Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit

The glucose homeostasis is responsible for regulating the blood glucose concentration around 100 mg / dl. When this physiological mechanism is broken due to the inability of the pancreas to produce insulin, an increase of the blood glucose levels is produced and patients are diagnosed with Diabetes...

Full description

Autores:
Aguirre-Zapata, Estefanía
García-Tirado, José Fernando
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/27365
Acceso en línea:
https://hdl.handle.net/10819/27365
https://doi.org/10.21500/20275846.2617
Palabra clave:
EKF
state estimation
glucose homeostasis
insulin
mathematical model
T1DM.
Rights
openAccess
License
Ingenierías USBmed - 2016
id SANBUENAV2_e21f749ab9a29fa1216a6ad7fc0aa6af
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/27365
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit
dc.title.translated.eng.fl_str_mv Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit
title Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit
spellingShingle Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit
EKF
state estimation
glucose homeostasis
insulin
mathematical model
T1DM.
title_short Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit
title_full Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit
title_fullStr Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit
title_full_unstemmed Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit
title_sort Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care Unit
dc.creator.fl_str_mv Aguirre-Zapata, Estefanía
García-Tirado, José Fernando
dc.contributor.author.spa.fl_str_mv Aguirre-Zapata, Estefanía
García-Tirado, José Fernando
dc.subject.spa.fl_str_mv EKF
state estimation
glucose homeostasis
insulin
mathematical model
T1DM.
topic EKF
state estimation
glucose homeostasis
insulin
mathematical model
T1DM.
description The glucose homeostasis is responsible for regulating the blood glucose concentration around 100 mg / dl. When this physiological mechanism is broken due to the inability of the pancreas to produce insulin, an increase of the blood glucose levels is produced and patients are diagnosed with Diabetes Mellitus. In recent years, some research has directed towards the creation of an artificial pancreas that allows automatically the regulation of glucose levels in blood. However, one of the greatest difficulties in achieving this objective, is that not all internal variables of the mathematical model associated with the controller can be measured directly by physical sensors, either because there are no sensors for all variables, because existing sensors are not commercial, or because they are not viable from the economic point of view. Therefore, it is necessary to use estimation schemes to reconstruct the unknown states by measuring the interstitial glucose , in the case of the glucose-insulin system. However, the delay between plasma glucose and interstitial glucose has a negative effect on the performance of state estimators, so the treatment of this delay is necessary either from the modeling process of the glucose-insulin system or by a modification of the estimation techniques. According to the results it can be inferred that in the scenario at which the concentration of blood glucose is assumed, the estimated values have upper and lower peaks that are unrealistic from a physiological point of view, this due to the negative effect of the delay in measurement. Otherwise, in the scenario where the interstitial glucose concentration is considered as the measured variable, including dynamics of the interstitial glucose, the estimator exhibits better performance and rapid convergence to the real states.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2016-10-04T00:00:00Z
2025-08-21T22:04:35Z
dc.date.available.none.fl_str_mv 2016-10-04T00:00:00Z
2025-08-21T22:04:35Z
dc.date.issued.none.fl_str_mv 2016-10-04
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20275846.2617
dc.identifier.eissn.none.fl_str_mv 2027-5846
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/27365
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20275846.2617
identifier_str_mv 10.21500/20275846.2617
2027-5846
url https://hdl.handle.net/10819/27365
https://doi.org/10.21500/20275846.2617
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/2617/2382
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2016 : Ingenierías USBMed
dc.relation.citationendpage.none.fl_str_mv 13
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 7
dc.relation.citationvolume.spa.fl_str_mv 7
dc.relation.ispartofjournal.spa.fl_str_mv Ingenierías USBMed
dc.relation.references.spa.fl_str_mv M. Shrayyef and J. Gerich, “Principles of diabetes mellitus,” in Principles of Diabetes Mellitus, P. Leonid, Ed. 2010, pp. 19–35.
J. Aldworth, N. Al Bache, M. H. Hegelund, S. M. Hirst, U. Linnenkamp, D. Magliano, F. Oomatia, C. Patterson, N. Peer, A. Pritulskiy, M. M. Al Saleh, E. Shelestova, T. Tamayo, J. Usher-Smith, Z. Xiuying, and Samrawit Yisahak, IDF Diabetes Atlas, 7th ed. 2015.
J. Preiser, J. G. Chase, R. Hovorka, J. I. Joseph, J. S. Krinsley, C. De Block, T. Desaive, L. Foubert, and P. Kalfon, “Glucose Control in the ICU : A Continuing Story,” J. Diabetes Sci. Technol., vol. 10, no. 3, pp. 1–10, 2016.
V. den Berghe Greet, W. Pieter, W. Frank, V. Charles, B. Frans, S. Miet, V. Dirk, F. Patrick, L. Peter, and B. Roger, “Intensive Insulin Therapy in Critically Ill Patients,” N. Engl. J. Med., vol. 345, no. 19, pp. 1359–1367, 2001.
P. Kalfon, B. Giraudeau, C. Ichai, A. Guerrini, N. Brechot, R. Cinotti, P.-F. Dequin, B. Riu-Poulenc, P. Montravers, D. Annane, H. Dupont, M. Sorine, and B. Riou, “Tight computerized versus conventional glucose control in the ICU: a randomized controlled trial,” Intensive Care Med., vol. 40, no. 2, pp. 171–181, 2014.
T. N.-S. S. Investigators, “Intensive versus Conventional Glucose Control in Critically Ill Patients,” N. Engl. J. Med., vol. 360, no. 13, pp. 1283–1297, 2009.
B. P. Kovatchev, M. Breton, C. Dalla Man, and C. Cobelli, “In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes,” J. Diabetes Sci. Technol., vol. 3, no. 1, pp. 44–55, 2009.
L. Magni, D. M. Raimondo, C. Dalla Man, G. De Nicolao, B. Kovatchev, and C. Cobelli, “Model predictive control of glucose concentration in type I diabetic patients: An in silico trial,” Biomed. Signal Process. Control, vol. 4, no. 4, pp. 338–346, Oct. 2009.
K. Lunze, T. Singh, M. Walter, M. D. Brendel, and S. Leonhardt, “Blood glucose control algorithms for type 1 diabetic patients: A methodological review,” Biomed. Signal Process. Control, vol. 8, no. 2, pp. 107–119, Mar. 2013.
J. Clain, K. Ramar, S. R. Surani, W. W. Ave, and A. Pass, “Glucose control in critical care,” vol. 6, no. 9, pp. 1082–1091, 2015.
C. Eberle and C. Ament, “The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.,” Biosystems., vol. 103, no. 1, pp. 67–72, Jan. 2011.
R. Gondhalekar, E. Dassau, and F. J. D. Iii, “Moving-horizon-like state estimation via continuous glucose monitor feedback in MPC of an artificial pancreas for type 1 diabetes,” 2014.
R. Gondhalekar, E. Dassau, and F. J. Doyle, “State Estimation with Sensor Recalibrations and Asynchronous Measurements for MPC of an Artificial Pancreas to Treat T1DM,” 2014.
Medtronic, “Por qué las lecturas del sensor son diferentes a las lecturas de GS.” .
J. Lin, N. N. Razak, C. G. Pretty, A. Le, P. Docherty, J. D. Parente, G. M. Shaw, C. E. Hann, and J. G. Chase, “A physiological Intensive Control Insulin-Nutrition-Glucose ( ICING ) model validated in critically ill patients,” Comput. Methods Programs Biomed., vol. 102, no. 2, pp. 192–205, 2010.
C. King, S. M. Anderson, M. Breton, W. L. Clarke, and B. P. Kovatchev, “Modeling of calibration effectiveness and blood-to-interstitial glucose dynamics as potential confounders of the accuracy of continuous glucose sensors during hyperinsulinemic clamp,” J. Diabetes Sci. Technol., vol. 1, no. 3, pp. 317–322, 2007.
D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006.
M. Breton and B. Kovatchev, “Analysis, modeling, and simulation of the accuracy of continuous glucose sensors,” J. Diabetes Sci. Technol., vol. 2, no. 5, pp. 853–862, 2008.
P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther., vol. 3, no. 1, pp. 81–90, 2001.
dc.rights.spa.fl_str_mv Ingenierías USBmed - 2016
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Ingenierías USBmed - 2016
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.spa.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2617
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/103d5e7d-da2e-46ad-bcbc-d40c39e533c1/download
bitstream.checksum.fl_str_mv 204d629a6e5898eb0478c6a09a261c9d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053637422284800
spelling Aguirre-Zapata, EstefaníaGarcía-Tirado, José Fernando2016-10-04T00:00:00Z2025-08-21T22:04:35Z2016-10-04T00:00:00Z2025-08-21T22:04:35Z2016-10-04The glucose homeostasis is responsible for regulating the blood glucose concentration around 100 mg / dl. When this physiological mechanism is broken due to the inability of the pancreas to produce insulin, an increase of the blood glucose levels is produced and patients are diagnosed with Diabetes Mellitus. In recent years, some research has directed towards the creation of an artificial pancreas that allows automatically the regulation of glucose levels in blood. However, one of the greatest difficulties in achieving this objective, is that not all internal variables of the mathematical model associated with the controller can be measured directly by physical sensors, either because there are no sensors for all variables, because existing sensors are not commercial, or because they are not viable from the economic point of view. Therefore, it is necessary to use estimation schemes to reconstruct the unknown states by measuring the interstitial glucose , in the case of the glucose-insulin system. However, the delay between plasma glucose and interstitial glucose has a negative effect on the performance of state estimators, so the treatment of this delay is necessary either from the modeling process of the glucose-insulin system or by a modification of the estimation techniques. According to the results it can be inferred that in the scenario at which the concentration of blood glucose is assumed, the estimated values have upper and lower peaks that are unrealistic from a physiological point of view, this due to the negative effect of the delay in measurement. Otherwise, in the scenario where the interstitial glucose concentration is considered as the measured variable, including dynamics of the interstitial glucose, the estimator exhibits better performance and rapid convergence to the real states.application/pdf10.21500/20275846.26172027-5846https://hdl.handle.net/10819/27365https://doi.org/10.21500/20275846.2617spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/2617/2382Núm. 2 , Año 2016 : Ingenierías USBMed13277Ingenierías USBMedM. Shrayyef and J. Gerich, “Principles of diabetes mellitus,” in Principles of Diabetes Mellitus, P. Leonid, Ed. 2010, pp. 19–35.J. Aldworth, N. Al Bache, M. H. Hegelund, S. M. Hirst, U. Linnenkamp, D. Magliano, F. Oomatia, C. Patterson, N. Peer, A. Pritulskiy, M. M. Al Saleh, E. Shelestova, T. Tamayo, J. Usher-Smith, Z. Xiuying, and Samrawit Yisahak, IDF Diabetes Atlas, 7th ed. 2015.J. Preiser, J. G. Chase, R. Hovorka, J. I. Joseph, J. S. Krinsley, C. De Block, T. Desaive, L. Foubert, and P. Kalfon, “Glucose Control in the ICU : A Continuing Story,” J. Diabetes Sci. Technol., vol. 10, no. 3, pp. 1–10, 2016.V. den Berghe Greet, W. Pieter, W. Frank, V. Charles, B. Frans, S. Miet, V. Dirk, F. Patrick, L. Peter, and B. Roger, “Intensive Insulin Therapy in Critically Ill Patients,” N. Engl. J. Med., vol. 345, no. 19, pp. 1359–1367, 2001.P. Kalfon, B. Giraudeau, C. Ichai, A. Guerrini, N. Brechot, R. Cinotti, P.-F. Dequin, B. Riu-Poulenc, P. Montravers, D. Annane, H. Dupont, M. Sorine, and B. Riou, “Tight computerized versus conventional glucose control in the ICU: a randomized controlled trial,” Intensive Care Med., vol. 40, no. 2, pp. 171–181, 2014.T. N.-S. S. Investigators, “Intensive versus Conventional Glucose Control in Critically Ill Patients,” N. Engl. J. Med., vol. 360, no. 13, pp. 1283–1297, 2009.B. P. Kovatchev, M. Breton, C. Dalla Man, and C. Cobelli, “In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes,” J. Diabetes Sci. Technol., vol. 3, no. 1, pp. 44–55, 2009.L. Magni, D. M. Raimondo, C. Dalla Man, G. De Nicolao, B. Kovatchev, and C. Cobelli, “Model predictive control of glucose concentration in type I diabetic patients: An in silico trial,” Biomed. Signal Process. Control, vol. 4, no. 4, pp. 338–346, Oct. 2009.K. Lunze, T. Singh, M. Walter, M. D. Brendel, and S. Leonhardt, “Blood glucose control algorithms for type 1 diabetic patients: A methodological review,” Biomed. Signal Process. Control, vol. 8, no. 2, pp. 107–119, Mar. 2013.J. Clain, K. Ramar, S. R. Surani, W. W. Ave, and A. Pass, “Glucose control in critical care,” vol. 6, no. 9, pp. 1082–1091, 2015.C. Eberle and C. Ament, “The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.,” Biosystems., vol. 103, no. 1, pp. 67–72, Jan. 2011.R. Gondhalekar, E. Dassau, and F. J. D. Iii, “Moving-horizon-like state estimation via continuous glucose monitor feedback in MPC of an artificial pancreas for type 1 diabetes,” 2014.R. Gondhalekar, E. Dassau, and F. J. Doyle, “State Estimation with Sensor Recalibrations and Asynchronous Measurements for MPC of an Artificial Pancreas to Treat T1DM,” 2014.Medtronic, “Por qué las lecturas del sensor son diferentes a las lecturas de GS.” .J. Lin, N. N. Razak, C. G. Pretty, A. Le, P. Docherty, J. D. Parente, G. M. Shaw, C. E. Hann, and J. G. Chase, “A physiological Intensive Control Insulin-Nutrition-Glucose ( ICING ) model validated in critically ill patients,” Comput. Methods Programs Biomed., vol. 102, no. 2, pp. 192–205, 2010.C. King, S. M. Anderson, M. Breton, W. L. Clarke, and B. P. Kovatchev, “Modeling of calibration effectiveness and blood-to-interstitial glucose dynamics as potential confounders of the accuracy of continuous glucose sensors during hyperinsulinemic clamp,” J. Diabetes Sci. Technol., vol. 1, no. 3, pp. 317–322, 2007.D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006.M. Breton and B. Kovatchev, “Analysis, modeling, and simulation of the accuracy of continuous glucose sensors,” J. Diabetes Sci. Technol., vol. 2, no. 5, pp. 853–862, 2008.P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther., vol. 3, no. 1, pp. 81–90, 2001.Ingenierías USBmed - 2016info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2617EKFstate estimationglucose homeostasisinsulinmathematical modelT1DM.Monitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care UnitMonitoring Plasma Glucose Concentration from Interstitial Glucose Measurements for Patients at the Intensive Care UnitArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2677https://bibliotecadigital.usb.edu.co/bitstreams/103d5e7d-da2e-46ad-bcbc-d40c39e533c1/download204d629a6e5898eb0478c6a09a261c9dMD5110819/27365oai:bibliotecadigital.usb.edu.co:10819/273652025-08-21 17:04:35.157https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com