. (1998). Remediation of polluted soil and sediments: perspectives and failures. Water Science and Technology, 37(8) 27-35. https://doi.org/10.1016/S0273-1223(98)00232-7Saadoun, I. M., & Al-Ghzawi, Z. D. (2005). Bioremediation of petroleum contamination. Biorem Aquat Terr Ecosyst, 132, 173-212. http://www.growingempowered.org/wp-content/uploads/2016/02/Bioremediation-of-Aquatic-Terrestrial-Ecosystems%E2%80%8E.pdf#page=188Salazar, C. C., Salas, M. M., Paternina, R. U., Marrugo, J. N., & Díez, S. (2021). Mercury species in fish from a tropical river highly impacted by gold mining at the Colombian Pacific region. Chemosphere, 264, 128478. https://doi.org/10.1016/j.chemosphere.2020.128478Sánchez, S. F. (2013). La protección penal del Medio Ambiente: análisis del artículo 338 del Código Penal colombiano (CP) sobre minería ilegal. Diálogos De Saberes, 119-134Sarmiento, M. I., Idrovo, Á. J., Restrepo, M., Díaz, M. D. P., & González, A. (1999). Evaluación del impacto de la contaminación del embalse del Muña sobre la salud humana. Revista de Salud Pública, 1(2), 159-171.Sarwar, N., Saifullah, Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90(6), 925-937. https://doi.org/10.1002/jsfa.3916Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., ... & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116Seleiman, M. F., Ahmad, A., Alshehrei, F. M., AL-Huqail, A. A., Aloufi, A. S., Al-Suhaibani, N., & El-Hendawy, S. (2024). Arbuscular mycorrhizal remediation of heavy metals contaminated soils. In Bio-organic Amendments for Heavy Metal Remediation. Elsevier. 677-691. https://doi.org/10.1016/B978-0-443-21610-7.00010-0Shah, N., Irshad, M., Murad, W. et al. IAA is more effective than EDTA in enhancing phytoremediation potential for cadmium and copper contaminated soils. BMC Plant Biol 24, 815 (2024). https://doi.org/10.1186/s12870-024-05329-5Solís, L. Y. R., Andrade, A. T., Polo, M. H. M., Romero, M. C., Coto, C. L., Ávila, C. A., & Rojas, K. J. (2023). Arbuscular mycorrhizal fungi colonization of Jatropha curcas roots and its impact on growth and survival under greenhouse-induced hydric stress. Agriculture, 13(12), 2197. https://doi.org/10.3390/agriculture13122197Soto, C., Gutiérrez, S., Rey-León, A., & González, E. (2010). Biotransformación de metales pesados presentes en lodos ribereños de los ríos Bogotá y Tunjuelo. Nova, 8(14), 195–205. https://doi.org/10.22490/24629448.450Sun, L., Ma, Y., Wang, H., Huang, W., Wang, X., Han, L., Sun, W., Han, E., & Wang, B. (2018). Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar. Biochemical and Biophysical Research Communications, 497(4), 997–1002. https://doi.org/10.1016/j.bbrc.2018.02.133Swain, G., Adhikari, P., & Mohanty, P. (2014). Phytoremediation of copper and cadmium from water using water hyacinth, Eichhornia crassipes. International Journal of Agricultural Science and Technology, 2(1), 1–7. https://doi.org/10.14355/ijast.2014.0301.01Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International journal of chemical engineering, 2011(1), 939161. https://doi.org/10.1155/2011/939161Tiodar, E. D., Văcar, C. L., & Podar, D. (2021). Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: challenges and perspectives. International Journal of Environmental Research and Public Health, 18(5), 2435. https://doi.org/10.3390/ijerph18052435Toral, O. C., Iglesias, J., Montes de Oca, S., Sotolongo, J., García, S., & Torsti, M. (2008). Jatropha curcas L., una especie arbórea con potencial energético en Cuba. Pastos y Forrajes, 31(3), 191-207.Uçüncü, E., Tunca, E., Fikirdeşici, S., Ozkan, A. D., & Altindağ, A. (2013). Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor. Bulletin of Environmental Contamination and Toxicology, 91(5), 600–604. https://doi.org/10.1007/s00128-013-1107-3UNEP (2018) “Minamata Convention on Mercury Fact Sheet”USEPA (2007) Method 3015A for use of Microwave assisted acid digestion of sediments, sludges, soils, and oils. U.S. Environmental Protection Agency, Cincinnati, OH.UNODC (2020). Explotación de oro de aluvión: evidencia a partir de percepción remota. Oficina de las Naciones Unidas contra la Droga y el Delito (UNODC) y Gobierno de Colombia, 19.US Environmental Protection Agency (EPA). (2025). What EPA is Doing to Reduce Mercury Pollution, and Exposures to Mercury. https://www.epa.gov/mercury/what-epa-doing-reduce-mercury-pollution-and-exposures-mercuryVillegas, G. (2013). La minería en Colombia en un alto porcentaje es ilegal. Congreso de la República de Colombia. Obtenido de www.senado.gov.co/: http://senado.gov.co/sala-de-prensa/opinion-de-senadores/item/16562-la-mineria-en-colombia-enun-alto-porcentaje-es-ilegalWang, J., Feng, X., Anderson, CW, Qiu, G., Ping, L. y Bao, Z. (2011). Fitoextracción mejorada con tiosulfato de amonio de suelos contaminados con mercurio: Resultados de un estudio en invernadero. Journal of Hazardous Materials, 186 (1), 119-127. https://doi.org/10.1016/j.jhazmat.2010.10.097Wang, HQ, Zhao, Q., Zeng, DH, Hu, YL & Yu, ZY (2015). Remediación de un suelo contaminado con magnesio mediante enmiendas químicas y lixiviación. Degradación de la Tierra y Desarrollo, 26 (6), 613-619. https://doi.org/10.1002/ldr.2362Wang, Z., Liu, X., & Qin, H. (2019). Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. Journal of Geochemical Exploration, 200, 159–166. https://doi.org/10.1016/j.gexplo.2019.02.005Wang, Y., Chen, L., Chen, Y., Xue, Y., Liu, G., Zheng, X., ... & Zhong, H. (2023). Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.). Science of The Total Environment, 874, 162459. https://doi.org/10.1016/j.scitotenv.2023.162459Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment international, 31(5), 755-762. https://doi.org/10.1016/j.envint.2005.02.004Yao, S., Zhou, B., Duan, M., Cao, T., Wen, Z., Chen, X., Wang, H., Wang, M., Cheng, W., Zhu, H., Yang, Q., & Li, Y. (2023). Combination of biochar and Trichoderma harzianum can improve the phytoremediation efficiency of Brassica juncea and the rhizosphere micro-ecology in cadmium and arsenic contaminated soil. Plants, 12(16), 2939. https://doi.org/10.3390/plants1216293Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment, 368(2-3), 456-464. https://doi.org/10.1016/j.scitotenv.2006.01.016BioacumulaciónDescontaminaciónFitorremediaciónMinería auríferaPhytoremediationBioaccumulationDecontaminationGold miningPublicationORIGINALRuiz Lora, Anselmo Luis .pdfRuiz Lora, Anselmo Luis .pdfapplication/pdf8029460https://dspace8-unicordoba.metabuscador.org/bitstreams/064f2c50-5c3e-4ea6-a103-6d48dbee3fc1/download269b8c76e01cbbb589ba1bab3036466cMD51trueAnonymousREAD2028-07-14Formato de autorización .pdfFormato de autorización .pdfapplication/pdf1362323https://dspace8-unicordoba.metabuscador.org/bitstreams/ad0c4a21-fe35-40c7-bd39-f4594d3dd84a/download81aac67afed436e3c674d5fb8cfb5fb0MD52falseLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://dspace8-unicordoba.metabuscador.org/bitstreams/f6408c6b-169b-4c17-bab3-79b6b48931cd/download73a5432e0b76442b22b026844140d683MD53falseAnonymousREADTEXTRuiz Lora, Anselmo Luis .pdf.txtRuiz Lora, Anselmo Luis .pdf.txtExtracted texttext/plain101748https://dspace8-unicordoba.metabuscador.org/bitstreams/1c3e777d-868d-43a7-aef7-fc0e3f8191f4/download16125a1ce0450191e7f43802b77aeabaMD54falseAnonymousREAD2028-07-14Formato de autorización .pdf.txtFormato de autorización .pdf.txtExtracted texttext/plain126https://dspace8-unicordoba.metabuscador.org/bitstreams/876b04fe-e958-4d5f-832d-5e8d5da6a469/downloadd99a5cd31700cd4f91f39cfebc8c57c7MD56falseTHUMBNAILRuiz Lora, Anselmo Luis .pdf.jpgRuiz Lora, Anselmo Luis .pdf.jpgGenerated Thumbnailimage/jpeg7172https://dspace8-unicordoba.metabuscador.org/bitstreams/5af14a2f-c34d-4ffc-b4d0-ce3aa19a839d/downloadc75627a12ef0dbc505c75e30a3f6446aMD55falseAnonymousREAD2028-07-14Formato de autorización .pdf.jpgFormato de autorización .pdf.jpgGenerated Thumbnailimage/jpeg15160https://dspace8-unicordoba.metabuscador.org/bitstreams/ae3f4bfa-142f-414e-a8c8-6ca131f3a30a/downloada1e91b855fa1eca1c919da62c911b52dMD57falseucordoba/9456oai:dspace8-unicordoba.metabuscador.org:ucordoba/94562025-07-23 03:01:37.973https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025embargo2028-07-14https://dspace8-unicordoba.metabuscador.orgRepositorio institucional Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K