Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad

Los robots móviles terrestres han sido desarrollados para realizar múltiples tareas donde es necesario el seguimiento de trayectorias. Si estos robots están dotados con sistemas de suspensión, deben ser analizados exhaustivamente puesto que la suspensión puede incidir en la capacidad para seguir cam...

Full description

Autores:
García, Jesús Marcey
Bohórquez, Aldemar
Valero, Alex Antonio
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/27428
Acceso en línea:
https://hdl.handle.net/10819/27428
https://doi.org/10.21500/20275846.4380
Palabra clave:
Passive Suspension
Skid Steer Robot
Tip-over Stability
Vehicle Steerability
Computer Simulation
Suspensión Pasiva
Robot Skid Steer
Estabilidad al Vuelco
Direccionamiento de vehículo
Simulación por Computador
Rights
openAccess
License
Ingenierías USBMed - 2020
id SANBUENAV2_f44780aa5d6af41d3e93c25865ce9f3d
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/27428
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad
dc.title.translated.eng.fl_str_mv Effect of Suspension on Tracking Trajectories in Robots Moving on Hard Terrains with Different Roughness
title Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad
spellingShingle Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad
Passive Suspension
Skid Steer Robot
Tip-over Stability
Vehicle Steerability
Computer Simulation
Suspensión Pasiva
Robot Skid Steer
Estabilidad al Vuelco
Direccionamiento de vehículo
Simulación por Computador
title_short Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad
title_full Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad
title_fullStr Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad
title_full_unstemmed Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad
title_sort Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad
dc.creator.fl_str_mv García, Jesús Marcey
Bohórquez, Aldemar
Valero, Alex Antonio
dc.contributor.author.spa.fl_str_mv García, Jesús Marcey
Bohórquez, Aldemar
Valero, Alex Antonio
dc.subject.eng.fl_str_mv Passive Suspension
Skid Steer Robot
Tip-over Stability
Vehicle Steerability
Computer Simulation
topic Passive Suspension
Skid Steer Robot
Tip-over Stability
Vehicle Steerability
Computer Simulation
Suspensión Pasiva
Robot Skid Steer
Estabilidad al Vuelco
Direccionamiento de vehículo
Simulación por Computador
dc.subject.spa.fl_str_mv Suspensión Pasiva
Robot Skid Steer
Estabilidad al Vuelco
Direccionamiento de vehículo
Simulación por Computador
description Los robots móviles terrestres han sido desarrollados para realizar múltiples tareas donde es necesario el seguimiento de trayectorias. Si estos robots están dotados con sistemas de suspensión, deben ser analizados exhaustivamente puesto que la suspensión puede incidir en la capacidad para seguir caminos cuando el robot se desplaza sobre terrenos altamente rugosos. En este trabajo, se muestra un estudio correlacional donde se estima el efecto de cada parámetro del sistema de suspensión de un robot móvil Skid Steer (Lázaro) sobre la exactitud en el seguimiento de trayectorias cuando este se mueve sobre superficies horizontales duras con rugosidad variable. Utilizando herramientas de simulación y cuantificando algunos parámetros normalizados para estudiar el deslizamiento del robot, se consigue determinar las magnitudes apropiadas de cada parámetro de suspensión para disminuir el error en el seguimiento de trayectorias de este robot móvil, y a su vez, estimar la magnitud de estos parámetros de suspensión en otros casos de manera general.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-04T00:00:00Z
2025-08-21T22:05:04Z
dc.date.available.none.fl_str_mv 2020-08-04T00:00:00Z
2025-08-21T22:05:04Z
dc.date.issued.none.fl_str_mv 2020-08-04
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20275846.4380
dc.identifier.eissn.none.fl_str_mv 2027-5846
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/27428
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20275846.4380
identifier_str_mv 10.21500/20275846.4380
2027-5846
url https://hdl.handle.net/10819/27428
https://doi.org/10.21500/20275846.4380
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4380/4834
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2020 : Ingenierías USBMed
dc.relation.citationendpage.none.fl_str_mv 30
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 18
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.spa.fl_str_mv Ingenierías USBMed
dc.relation.references.spa.fl_str_mv R. Lindemann, D. Bickler, B. Harrington, G. Ortiz, and C. Voorhees, "Mars exploration rover mobility development," IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 19-26, 2006. [2] J. Casper and R. Murphy, "Human – robot interactions during the robot-assisted urban search and rescue response at the World Trade Center," IEEE Transactions on Systems, Man and Cybernetics, vol. 33, no. 3, pp. 367-385, 2003. [3] M. Guarnieri et al., "Helios system: a team of tracked robots for special urban search and rescue operations," in IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009, pp. 2795-2800. [4] Q. Feng, X. Wang, W. Zheng, Q. Qiu, and K. Jiang, "New strawberry harvesting robot for elevated-trough culture," International Journal of Agricultural and Biological Engineering, vol. 5, no. 2, pp. 1-8, 2012. [5] F. Matsuno and S. Tadokoro, "Rescue robots and systems in Japan," in IEEE International Conference on Robotics and Biomimetics, Shenyang, 2004, pp. 12-20. [6] S. Moosavian, H. Semsarilar, and A. Kalantari, "Design and manufacturing of a mobile rescue robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006, pp. 3982-3987. [7] F. Cordes, A. Babu, and F. Kirchner, "Static Force Distribution and Orientation Control for a Rover with an Actively Articulated Suspension System," in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, 2017, pp. 5219-5224. [8] J. M. García, I. Medina, A. G. Cerezo, and A. Linares, "Improving the static stability of a mobile manipulator using its end effector in contact with the ground," IEEE Latin American Transactions, vol. 13, no. 10, pp. 3228-3234, 2015. [9] J. M. García, J. L. Martínez, A. Mandow, and A. García-Cerezo, "Slide-down prevention for wheeled mobile robots on slopes," in 3rd International Conference on Mechatronics and Robotics Engineering, París, 2017, pp. 63-68. [10] J. M. García, J. L. Martínez, A. Mandow, and A. García-Cerezo, "Steerability analysis on slopes of a mobile robot with a ground contact arm," in Proc. 23rd Mediterranean Conference on Control and Automation, Torremolinos, Spain, 2015, pp. 267-272, DOI: 10.1109/MED.2015.7158761. [11] S. Nishida and S. Wakabayashi, "A mobility system for lunar rough terrain," in ICROS-SICE International Joint Conference, Fukuoka, 2009, pp. 4716-4721. [12] J. Suthakorn et al., "On the design and development of a rough terrain robot for rescue missions," in IEEE International Conference on Robotics and Biomimetics, Bangkok, 2009, pp. 1830-1835. [13] D. Pongas, M. Mistry, and S. Schaal, "A robust quadruped walking gait for traversing rough terrain," in IEEE International Conference on Robotics and Automation, Roma, 2007, pp. 1474-1479. [14] F. Cordes, F. Kirchner, and A. Babu, "Design and field testing of a rover with an actively articulated suspension system in a Mars analogue terrain," Journal of Field Robotics, vol. 35, no. 7, pp. 1149-1181, 2018. [15] Z. Luo, J. Shang, G. Wei, and L. Ren, "Module-based structure design of wheeled mobile robot," Mechanical Sciences, vol. 9, no. 1, pp. 103–121, 2018, DOI: 10.5194/ms-9-103-2018. [16] L. Yang, B. Cai, R. Zhang, K. Li, and R. Wang, "A new type design of lunar rover suspension structure and its neural network control system," Journal of Intelligent and Fuzzy Systems, vol. 35, no. 1, pp. 269-281, 2018. [17] J. Hurel, A. Mandow, and A. García-Cerezo, "Los sistemas de suspensión activa y semiactiva: una revisión," Revista iberoamericana de automática e informática, vol. 10, no. 2, pp. 121-132, 2013, DOI: 10.1016/j.riai.2013.03.002. [18] W. Reid, F. Pérez-Grau, A. Göktogan, and S. Sukkarieh, "Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface," in IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 5596-5602, DOI: 10.1109/ICRA.2016.7487777. [19] J. Funde, K. Wani, N. Dhote, and S. Patil, "Performance analysis of semi-active suspension system based on suspension working space and dynamic tire deflection," , Singapure, 2019, pp. 1-15, DOI: 10.1007/978-981-13-2697-4_1. [20] G. Reina and R. Galati, "Slip-based terrain estimation with a skid-steer vehicle," Vehicle Systems Dynamics, vol. 54, no. 10, pp. 1384-1404, 2016. [21] S. Nakamura et al., "Wheeled robot with movable center of mass for traversing over rough terrain," in Proc. IEEE/RSJ International Conference on Intelligents Robots and Systems, San Diego, USA, 2007, pp. 1228-1233. [22] S. Chen et al., "Modelling the vertical dynamics of unmanned ground vehicle with rocker suspension," in IEEE International Conference on Mechatronics and Automation, akamatsu, 2017, pp. 370-375. [23] A. Bouton, C. Grand, and F. Benamar, "Motion control of a compliant wheel-leg robot for rough terrain crossing," in IEEE International Conference on Robotics and Automation, Stockholm, 2016, pp. 2846-2851. [24] A. Moosavian, K. Alipour, and Y. Bahramzadeh, "Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms," in IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 2007, pp. 1210-1215. [25] L. Solaque, M. Molina, and E. Rodríguez, "Seguimiento de trayectorias con un robot móvil de," Ingenierías USBMed, vol. 5, no. 1, pp. 26-34, 2014. [26] J. García et al., "Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo," Revista Iberoamericana de Automática e Informática industrial, vol. 14, no. 1, pp. 174–183, 2017. [27] S. Zuccaro, S. Canfield, and T. Hill, "Slip prediction of skid-steer mobile robots in manufacturing," in ASME 2017 International Design Engineering Technical Conferences and, Cleveland, 2017, pp. 1-8. [28] R. Fernández, R. Aracil, and M. Armada, "Traction control for wheeled mobile robots," Revista Iberoamericana de Automática e Informática Industrial , vol. 9, no. 4, pp. 393-435, 2012. [29] L. Gracia, "Modelado Cinemático y Control de Robots Móviles con Ruedas," Universidad Politécnica de Valencia, Valencia, Tesis Doctoral 2006. [30] G. Ishigami, K. Nagatani, and K. Yoshida, "Slope traversal controls for planetary exploration rover on sandy terrain," Journal of Field Robotics, vol. 26, no. 3, pp. 264–286, 2009. [31] M. Prado, A. Mata, A. Perez-Blanca, and F. Ezquerro, "Effects of terrain irregularities on wheeled mobile robot," Robotica, vol. 21, no. 02, pp. 143-152, 2003. [32] S. Oliveira, "Analysis of surface roughness and models of mechanical contacts," Università di Pisa, Pisa, Trabajo fin de carrera 2005. [33] Mitutoyo, "Quick guide to surface roughness measurement," Mitutoyo America Corporation, USA, Bulletin 2229, 2016.
dc.rights.spa.fl_str_mv Ingenierías USBMed - 2020
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
rights_invalid_str_mv Ingenierías USBMed - 2020
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.spa.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4380
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/332517fd-c29c-4a70-80fa-bbb62d1bb39f/download
bitstream.checksum.fl_str_mv 28504413124ad6bd1d7e5320ddbff151
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053598579884032
spelling García, Jesús MarceyBohórquez, AldemarValero, Alex Antonio2020-08-04T00:00:00Z2025-08-21T22:05:04Z2020-08-04T00:00:00Z2025-08-21T22:05:04Z2020-08-04Los robots móviles terrestres han sido desarrollados para realizar múltiples tareas donde es necesario el seguimiento de trayectorias. Si estos robots están dotados con sistemas de suspensión, deben ser analizados exhaustivamente puesto que la suspensión puede incidir en la capacidad para seguir caminos cuando el robot se desplaza sobre terrenos altamente rugosos. En este trabajo, se muestra un estudio correlacional donde se estima el efecto de cada parámetro del sistema de suspensión de un robot móvil Skid Steer (Lázaro) sobre la exactitud en el seguimiento de trayectorias cuando este se mueve sobre superficies horizontales duras con rugosidad variable. Utilizando herramientas de simulación y cuantificando algunos parámetros normalizados para estudiar el deslizamiento del robot, se consigue determinar las magnitudes apropiadas de cada parámetro de suspensión para disminuir el error en el seguimiento de trayectorias de este robot móvil, y a su vez, estimar la magnitud de estos parámetros de suspensión en otros casos de manera general.mobile robots have been developed to perform multiple tasks where trajectory tracking is necessary. If these robots are equipped with suspension systems, they must be thoroughly analyzed since the suspension can affect the ability to follow paths when the robot travels over highly rough terrain. In this work, a correlational study is shown where the effect of each parameter of the suspension system of a Skid Steer mobile robot (Lázaro) on the accuracy of trajectory tracking when it moves on hard horizontal surfaces with variable roughness is estimated. Using simulation tools and quantifying some standardized parameters to study the robot's sliding, it is possible to determine the appropriate magnitudes of each suspension parameter to reduce the error in the tracking of trajectories of this mobile robot, and in turn, estimate the magnitude of these suspension parameters in other cases in general.application/pdf10.21500/20275846.43802027-5846https://hdl.handle.net/10819/27428https://doi.org/10.21500/20275846.4380spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4380/4834Núm. 1 , Año 2020 : Ingenierías USBMed3011811Ingenierías USBMedR. Lindemann, D. Bickler, B. Harrington, G. Ortiz, and C. Voorhees, "Mars exploration rover mobility development," IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 19-26, 2006. [2] J. Casper and R. Murphy, "Human – robot interactions during the robot-assisted urban search and rescue response at the World Trade Center," IEEE Transactions on Systems, Man and Cybernetics, vol. 33, no. 3, pp. 367-385, 2003. [3] M. Guarnieri et al., "Helios system: a team of tracked robots for special urban search and rescue operations," in IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009, pp. 2795-2800. [4] Q. Feng, X. Wang, W. Zheng, Q. Qiu, and K. Jiang, "New strawberry harvesting robot for elevated-trough culture," International Journal of Agricultural and Biological Engineering, vol. 5, no. 2, pp. 1-8, 2012. [5] F. Matsuno and S. Tadokoro, "Rescue robots and systems in Japan," in IEEE International Conference on Robotics and Biomimetics, Shenyang, 2004, pp. 12-20. [6] S. Moosavian, H. Semsarilar, and A. Kalantari, "Design and manufacturing of a mobile rescue robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006, pp. 3982-3987. [7] F. Cordes, A. Babu, and F. Kirchner, "Static Force Distribution and Orientation Control for a Rover with an Actively Articulated Suspension System," in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, 2017, pp. 5219-5224. [8] J. M. García, I. Medina, A. G. Cerezo, and A. Linares, "Improving the static stability of a mobile manipulator using its end effector in contact with the ground," IEEE Latin American Transactions, vol. 13, no. 10, pp. 3228-3234, 2015. [9] J. M. García, J. L. Martínez, A. Mandow, and A. García-Cerezo, "Slide-down prevention for wheeled mobile robots on slopes," in 3rd International Conference on Mechatronics and Robotics Engineering, París, 2017, pp. 63-68. [10] J. M. García, J. L. Martínez, A. Mandow, and A. García-Cerezo, "Steerability analysis on slopes of a mobile robot with a ground contact arm," in Proc. 23rd Mediterranean Conference on Control and Automation, Torremolinos, Spain, 2015, pp. 267-272, DOI: 10.1109/MED.2015.7158761. [11] S. Nishida and S. Wakabayashi, "A mobility system for lunar rough terrain," in ICROS-SICE International Joint Conference, Fukuoka, 2009, pp. 4716-4721. [12] J. Suthakorn et al., "On the design and development of a rough terrain robot for rescue missions," in IEEE International Conference on Robotics and Biomimetics, Bangkok, 2009, pp. 1830-1835. [13] D. Pongas, M. Mistry, and S. Schaal, "A robust quadruped walking gait for traversing rough terrain," in IEEE International Conference on Robotics and Automation, Roma, 2007, pp. 1474-1479. [14] F. Cordes, F. Kirchner, and A. Babu, "Design and field testing of a rover with an actively articulated suspension system in a Mars analogue terrain," Journal of Field Robotics, vol. 35, no. 7, pp. 1149-1181, 2018. [15] Z. Luo, J. Shang, G. Wei, and L. Ren, "Module-based structure design of wheeled mobile robot," Mechanical Sciences, vol. 9, no. 1, pp. 103–121, 2018, DOI: 10.5194/ms-9-103-2018. [16] L. Yang, B. Cai, R. Zhang, K. Li, and R. Wang, "A new type design of lunar rover suspension structure and its neural network control system," Journal of Intelligent and Fuzzy Systems, vol. 35, no. 1, pp. 269-281, 2018. [17] J. Hurel, A. Mandow, and A. García-Cerezo, "Los sistemas de suspensión activa y semiactiva: una revisión," Revista iberoamericana de automática e informática, vol. 10, no. 2, pp. 121-132, 2013, DOI: 10.1016/j.riai.2013.03.002. [18] W. Reid, F. Pérez-Grau, A. Göktogan, and S. Sukkarieh, "Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface," in IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 5596-5602, DOI: 10.1109/ICRA.2016.7487777. [19] J. Funde, K. Wani, N. Dhote, and S. Patil, "Performance analysis of semi-active suspension system based on suspension working space and dynamic tire deflection," , Singapure, 2019, pp. 1-15, DOI: 10.1007/978-981-13-2697-4_1. [20] G. Reina and R. Galati, "Slip-based terrain estimation with a skid-steer vehicle," Vehicle Systems Dynamics, vol. 54, no. 10, pp. 1384-1404, 2016. [21] S. Nakamura et al., "Wheeled robot with movable center of mass for traversing over rough terrain," in Proc. IEEE/RSJ International Conference on Intelligents Robots and Systems, San Diego, USA, 2007, pp. 1228-1233. [22] S. Chen et al., "Modelling the vertical dynamics of unmanned ground vehicle with rocker suspension," in IEEE International Conference on Mechatronics and Automation, akamatsu, 2017, pp. 370-375. [23] A. Bouton, C. Grand, and F. Benamar, "Motion control of a compliant wheel-leg robot for rough terrain crossing," in IEEE International Conference on Robotics and Automation, Stockholm, 2016, pp. 2846-2851. [24] A. Moosavian, K. Alipour, and Y. Bahramzadeh, "Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms," in IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 2007, pp. 1210-1215. [25] L. Solaque, M. Molina, and E. Rodríguez, "Seguimiento de trayectorias con un robot móvil de," Ingenierías USBMed, vol. 5, no. 1, pp. 26-34, 2014. [26] J. García et al., "Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo," Revista Iberoamericana de Automática e Informática industrial, vol. 14, no. 1, pp. 174–183, 2017. [27] S. Zuccaro, S. Canfield, and T. Hill, "Slip prediction of skid-steer mobile robots in manufacturing," in ASME 2017 International Design Engineering Technical Conferences and, Cleveland, 2017, pp. 1-8. [28] R. Fernández, R. Aracil, and M. Armada, "Traction control for wheeled mobile robots," Revista Iberoamericana de Automática e Informática Industrial , vol. 9, no. 4, pp. 393-435, 2012. [29] L. Gracia, "Modelado Cinemático y Control de Robots Móviles con Ruedas," Universidad Politécnica de Valencia, Valencia, Tesis Doctoral 2006. [30] G. Ishigami, K. Nagatani, and K. Yoshida, "Slope traversal controls for planetary exploration rover on sandy terrain," Journal of Field Robotics, vol. 26, no. 3, pp. 264–286, 2009. [31] M. Prado, A. Mata, A. Perez-Blanca, and F. Ezquerro, "Effects of terrain irregularities on wheeled mobile robot," Robotica, vol. 21, no. 02, pp. 143-152, 2003. [32] S. Oliveira, "Analysis of surface roughness and models of mechanical contacts," Università di Pisa, Pisa, Trabajo fin de carrera 2005. [33] Mitutoyo, "Quick guide to surface roughness measurement," Mitutoyo America Corporation, USA, Bulletin 2229, 2016.Ingenierías USBMed - 2020info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4380Passive SuspensionSkid Steer RobotTip-over StabilityVehicle SteerabilityComputer SimulationSuspensión PasivaRobot Skid SteerEstabilidad al VuelcoDireccionamiento de vehículoSimulación por ComputadorEfecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente RugosidadEffect of Suspension on Tracking Trajectories in Robots Moving on Hard Terrains with Different RoughnessArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2729https://bibliotecadigital.usb.edu.co/bitstreams/332517fd-c29c-4a70-80fa-bbb62d1bb39f/download28504413124ad6bd1d7e5320ddbff151MD5110819/27428oai:bibliotecadigital.usb.edu.co:10819/274282025-08-21 17:05:04.249https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com