Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design

Trabajo de investigación

Autores:
Guzmán-Bernal, Juan Pablo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
spa
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/27067
Acceso en línea:
https://hdl.handle.net/10983/27067
Palabra clave:
INTELIGENCIA ARTIFICIAL
MICRO-INJECTION
INJECTION-MOLDING
MOLD DESIGN
POLYMER
ARTIFICIAL INTELLIGENCE
CAE
Rights
openAccess
License
Copyright-Universidad Católica de Colombia, 2021
id UCATOLICA2_dc77a4e14c89cc929c9b6ada30a07380
oai_identifier_str oai:repository.ucatolica.edu.co:10983/27067
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design
title Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design
spellingShingle Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design
INTELIGENCIA ARTIFICIAL
MICRO-INJECTION
INJECTION-MOLDING
MOLD DESIGN
POLYMER
ARTIFICIAL INTELLIGENCE
CAE
title_short Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design
title_full Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design
title_fullStr Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design
title_full_unstemmed Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design
title_sort Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design
dc.creator.fl_str_mv Guzmán-Bernal, Juan Pablo
dc.contributor.advisor.none.fl_str_mv Chaves-Acero, Miryam Liliana
dc.contributor.author.none.fl_str_mv Guzmán-Bernal, Juan Pablo
dc.subject.lemb.none.fl_str_mv INTELIGENCIA ARTIFICIAL
topic INTELIGENCIA ARTIFICIAL
MICRO-INJECTION
INJECTION-MOLDING
MOLD DESIGN
POLYMER
ARTIFICIAL INTELLIGENCE
CAE
dc.subject.proposal.spa.fl_str_mv MICRO-INJECTION
INJECTION-MOLDING
MOLD DESIGN
POLYMER
ARTIFICIAL INTELLIGENCE
CAE
description Trabajo de investigación
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-02-10T20:16:00Z
dc.date.available.none.fl_str_mv 2022
2022-02-10T20:16:00Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_fa2ee174bc00049f
http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TM
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.none.fl_str_mv Guzmán-Bernal, J. P. (2021). Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design. Tesis de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Maestría en Ingeniería y Gestión de la innovación. Bogotá, Colombia
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10983/27067
identifier_str_mv Guzmán-Bernal, J. P. (2021). Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design. Tesis de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Maestría en Ingeniería y Gestión de la innovación. Bogotá, Colombia
url https://hdl.handle.net/10983/27067
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdullahi, A. A., Choudhury, I. A., & Azuddin, M. (2016). Effect of runner dimensions on cavity filling in microinjection moulding for defect-free parts. ARPN Journal of Engineering and Applied Sciences, 11(12), 7788–7793.
Alfreda Campo, E. (2006). The Complete Part Design Handbook: for Injection Molding of Thermoplastics.
Baruffi, F., Charalambis, A., Calaon, M., Elsborg, R., & Tosello, G. (2018). Comparison of micro and conventional injection moulding based on process precision and accuracy. Procedia CIRP, 75, 149–154. https://doi.org/10.1016/j.procir.2018.04.046
Bellantone, V., Surace, R., Modica, F., & Fassi, I. (2018). Evaluation of mold roughness influence on injected thin micro-cavities. International Journal of Advanced Manufacturing Technology, 94(9–12), 4565–4575. https://doi.org/10.1007/s00170-017-1178-0
Boden, M. A. (1996). Artificial Intelligence (Handbook of Perception and Cognition).
Burke, E. K., & Graham, K. (2014). Search methodologies: Introductory tutorials in optimization and decision support techniques, second edition. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Second Edition. https://doi.org/10.1007/978-1-4614-6940-7
Cabrera, E., Castro, J. M., Yi, A. Y., & Lee, L. J. (n.d.). Microinjection Molding. In Advanced Injection Molding Technologies (First Edit). Carl Hanser Verlag GmbH & Co. KG. https://doi.org/10.1016/B978-1-56990-603-3.50010-9
Chaubey, S. K., & Jain, N. K. (2018). State-of-art review of past research on manufacturing of meso and micro cylindrical gears. In Precision Engineering (Vol. 51, pp. 702–728). Elsevier Inc. https://doi.org/10.1016/j.precisioneng.2017.07.014
Chaves A, M. L., & Vizan, A. (n.d.). - Document - Expert system to assist in setting of micro injection machines. Retrieved May 17, 2020, from https://go.gale.com/ps/anonymous?id=GALE%7CA246014198&sid=googleScholar&v=2.1& it=r&linkaccess=abs&issn=17269679&p=AONE&sw=w
Che, Z. H. (2010). PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding. Computers and Industrial Engineering, 58(4), 625–637. https://doi.org/10.1016/j.cie.2010.01.004
Che, Z. H., Wang, H. S., & Wang, Y. N. (2007). Cost estimation of plastic injection products through back-propagation network. https://www.researchgate.net/publication/234832207
Colombia, el séptimo país más preparado en materia tecnológica de América Latina - Cluster de Software y TI, Cámara de Comercio de Bogotá. (n.d.). Retrieved November 8, 2021, from https://www.ccb.org.co/Clusters/Cluster-de-Software-y-TI/Noticias/2018/Mayo2018/Colombia-el-septimo-pais-mas-preparado-en-materia-tecnologica-de-America-Latina
Colombia entierra anualmente 2 billones de pesos en plásticos que se pueden reciclar - Cluster de Comunicación Gráfica, Cámara de Comercio de Bogotá. (n.d.). Retrieved November 8, 2021, from https://www.ccb.org.co/Clusters/Cluster-de-ComunicacionGrafica/Noticias/2019/Julio-2019/Colombia-entierra-anualmente-2-billones-de-pesos-enplasticos-que-se-pueden-reciclar
Galuppo, W. de C., Magalhães, A., Ferrás, L. L., Nóbrega, J. M., & Fernandes, C. (2021). New boundary conditions for simulating the filling stage of the injection molding process. Engineering Computations (Swansea, Wales), 38(2), 762–778. https://doi.org/10.1108/EC04-2020-0190
Gao, H., Zhang, Y., Zhou, X., & Li, D. (2018). Intelligent methods for the process parameter determination of plastic injection molding. In Frontiers of Mechanical Engineering (Vol. 13, Issue 1, pp. 85–95). Higher Education Press. https://doi.org/10.1007/s11465-018-0491-0
Gülçür, M., & Whiteside, B. (2021). A study of micromanufacturing process fingerprints in microinjection moulding for machine learning and Industry 4.0 applications. International Journal of Advanced Manufacturing Technology, 115(5–6), 1943–1954. https://doi.org/10.1007/s00170-021-07252-7
Guo, Y., Hu, J., & Peng, Y. (2012). A CBR system for injection mould design based on ontology: A case study. CAD Computer Aided Design, 44(6), 496–508. https://doi.org/10.1016/j.cad.2011.12.007
INTELLIGENT SYSTEM TO SUPPORT MICRO INJECTION PROCESS (Issue June). (2020)
Kazmer, D. O., & Kazmer, D. O. (2016). Injection Mold Design Engineering. In Injection Mold Design Engineering. https://doi.org/10.3139/9781569905715.fm
Kim, B. R., Moon, S. N., Park, S. H., Lee, W. Il, & Kim, S. M. (2019). Simulation of Multi-cavity Micro-injection System for Reducing Cavity Filling Deviation. Fibers and Polymers, 20(2), 375–383. https://doi.org/10.1007/s12221-019-8910-3
Marhöfer, D. M., Tosello, G., Islam, A., & Hansen, H. N. (2016). Gate design in injection molding of microfluidic components process simulations. Journal of Micro and NanoManufacturing, 4(2). https://doi.org/10.1115/1.4032302
Moayyedian, M., & Mamedov, A. (2019). Multi-objective optimization of injection molding process for determination of feasible moldability index. Procedia CIRP, 84, 769–773. https://doi.org/10.1016/j.procir.2019.04.213
Peñafiel, C., & Ing. Ávila, R. (2007). Inteligencia Artificial. In Inteligencia Artificial (Vol. 2, Issue 6). https://doi.org/10.4114/ia.v2i6.614
Ponce Cruz, P. (2010). Inteligencia Artificial con aplicaciones a la ingeniería. In Alfaomega, México. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Inteligencia+artificial+co n+aplicaciones+a+la+ingenier�a#0
Ponce Cruz, P. (2011). Inteligencia Artificial con aplicaciones a la ingeniería. In Alfaomega, México.
Poszwa, P., Brzek, P., Muszynski, P., & Szostak, M. (2019). Influence of fill imbalance on pressure drop in injection molding. In Lecture Notes in Mechanical Engineering. Springer International Publishing. https://doi.org/10.1007/978-3-319-99353-9_58
Principles-of-CADCAMCAE-by-Kunwoo-Lee-_z-lib.org_.pdf. (n.d.)
Processing, P. (2015). การข ◌ึ◌้นร ◌ูปแบบฉ ◌ีด ( Injection Molding ) ส ◌่ วนประกอบเคร ◌ือ ◌่ ง Injection Molding ส ◌่ วนประกอบเคร ◌ือ ◌่ ง Injection Molding ◌่ ง Injection Molding. Plastic Product Material and Process Selection Handbook, 1–5. https://doi.org/10.1016/B978- 185617431-2/50007-4
Rojas, A., Chaves, M. L., Bolivar, H., & Vizan, A. (2019, October 1). Integration of CAE Modeling and Artificial Intelligence Systems to Support Manufacturing of Plastic Microparts. 2019 Congreso Internacional de Innovacion y Tendencias En Ingenieria, CONIITI 2019 - Conference Proceedings. https://doi.org/10.1109/CONIITI48476.2019.8960825
S.S. Quek, G. R. L. (2003). The finite element method. 368.
Stewart, R. H., Palmer, T. S., & DuPont, B. (2021). A survey of multi-objective optimization methods and their applications for nuclear scientists and engineers. Progress in Nuclear Energy, 138(June). https://doi.org/10.1016/j.pnucene.2021.103830
Surace, R., Sorgato, M., Bellantone, V., Modica, F., Lucchetta, G., & Fassi, I. (2019). Effect of cavity surface roughness and wettability on the filling flow in micro injection molding. Journal of Manufacturing Processes, 43, 105–111. https://doi.org/10.1016/j.jmapro.2019.04.032
Surace, Rossella, Trotta, G., Bellantone, V., & Fassi, I. (2012). the Micro Injection Moulding Process for Polymeric Components Manufacturing. New Technologies - Trends, Innovations and Research, May 2014. https://doi.org/10.5772/35299
Tosello, G. (2019). Product / Process Fingerprint in Micro Manufacturing. 1, 1–3.
Trotta, G., Stampone, B., Fassi, I., & Tricarico, L. (2021). Study of rheological behaviour of polymer melt in micro injection moulding with a miniaturized parallel plate rheometer. Polymer Testing, 96, 107068. https://doi.org/10.1016/j.polymertesting.2021.107068
Van De Ven, T. G. M. (1985). The flow of suspensions. In Polymer Composites (Vol. 6, Issue 4). https://doi.org/10.1002/pc.750060405
Vera, J., Brulez, A. C., Contraires, E., Larochette, M., Trannoy-Orban, N., Pignon, M., Mauclair, C., Valette, S., & Benayoun, S. (2018). Factors influencing microinjection molding replication quality. Journal of Micromechanics and Microengineering, 28(1). https://doi.org/10.1088/1361-6439/aa9a4e
Warwick, K. (2013). Artificial intelligence: The basics. In Artificial Intelligence: The Basics. https://doi.org/10.4324/9780203802878
Wu, T., Jahan, S. A., Zhang, Y., Zhang, J., Elmounayri, H., & Tovar, A. (2017). Design Optimization of Plastic Injection Tooling for Additive Manufacturing. Procedia Manufacturing, 10, 923– 934. https://doi.org/10.1016/j.promfg.2017.07.082
Yao, D., & Kim, B. (2002). Simulation of the filling process in micro channels for polymeric materials. Journal of Micromechanics and Microengineering, 12(5), 604–610. https://doi.org/10.1088/0960-1317/12/5/314
Zhang, H., Fang, F., Gilchrist, M. D., & Zhang, N. (2019). Precision replication of micro features using micro injection moulding: Process simulation and validation. Materials and Design, 177, 107829. https://doi.org/10.1016/j.matdes.2019.107829
Zhang, N., Su, Q., Choi, S. Y., & Gilchrist, M. D. (2015). Effects of gate design and cavity thickness on filling, morphology and mechanical properties of microinjection mouldings. Materials and Design, 83, 835–847. https://doi.org/10.1016/j.matdes.2015.06.012
Zhao, X., Korey, M., Li, K., Copenhaver, K., Tekinalp, H., Celik, S., Kalaitzidou, K., Ruan, R., Ragauskas, A. J., & Ozcan, S. (2022). Plastic waste upcycling toward a circular economy. Chemical Engineering Journal, 428(August 2021), 131928. https://doi.org/10.1016/j.cej.2021.131928
Zhijun, Y., Wang, H., Wei, X., Yan, K., & Gao, C. (2019). Multiobjective optimization method for polymer injection molding based on a genetic algorithm. Advances in Polymer Technology, 2019. https://doi.org/10.1155/2019/9012085
dc.rights.spa.fl_str_mv Copyright-Universidad Católica de Colombia, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Copyright-Universidad Católica de Colombia, 2021
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 138 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.program.spa.fl_str_mv Maestría en Ingeniería y Gestión de la Innovación
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/8c1b0eba-1978-4470-a286-4f78407d11c2/download
https://repository.ucatolica.edu.co/bitstreams/d5920fb4-40cb-41cc-9d4f-f5e5ac8a6dd6/download
https://repository.ucatolica.edu.co/bitstreams/6198cec2-40fa-42dc-b5f7-65e5a5c84103/download
https://repository.ucatolica.edu.co/bitstreams/f7c858be-baee-4692-8263-646a926c6476/download
https://repository.ucatolica.edu.co/bitstreams/e4f7f84c-b1e6-446c-879c-21761628de11/download
https://repository.ucatolica.edu.co/bitstreams/5d68ed9a-2bca-408c-b3dc-1a709772aef9/download
https://repository.ucatolica.edu.co/bitstreams/45577f07-bcc3-4378-a609-7f28097636f3/download
https://repository.ucatolica.edu.co/bitstreams/96237e56-50c9-44ab-886f-35329847577e/download
https://repository.ucatolica.edu.co/bitstreams/b215dcf5-00ca-4c37-bde5-764c91a305f2/download
bitstream.checksum.fl_str_mv 0bdfbde436f3a3fcff5f13271e73161a
97585c88274e7129cce637dff5ec16e0
d05473d059a6835c0151f6118a47b5c6
0f4154e8a4933be41e44f953348e2522
8680450502011bb2de09e0330679b2fb
2d90543d80fc4a34becd163c47f970c5
ed3c3ff4cd490887c310b366da085a0f
a02771a13f53c9161a5d5a7831a8c949
430ceb240621c0a2a1a101486cd3d069
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1828173048611602432
spelling Chaves-Acero, Miryam Liliana8ea8ec68-068c-41bb-a237-3eb5fd95ff15-1Guzmán-Bernal, Juan Pablo74647ead-0918-45bd-ad5c-6c6b5f98c8b3-12022-02-10T20:16:00Z20222022-02-10T20:16:00Z2022Trabajo de investigaciónContain the process to develop a smart decision support system for microinjection mold design, from the definition of parameters and standard micro parts, simulation process using CAE, selection, and application of AI to data obtained finally with analysis and validation of the results provided by the smart system.MaestríaMagister en Ingeniería y Gestión de la Innovación1. INTRODUCTION 2. PROBLEM STATEMENT 3. OBJECTIVES 4. CONCEPTUAL FRAMEWORK 5. THEORICAL FRAMEWORKS 6. STATE OF THE ART 7. METHODOLOGY 8. DESCRIPTION OF PROJECT 9. SYSTEM VALIDATION THROUGHT FEM AND FVM RESULTS 10. CONCLUSIONS AND FUTURE WORK REFERENCES ANNEXES138 páginasapplication/pdfGuzmán-Bernal, J. P. (2021). Develop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold design. Tesis de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Maestría en Ingeniería y Gestión de la innovación. Bogotá, Colombiahttps://hdl.handle.net/10983/27067spaUniversidad Católica de ColombiaFacultad de IngenieríaBogotáMaestría en Ingeniería y Gestión de la InnovaciónAbdullahi, A. A., Choudhury, I. A., & Azuddin, M. (2016). Effect of runner dimensions on cavity filling in microinjection moulding for defect-free parts. ARPN Journal of Engineering and Applied Sciences, 11(12), 7788–7793.Alfreda Campo, E. (2006). The Complete Part Design Handbook: for Injection Molding of Thermoplastics.Baruffi, F., Charalambis, A., Calaon, M., Elsborg, R., & Tosello, G. (2018). Comparison of micro and conventional injection moulding based on process precision and accuracy. Procedia CIRP, 75, 149–154. https://doi.org/10.1016/j.procir.2018.04.046Bellantone, V., Surace, R., Modica, F., & Fassi, I. (2018). Evaluation of mold roughness influence on injected thin micro-cavities. International Journal of Advanced Manufacturing Technology, 94(9–12), 4565–4575. https://doi.org/10.1007/s00170-017-1178-0Boden, M. A. (1996). Artificial Intelligence (Handbook of Perception and Cognition).Burke, E. K., & Graham, K. (2014). Search methodologies: Introductory tutorials in optimization and decision support techniques, second edition. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Second Edition. https://doi.org/10.1007/978-1-4614-6940-7Cabrera, E., Castro, J. M., Yi, A. Y., & Lee, L. J. (n.d.). Microinjection Molding. In Advanced Injection Molding Technologies (First Edit). Carl Hanser Verlag GmbH & Co. KG. https://doi.org/10.1016/B978-1-56990-603-3.50010-9Chaubey, S. K., & Jain, N. K. (2018). State-of-art review of past research on manufacturing of meso and micro cylindrical gears. In Precision Engineering (Vol. 51, pp. 702–728). Elsevier Inc. https://doi.org/10.1016/j.precisioneng.2017.07.014Chaves A, M. L., & Vizan, A. (n.d.). - Document - Expert system to assist in setting of micro injection machines. Retrieved May 17, 2020, from https://go.gale.com/ps/anonymous?id=GALE%7CA246014198&sid=googleScholar&v=2.1& it=r&linkaccess=abs&issn=17269679&p=AONE&sw=wChe, Z. H. (2010). PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding. Computers and Industrial Engineering, 58(4), 625–637. https://doi.org/10.1016/j.cie.2010.01.004Che, Z. H., Wang, H. S., & Wang, Y. N. (2007). Cost estimation of plastic injection products through back-propagation network. https://www.researchgate.net/publication/234832207Colombia, el séptimo país más preparado en materia tecnológica de América Latina - Cluster de Software y TI, Cámara de Comercio de Bogotá. (n.d.). Retrieved November 8, 2021, from https://www.ccb.org.co/Clusters/Cluster-de-Software-y-TI/Noticias/2018/Mayo2018/Colombia-el-septimo-pais-mas-preparado-en-materia-tecnologica-de-America-LatinaColombia entierra anualmente 2 billones de pesos en plásticos que se pueden reciclar - Cluster de Comunicación Gráfica, Cámara de Comercio de Bogotá. (n.d.). Retrieved November 8, 2021, from https://www.ccb.org.co/Clusters/Cluster-de-ComunicacionGrafica/Noticias/2019/Julio-2019/Colombia-entierra-anualmente-2-billones-de-pesos-enplasticos-que-se-pueden-reciclarGaluppo, W. de C., Magalhães, A., Ferrás, L. L., Nóbrega, J. M., & Fernandes, C. (2021). New boundary conditions for simulating the filling stage of the injection molding process. Engineering Computations (Swansea, Wales), 38(2), 762–778. https://doi.org/10.1108/EC04-2020-0190Gao, H., Zhang, Y., Zhou, X., & Li, D. (2018). Intelligent methods for the process parameter determination of plastic injection molding. In Frontiers of Mechanical Engineering (Vol. 13, Issue 1, pp. 85–95). Higher Education Press. https://doi.org/10.1007/s11465-018-0491-0Gülçür, M., & Whiteside, B. (2021). A study of micromanufacturing process fingerprints in microinjection moulding for machine learning and Industry 4.0 applications. International Journal of Advanced Manufacturing Technology, 115(5–6), 1943–1954. https://doi.org/10.1007/s00170-021-07252-7Guo, Y., Hu, J., & Peng, Y. (2012). A CBR system for injection mould design based on ontology: A case study. CAD Computer Aided Design, 44(6), 496–508. https://doi.org/10.1016/j.cad.2011.12.007INTELLIGENT SYSTEM TO SUPPORT MICRO INJECTION PROCESS (Issue June). (2020)Kazmer, D. O., & Kazmer, D. O. (2016). Injection Mold Design Engineering. In Injection Mold Design Engineering. https://doi.org/10.3139/9781569905715.fmKim, B. R., Moon, S. N., Park, S. H., Lee, W. Il, & Kim, S. M. (2019). Simulation of Multi-cavity Micro-injection System for Reducing Cavity Filling Deviation. Fibers and Polymers, 20(2), 375–383. https://doi.org/10.1007/s12221-019-8910-3Marhöfer, D. M., Tosello, G., Islam, A., & Hansen, H. N. (2016). Gate design in injection molding of microfluidic components process simulations. Journal of Micro and NanoManufacturing, 4(2). https://doi.org/10.1115/1.4032302Moayyedian, M., & Mamedov, A. (2019). Multi-objective optimization of injection molding process for determination of feasible moldability index. Procedia CIRP, 84, 769–773. https://doi.org/10.1016/j.procir.2019.04.213Peñafiel, C., & Ing. Ávila, R. (2007). Inteligencia Artificial. In Inteligencia Artificial (Vol. 2, Issue 6). https://doi.org/10.4114/ia.v2i6.614Ponce Cruz, P. (2010). Inteligencia Artificial con aplicaciones a la ingeniería. In Alfaomega, México. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Inteligencia+artificial+co n+aplicaciones+a+la+ingenier�a#0Ponce Cruz, P. (2011). Inteligencia Artificial con aplicaciones a la ingeniería. In Alfaomega, México.Poszwa, P., Brzek, P., Muszynski, P., & Szostak, M. (2019). Influence of fill imbalance on pressure drop in injection molding. In Lecture Notes in Mechanical Engineering. Springer International Publishing. https://doi.org/10.1007/978-3-319-99353-9_58Principles-of-CADCAMCAE-by-Kunwoo-Lee-_z-lib.org_.pdf. (n.d.)Processing, P. (2015). การข ◌ึ◌้นร ◌ูปแบบฉ ◌ีด ( Injection Molding ) ส ◌่ วนประกอบเคร ◌ือ ◌่ ง Injection Molding ส ◌่ วนประกอบเคร ◌ือ ◌่ ง Injection Molding ◌่ ง Injection Molding. Plastic Product Material and Process Selection Handbook, 1–5. https://doi.org/10.1016/B978- 185617431-2/50007-4Rojas, A., Chaves, M. L., Bolivar, H., & Vizan, A. (2019, October 1). Integration of CAE Modeling and Artificial Intelligence Systems to Support Manufacturing of Plastic Microparts. 2019 Congreso Internacional de Innovacion y Tendencias En Ingenieria, CONIITI 2019 - Conference Proceedings. https://doi.org/10.1109/CONIITI48476.2019.8960825S.S. Quek, G. R. L. (2003). The finite element method. 368.Stewart, R. H., Palmer, T. S., & DuPont, B. (2021). A survey of multi-objective optimization methods and their applications for nuclear scientists and engineers. Progress in Nuclear Energy, 138(June). https://doi.org/10.1016/j.pnucene.2021.103830Surace, R., Sorgato, M., Bellantone, V., Modica, F., Lucchetta, G., & Fassi, I. (2019). Effect of cavity surface roughness and wettability on the filling flow in micro injection molding. Journal of Manufacturing Processes, 43, 105–111. https://doi.org/10.1016/j.jmapro.2019.04.032Surace, Rossella, Trotta, G., Bellantone, V., & Fassi, I. (2012). the Micro Injection Moulding Process for Polymeric Components Manufacturing. New Technologies - Trends, Innovations and Research, May 2014. https://doi.org/10.5772/35299Tosello, G. (2019). Product / Process Fingerprint in Micro Manufacturing. 1, 1–3.Trotta, G., Stampone, B., Fassi, I., & Tricarico, L. (2021). Study of rheological behaviour of polymer melt in micro injection moulding with a miniaturized parallel plate rheometer. Polymer Testing, 96, 107068. https://doi.org/10.1016/j.polymertesting.2021.107068Van De Ven, T. G. M. (1985). The flow of suspensions. In Polymer Composites (Vol. 6, Issue 4). https://doi.org/10.1002/pc.750060405Vera, J., Brulez, A. C., Contraires, E., Larochette, M., Trannoy-Orban, N., Pignon, M., Mauclair, C., Valette, S., & Benayoun, S. (2018). Factors influencing microinjection molding replication quality. Journal of Micromechanics and Microengineering, 28(1). https://doi.org/10.1088/1361-6439/aa9a4eWarwick, K. (2013). Artificial intelligence: The basics. In Artificial Intelligence: The Basics. https://doi.org/10.4324/9780203802878Wu, T., Jahan, S. A., Zhang, Y., Zhang, J., Elmounayri, H., & Tovar, A. (2017). Design Optimization of Plastic Injection Tooling for Additive Manufacturing. Procedia Manufacturing, 10, 923– 934. https://doi.org/10.1016/j.promfg.2017.07.082Yao, D., & Kim, B. (2002). Simulation of the filling process in micro channels for polymeric materials. Journal of Micromechanics and Microengineering, 12(5), 604–610. https://doi.org/10.1088/0960-1317/12/5/314Zhang, H., Fang, F., Gilchrist, M. D., & Zhang, N. (2019). Precision replication of micro features using micro injection moulding: Process simulation and validation. Materials and Design, 177, 107829. https://doi.org/10.1016/j.matdes.2019.107829Zhang, N., Su, Q., Choi, S. Y., & Gilchrist, M. D. (2015). Effects of gate design and cavity thickness on filling, morphology and mechanical properties of microinjection mouldings. Materials and Design, 83, 835–847. https://doi.org/10.1016/j.matdes.2015.06.012Zhao, X., Korey, M., Li, K., Copenhaver, K., Tekinalp, H., Celik, S., Kalaitzidou, K., Ruan, R., Ragauskas, A. J., & Ozcan, S. (2022). Plastic waste upcycling toward a circular economy. Chemical Engineering Journal, 428(August 2021), 131928. https://doi.org/10.1016/j.cej.2021.131928Zhijun, Y., Wang, H., Wei, X., Yan, K., & Gao, C. (2019). Multiobjective optimization method for polymer injection molding based on a genetic algorithm. Advances in Polymer Technology, 2019. https://doi.org/10.1155/2019/9012085Copyright-Universidad Católica de Colombia, 2021info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2INTELIGENCIA ARTIFICIALMICRO-INJECTIONINJECTION-MOLDINGMOLD DESIGNPOLYMERARTIFICIAL INTELLIGENCECAEDevelop of a smart decision support system integrating computational aided engineering (CAE) and artificial intelligence (AI) for micro-injection mold designTrabajo de grado - Maestríahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/masterThesishttps://purl.org/redcol/resource_type/TMhttp://purl.org/coar/version/c_fa2ee174bc00049fhttp://purl.org/coar/version/c_71e4c1898caa6e32PublicationORIGINALDEVELOP OF A SMART DECISION SUPPORT SYSTEM.pdfDEVELOP OF A SMART DECISION SUPPORT SYSTEM.pdfapplication/pdf7647877https://repository.ucatolica.edu.co/bitstreams/8c1b0eba-1978-4470-a286-4f78407d11c2/download0bdfbde436f3a3fcff5f13271e73161aMD51RESUMEN ANALITICO EN EDUCACION RAE.pdfRESUMEN ANALITICO EN EDUCACION RAE.pdfapplication/pdf155819https://repository.ucatolica.edu.co/bitstreams/d5920fb4-40cb-41cc-9d4f-f5e5ac8a6dd6/download97585c88274e7129cce637dff5ec16e0MD52ARTICULO JUAN PABLO GUZMAN.pdfARTICULO JUAN PABLO GUZMAN.pdfapplication/pdf793477https://repository.ucatolica.edu.co/bitstreams/6198cec2-40fa-42dc-b5f7-65e5a5c84103/downloadd05473d059a6835c0151f6118a47b5c6MD57TEXTDEVELOP OF A SMART DECISION SUPPORT SYSTEM.pdf.txtDEVELOP OF A SMART DECISION SUPPORT SYSTEM.pdf.txtExtracted texttext/plain172768https://repository.ucatolica.edu.co/bitstreams/f7c858be-baee-4692-8263-646a926c6476/download0f4154e8a4933be41e44f953348e2522MD53RESUMEN ANALITICO EN EDUCACION RAE.pdf.txtRESUMEN ANALITICO EN EDUCACION RAE.pdf.txtExtracted texttext/plain18206https://repository.ucatolica.edu.co/bitstreams/e4f7f84c-b1e6-446c-879c-21761628de11/download8680450502011bb2de09e0330679b2fbMD55ARTICULO JUAN PABLO GUZMAN.pdf.txtARTICULO JUAN PABLO GUZMAN.pdf.txtExtracted texttext/plain32687https://repository.ucatolica.edu.co/bitstreams/5d68ed9a-2bca-408c-b3dc-1a709772aef9/download2d90543d80fc4a34becd163c47f970c5MD58THUMBNAILDEVELOP OF A SMART DECISION SUPPORT SYSTEM.pdf.jpgDEVELOP OF A SMART DECISION SUPPORT SYSTEM.pdf.jpgRIUCACimage/jpeg12569https://repository.ucatolica.edu.co/bitstreams/45577f07-bcc3-4378-a609-7f28097636f3/downloaded3c3ff4cd490887c310b366da085a0fMD54RESUMEN ANALITICO EN EDUCACION RAE.pdf.jpgRESUMEN ANALITICO EN EDUCACION RAE.pdf.jpgRIUCACimage/jpeg19056https://repository.ucatolica.edu.co/bitstreams/96237e56-50c9-44ab-886f-35329847577e/downloada02771a13f53c9161a5d5a7831a8c949MD56ARTICULO JUAN PABLO GUZMAN.pdf.jpgARTICULO JUAN PABLO GUZMAN.pdf.jpgRIUCACimage/jpeg20372https://repository.ucatolica.edu.co/bitstreams/b215dcf5-00ca-4c37-bde5-764c91a305f2/download430ceb240621c0a2a1a101486cd3d069MD5910983/27067oai:repository.ucatolica.edu.co:10983/270672023-03-24 14:43:02.329https://creativecommons.org/licenses/by/4.0/Copyright-Universidad Católica de Colombia, 2021https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com