Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad
Los robots móviles terrestres han sido desarrollados para realizar múltiples tareas donde es necesario el seguimiento de trayectorias. Si estos robots están dotados con sistemas de suspensión, deben ser analizados exhaustivamente puesto que la suspensión puede incidir en la capacidad para seguir cam...
- Autores:
-
García, Jesús Marcey
Bohórquez, Aldemar
Valero, Alex Antonio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/27428
- Acceso en línea:
- https://hdl.handle.net/10819/27428
https://doi.org/10.21500/20275846.4380
- Palabra clave:
- Passive Suspension
Skid Steer Robot
Tip-over Stability
Vehicle Steerability
Computer Simulation
Suspensión Pasiva
Robot Skid Steer
Estabilidad al Vuelco
Direccionamiento de vehículo
Simulación por Computador
- Rights
- openAccess
- License
- Ingenierías USBMed - 2020
| id |
SANBUENAV2_f44780aa5d6af41d3e93c25865ce9f3d |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/27428 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad |
| dc.title.translated.eng.fl_str_mv |
Effect of Suspension on Tracking Trajectories in Robots Moving on Hard Terrains with Different Roughness |
| title |
Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad |
| spellingShingle |
Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad Passive Suspension Skid Steer Robot Tip-over Stability Vehicle Steerability Computer Simulation Suspensión Pasiva Robot Skid Steer Estabilidad al Vuelco Direccionamiento de vehículo Simulación por Computador |
| title_short |
Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad |
| title_full |
Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad |
| title_fullStr |
Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad |
| title_full_unstemmed |
Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad |
| title_sort |
Efecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente Rugosidad |
| dc.creator.fl_str_mv |
García, Jesús Marcey Bohórquez, Aldemar Valero, Alex Antonio |
| dc.contributor.author.spa.fl_str_mv |
García, Jesús Marcey Bohórquez, Aldemar Valero, Alex Antonio |
| dc.subject.eng.fl_str_mv |
Passive Suspension Skid Steer Robot Tip-over Stability Vehicle Steerability Computer Simulation |
| topic |
Passive Suspension Skid Steer Robot Tip-over Stability Vehicle Steerability Computer Simulation Suspensión Pasiva Robot Skid Steer Estabilidad al Vuelco Direccionamiento de vehículo Simulación por Computador |
| dc.subject.spa.fl_str_mv |
Suspensión Pasiva Robot Skid Steer Estabilidad al Vuelco Direccionamiento de vehículo Simulación por Computador |
| description |
Los robots móviles terrestres han sido desarrollados para realizar múltiples tareas donde es necesario el seguimiento de trayectorias. Si estos robots están dotados con sistemas de suspensión, deben ser analizados exhaustivamente puesto que la suspensión puede incidir en la capacidad para seguir caminos cuando el robot se desplaza sobre terrenos altamente rugosos. En este trabajo, se muestra un estudio correlacional donde se estima el efecto de cada parámetro del sistema de suspensión de un robot móvil Skid Steer (Lázaro) sobre la exactitud en el seguimiento de trayectorias cuando este se mueve sobre superficies horizontales duras con rugosidad variable. Utilizando herramientas de simulación y cuantificando algunos parámetros normalizados para estudiar el deslizamiento del robot, se consigue determinar las magnitudes apropiadas de cada parámetro de suspensión para disminuir el error en el seguimiento de trayectorias de este robot móvil, y a su vez, estimar la magnitud de estos parámetros de suspensión en otros casos de manera general. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2020-08-04T00:00:00Z 2025-08-21T22:05:04Z |
| dc.date.available.none.fl_str_mv |
2020-08-04T00:00:00Z 2025-08-21T22:05:04Z |
| dc.date.issued.none.fl_str_mv |
2020-08-04 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.spa.fl_str_mv |
Text |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/20275846.4380 |
| dc.identifier.eissn.none.fl_str_mv |
2027-5846 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/27428 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/20275846.4380 |
| identifier_str_mv |
10.21500/20275846.4380 2027-5846 |
| url |
https://hdl.handle.net/10819/27428 https://doi.org/10.21500/20275846.4380 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4380/4834 |
| dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2020 : Ingenierías USBMed |
| dc.relation.citationendpage.none.fl_str_mv |
30 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.none.fl_str_mv |
18 |
| dc.relation.citationvolume.spa.fl_str_mv |
11 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Ingenierías USBMed |
| dc.relation.references.spa.fl_str_mv |
R. Lindemann, D. Bickler, B. Harrington, G. Ortiz, and C. Voorhees, "Mars exploration rover mobility development," IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 19-26, 2006. [2] J. Casper and R. Murphy, "Human – robot interactions during the robot-assisted urban search and rescue response at the World Trade Center," IEEE Transactions on Systems, Man and Cybernetics, vol. 33, no. 3, pp. 367-385, 2003. [3] M. Guarnieri et al., "Helios system: a team of tracked robots for special urban search and rescue operations," in IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009, pp. 2795-2800. [4] Q. Feng, X. Wang, W. Zheng, Q. Qiu, and K. Jiang, "New strawberry harvesting robot for elevated-trough culture," International Journal of Agricultural and Biological Engineering, vol. 5, no. 2, pp. 1-8, 2012. [5] F. Matsuno and S. Tadokoro, "Rescue robots and systems in Japan," in IEEE International Conference on Robotics and Biomimetics, Shenyang, 2004, pp. 12-20. [6] S. Moosavian, H. Semsarilar, and A. Kalantari, "Design and manufacturing of a mobile rescue robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006, pp. 3982-3987. [7] F. Cordes, A. Babu, and F. Kirchner, "Static Force Distribution and Orientation Control for a Rover with an Actively Articulated Suspension System," in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, 2017, pp. 5219-5224. [8] J. M. García, I. Medina, A. G. Cerezo, and A. Linares, "Improving the static stability of a mobile manipulator using its end effector in contact with the ground," IEEE Latin American Transactions, vol. 13, no. 10, pp. 3228-3234, 2015. [9] J. M. García, J. L. Martínez, A. Mandow, and A. García-Cerezo, "Slide-down prevention for wheeled mobile robots on slopes," in 3rd International Conference on Mechatronics and Robotics Engineering, París, 2017, pp. 63-68. [10] J. M. García, J. L. Martínez, A. Mandow, and A. García-Cerezo, "Steerability analysis on slopes of a mobile robot with a ground contact arm," in Proc. 23rd Mediterranean Conference on Control and Automation, Torremolinos, Spain, 2015, pp. 267-272, DOI: 10.1109/MED.2015.7158761. [11] S. Nishida and S. Wakabayashi, "A mobility system for lunar rough terrain," in ICROS-SICE International Joint Conference, Fukuoka, 2009, pp. 4716-4721. [12] J. Suthakorn et al., "On the design and development of a rough terrain robot for rescue missions," in IEEE International Conference on Robotics and Biomimetics, Bangkok, 2009, pp. 1830-1835. [13] D. Pongas, M. Mistry, and S. Schaal, "A robust quadruped walking gait for traversing rough terrain," in IEEE International Conference on Robotics and Automation, Roma, 2007, pp. 1474-1479. [14] F. Cordes, F. Kirchner, and A. Babu, "Design and field testing of a rover with an actively articulated suspension system in a Mars analogue terrain," Journal of Field Robotics, vol. 35, no. 7, pp. 1149-1181, 2018. [15] Z. Luo, J. Shang, G. Wei, and L. Ren, "Module-based structure design of wheeled mobile robot," Mechanical Sciences, vol. 9, no. 1, pp. 103–121, 2018, DOI: 10.5194/ms-9-103-2018. [16] L. Yang, B. Cai, R. Zhang, K. Li, and R. Wang, "A new type design of lunar rover suspension structure and its neural network control system," Journal of Intelligent and Fuzzy Systems, vol. 35, no. 1, pp. 269-281, 2018. [17] J. Hurel, A. Mandow, and A. García-Cerezo, "Los sistemas de suspensión activa y semiactiva: una revisión," Revista iberoamericana de automática e informática, vol. 10, no. 2, pp. 121-132, 2013, DOI: 10.1016/j.riai.2013.03.002. [18] W. Reid, F. Pérez-Grau, A. Göktogan, and S. Sukkarieh, "Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface," in IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 5596-5602, DOI: 10.1109/ICRA.2016.7487777. [19] J. Funde, K. Wani, N. Dhote, and S. Patil, "Performance analysis of semi-active suspension system based on suspension working space and dynamic tire deflection," , Singapure, 2019, pp. 1-15, DOI: 10.1007/978-981-13-2697-4_1. [20] G. Reina and R. Galati, "Slip-based terrain estimation with a skid-steer vehicle," Vehicle Systems Dynamics, vol. 54, no. 10, pp. 1384-1404, 2016. [21] S. Nakamura et al., "Wheeled robot with movable center of mass for traversing over rough terrain," in Proc. IEEE/RSJ International Conference on Intelligents Robots and Systems, San Diego, USA, 2007, pp. 1228-1233. [22] S. Chen et al., "Modelling the vertical dynamics of unmanned ground vehicle with rocker suspension," in IEEE International Conference on Mechatronics and Automation, akamatsu, 2017, pp. 370-375. [23] A. Bouton, C. Grand, and F. Benamar, "Motion control of a compliant wheel-leg robot for rough terrain crossing," in IEEE International Conference on Robotics and Automation, Stockholm, 2016, pp. 2846-2851. [24] A. Moosavian, K. Alipour, and Y. Bahramzadeh, "Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms," in IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 2007, pp. 1210-1215. [25] L. Solaque, M. Molina, and E. Rodríguez, "Seguimiento de trayectorias con un robot móvil de," Ingenierías USBMed, vol. 5, no. 1, pp. 26-34, 2014. [26] J. García et al., "Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo," Revista Iberoamericana de Automática e Informática industrial, vol. 14, no. 1, pp. 174–183, 2017. [27] S. Zuccaro, S. Canfield, and T. Hill, "Slip prediction of skid-steer mobile robots in manufacturing," in ASME 2017 International Design Engineering Technical Conferences and, Cleveland, 2017, pp. 1-8. [28] R. Fernández, R. Aracil, and M. Armada, "Traction control for wheeled mobile robots," Revista Iberoamericana de Automática e Informática Industrial , vol. 9, no. 4, pp. 393-435, 2012. [29] L. Gracia, "Modelado Cinemático y Control de Robots Móviles con Ruedas," Universidad Politécnica de Valencia, Valencia, Tesis Doctoral 2006. [30] G. Ishigami, K. Nagatani, and K. Yoshida, "Slope traversal controls for planetary exploration rover on sandy terrain," Journal of Field Robotics, vol. 26, no. 3, pp. 264–286, 2009. [31] M. Prado, A. Mata, A. Perez-Blanca, and F. Ezquerro, "Effects of terrain irregularities on wheeled mobile robot," Robotica, vol. 21, no. 02, pp. 143-152, 2003. [32] S. Oliveira, "Analysis of surface roughness and models of mechanical contacts," Università di Pisa, Pisa, Trabajo fin de carrera 2005. [33] Mitutoyo, "Quick guide to surface roughness measurement," Mitutoyo America Corporation, USA, Bulletin 2229, 2016. |
| dc.rights.spa.fl_str_mv |
Ingenierías USBMed - 2020 |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
| rights_invalid_str_mv |
Ingenierías USBMed - 2020 http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.spa.fl_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4380 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/332517fd-c29c-4a70-80fa-bbb62d1bb39f/download |
| bitstream.checksum.fl_str_mv |
28504413124ad6bd1d7e5320ddbff151 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053598579884032 |
| spelling |
García, Jesús MarceyBohórquez, AldemarValero, Alex Antonio2020-08-04T00:00:00Z2025-08-21T22:05:04Z2020-08-04T00:00:00Z2025-08-21T22:05:04Z2020-08-04Los robots móviles terrestres han sido desarrollados para realizar múltiples tareas donde es necesario el seguimiento de trayectorias. Si estos robots están dotados con sistemas de suspensión, deben ser analizados exhaustivamente puesto que la suspensión puede incidir en la capacidad para seguir caminos cuando el robot se desplaza sobre terrenos altamente rugosos. En este trabajo, se muestra un estudio correlacional donde se estima el efecto de cada parámetro del sistema de suspensión de un robot móvil Skid Steer (Lázaro) sobre la exactitud en el seguimiento de trayectorias cuando este se mueve sobre superficies horizontales duras con rugosidad variable. Utilizando herramientas de simulación y cuantificando algunos parámetros normalizados para estudiar el deslizamiento del robot, se consigue determinar las magnitudes apropiadas de cada parámetro de suspensión para disminuir el error en el seguimiento de trayectorias de este robot móvil, y a su vez, estimar la magnitud de estos parámetros de suspensión en otros casos de manera general.mobile robots have been developed to perform multiple tasks where trajectory tracking is necessary. If these robots are equipped with suspension systems, they must be thoroughly analyzed since the suspension can affect the ability to follow paths when the robot travels over highly rough terrain. In this work, a correlational study is shown where the effect of each parameter of the suspension system of a Skid Steer mobile robot (Lázaro) on the accuracy of trajectory tracking when it moves on hard horizontal surfaces with variable roughness is estimated. Using simulation tools and quantifying some standardized parameters to study the robot's sliding, it is possible to determine the appropriate magnitudes of each suspension parameter to reduce the error in the tracking of trajectories of this mobile robot, and in turn, estimate the magnitude of these suspension parameters in other cases in general.application/pdf10.21500/20275846.43802027-5846https://hdl.handle.net/10819/27428https://doi.org/10.21500/20275846.4380spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4380/4834Núm. 1 , Año 2020 : Ingenierías USBMed3011811Ingenierías USBMedR. Lindemann, D. Bickler, B. Harrington, G. Ortiz, and C. Voorhees, "Mars exploration rover mobility development," IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 19-26, 2006. [2] J. Casper and R. Murphy, "Human – robot interactions during the robot-assisted urban search and rescue response at the World Trade Center," IEEE Transactions on Systems, Man and Cybernetics, vol. 33, no. 3, pp. 367-385, 2003. [3] M. Guarnieri et al., "Helios system: a team of tracked robots for special urban search and rescue operations," in IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009, pp. 2795-2800. [4] Q. Feng, X. Wang, W. Zheng, Q. Qiu, and K. Jiang, "New strawberry harvesting robot for elevated-trough culture," International Journal of Agricultural and Biological Engineering, vol. 5, no. 2, pp. 1-8, 2012. [5] F. Matsuno and S. Tadokoro, "Rescue robots and systems in Japan," in IEEE International Conference on Robotics and Biomimetics, Shenyang, 2004, pp. 12-20. [6] S. Moosavian, H. Semsarilar, and A. Kalantari, "Design and manufacturing of a mobile rescue robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006, pp. 3982-3987. [7] F. Cordes, A. Babu, and F. Kirchner, "Static Force Distribution and Orientation Control for a Rover with an Actively Articulated Suspension System," in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, 2017, pp. 5219-5224. [8] J. M. García, I. Medina, A. G. Cerezo, and A. Linares, "Improving the static stability of a mobile manipulator using its end effector in contact with the ground," IEEE Latin American Transactions, vol. 13, no. 10, pp. 3228-3234, 2015. [9] J. M. García, J. L. Martínez, A. Mandow, and A. García-Cerezo, "Slide-down prevention for wheeled mobile robots on slopes," in 3rd International Conference on Mechatronics and Robotics Engineering, París, 2017, pp. 63-68. [10] J. M. García, J. L. Martínez, A. Mandow, and A. García-Cerezo, "Steerability analysis on slopes of a mobile robot with a ground contact arm," in Proc. 23rd Mediterranean Conference on Control and Automation, Torremolinos, Spain, 2015, pp. 267-272, DOI: 10.1109/MED.2015.7158761. [11] S. Nishida and S. Wakabayashi, "A mobility system for lunar rough terrain," in ICROS-SICE International Joint Conference, Fukuoka, 2009, pp. 4716-4721. [12] J. Suthakorn et al., "On the design and development of a rough terrain robot for rescue missions," in IEEE International Conference on Robotics and Biomimetics, Bangkok, 2009, pp. 1830-1835. [13] D. Pongas, M. Mistry, and S. Schaal, "A robust quadruped walking gait for traversing rough terrain," in IEEE International Conference on Robotics and Automation, Roma, 2007, pp. 1474-1479. [14] F. Cordes, F. Kirchner, and A. Babu, "Design and field testing of a rover with an actively articulated suspension system in a Mars analogue terrain," Journal of Field Robotics, vol. 35, no. 7, pp. 1149-1181, 2018. [15] Z. Luo, J. Shang, G. Wei, and L. Ren, "Module-based structure design of wheeled mobile robot," Mechanical Sciences, vol. 9, no. 1, pp. 103–121, 2018, DOI: 10.5194/ms-9-103-2018. [16] L. Yang, B. Cai, R. Zhang, K. Li, and R. Wang, "A new type design of lunar rover suspension structure and its neural network control system," Journal of Intelligent and Fuzzy Systems, vol. 35, no. 1, pp. 269-281, 2018. [17] J. Hurel, A. Mandow, and A. García-Cerezo, "Los sistemas de suspensión activa y semiactiva: una revisión," Revista iberoamericana de automática e informática, vol. 10, no. 2, pp. 121-132, 2013, DOI: 10.1016/j.riai.2013.03.002. [18] W. Reid, F. Pérez-Grau, A. Göktogan, and S. Sukkarieh, "Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface," in IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 5596-5602, DOI: 10.1109/ICRA.2016.7487777. [19] J. Funde, K. Wani, N. Dhote, and S. Patil, "Performance analysis of semi-active suspension system based on suspension working space and dynamic tire deflection," , Singapure, 2019, pp. 1-15, DOI: 10.1007/978-981-13-2697-4_1. [20] G. Reina and R. Galati, "Slip-based terrain estimation with a skid-steer vehicle," Vehicle Systems Dynamics, vol. 54, no. 10, pp. 1384-1404, 2016. [21] S. Nakamura et al., "Wheeled robot with movable center of mass for traversing over rough terrain," in Proc. IEEE/RSJ International Conference on Intelligents Robots and Systems, San Diego, USA, 2007, pp. 1228-1233. [22] S. Chen et al., "Modelling the vertical dynamics of unmanned ground vehicle with rocker suspension," in IEEE International Conference on Mechatronics and Automation, akamatsu, 2017, pp. 370-375. [23] A. Bouton, C. Grand, and F. Benamar, "Motion control of a compliant wheel-leg robot for rough terrain crossing," in IEEE International Conference on Robotics and Automation, Stockholm, 2016, pp. 2846-2851. [24] A. Moosavian, K. Alipour, and Y. Bahramzadeh, "Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms," in IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 2007, pp. 1210-1215. [25] L. Solaque, M. Molina, and E. Rodríguez, "Seguimiento de trayectorias con un robot móvil de," Ingenierías USBMed, vol. 5, no. 1, pp. 26-34, 2014. [26] J. García et al., "Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo," Revista Iberoamericana de Automática e Informática industrial, vol. 14, no. 1, pp. 174–183, 2017. [27] S. Zuccaro, S. Canfield, and T. Hill, "Slip prediction of skid-steer mobile robots in manufacturing," in ASME 2017 International Design Engineering Technical Conferences and, Cleveland, 2017, pp. 1-8. [28] R. Fernández, R. Aracil, and M. Armada, "Traction control for wheeled mobile robots," Revista Iberoamericana de Automática e Informática Industrial , vol. 9, no. 4, pp. 393-435, 2012. [29] L. Gracia, "Modelado Cinemático y Control de Robots Móviles con Ruedas," Universidad Politécnica de Valencia, Valencia, Tesis Doctoral 2006. [30] G. Ishigami, K. Nagatani, and K. Yoshida, "Slope traversal controls for planetary exploration rover on sandy terrain," Journal of Field Robotics, vol. 26, no. 3, pp. 264–286, 2009. [31] M. Prado, A. Mata, A. Perez-Blanca, and F. Ezquerro, "Effects of terrain irregularities on wheeled mobile robot," Robotica, vol. 21, no. 02, pp. 143-152, 2003. [32] S. Oliveira, "Analysis of surface roughness and models of mechanical contacts," Università di Pisa, Pisa, Trabajo fin de carrera 2005. [33] Mitutoyo, "Quick guide to surface roughness measurement," Mitutoyo America Corporation, USA, Bulletin 2229, 2016.Ingenierías USBMed - 2020info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4380Passive SuspensionSkid Steer RobotTip-over StabilityVehicle SteerabilityComputer SimulationSuspensión PasivaRobot Skid SteerEstabilidad al VuelcoDireccionamiento de vehículoSimulación por ComputadorEfecto de la Suspensión en el Seguimiento de Trayectorias en Robots Moviéndose Sobre Terrenos duros con Diferente RugosidadEffect of Suspension on Tracking Trajectories in Robots Moving on Hard Terrains with Different RoughnessArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2729https://bibliotecadigital.usb.edu.co/bitstreams/332517fd-c29c-4a70-80fa-bbb62d1bb39f/download28504413124ad6bd1d7e5320ddbff151MD5110819/27428oai:bibliotecadigital.usb.edu.co:10819/274282025-08-21 17:05:04.249https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
