Codificación visual en múltiples áreas del cerebro.

Este estudio se centra en comprender la codificación visual en múltiples áreas del cerebro y sus implicaciones para el procesamiento neural en el sistema visual. Se destaca el uso de registros simultáneos de grandes poblaciones neuronales para investigar cómo se codifica y procesa la información vis...

Full description

Autores:
de Araújo Xavier, Vitória
da Silva Melo, Nayara
Ribeiro, Sidarta
A P de Vasconcelos, Nivaldo
Tipo de recurso:
Article of journal
Fecha de publicación:
2024
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/28999
Acceso en línea:
https://hdl.handle.net/10819/28999
https://doi.org/10.21500/20112084.7390
Palabra clave:
sensory processing
sensory coding
neural circuits
procesamiento sensorial
codificación sensorial
circuitos neuronales
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id SANBUENAV2_e1a1a27001f266862d88a3a4cbb11c63
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/28999
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Codificación visual en múltiples áreas del cerebro.
dc.title.translated.spa.fl_str_mv Codificación visual en múltiples áreas del cerebro.
title Codificación visual en múltiples áreas del cerebro.
spellingShingle Codificación visual en múltiples áreas del cerebro.
sensory processing
sensory coding
neural circuits
procesamiento sensorial
codificación sensorial
circuitos neuronales
title_short Codificación visual en múltiples áreas del cerebro.
title_full Codificación visual en múltiples áreas del cerebro.
title_fullStr Codificación visual en múltiples áreas del cerebro.
title_full_unstemmed Codificación visual en múltiples áreas del cerebro.
title_sort Codificación visual en múltiples áreas del cerebro.
dc.creator.fl_str_mv de Araújo Xavier, Vitória
da Silva Melo, Nayara
Ribeiro, Sidarta
A P de Vasconcelos, Nivaldo
dc.contributor.author.eng.fl_str_mv de Araújo Xavier, Vitória
da Silva Melo, Nayara
Ribeiro, Sidarta
A P de Vasconcelos, Nivaldo
dc.subject.eng.fl_str_mv sensory processing
sensory coding
neural circuits
topic sensory processing
sensory coding
neural circuits
procesamiento sensorial
codificación sensorial
circuitos neuronales
dc.subject.spa.fl_str_mv procesamiento sensorial
codificación sensorial
circuitos neuronales
description Este estudio se centra en comprender la codificación visual en múltiples áreas del cerebro y sus implicaciones para el procesamiento neural en el sistema visual. Se destaca el uso de registros simultáneos de grandes poblaciones neuronales para investigar cómo se codifica y procesa la información visual en el cerebro. Al estudiar la actividad de múltiples áreas cerebrales, el artículo tiene como objetivo desvelar los mecanismos subyacentes a la percepción visual a nivel cerebral y proporcionar ideas sobre la base neural del procesamiento visual. Los hallazgos de esta investigación contribuyen al campo más amplio de la neurociencia y tienen implicaciones para entender los trastornos visuales y desarrollar intervenciones terapéuticas.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-03T00:00:00Z
2025-08-22T16:59:35Z
dc.date.available.none.fl_str_mv 2024-09-03T00:00:00Z
2025-08-22T16:59:35Z
dc.date.issued.none.fl_str_mv 2024-09-03
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20112084.7390
dc.identifier.eissn.none.fl_str_mv 2011-7922
dc.identifier.issn.none.fl_str_mv 2011-2084
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/28999
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20112084.7390
identifier_str_mv 10.21500/20112084.7390
2011-7922
2011-2084
url https://hdl.handle.net/10819/28999
https://doi.org/10.21500/20112084.7390
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/download/7390/5497
dc.relation.citationedition.eng.fl_str_mv Núm. 2 , Año 2024 : Interdisciplinary Approaches for Human Cognition: Expanding Perspectives on the Mind
dc.relation.citationendpage.none.fl_str_mv 75
dc.relation.citationissue.eng.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 54
dc.relation.citationvolume.eng.fl_str_mv 17
dc.relation.ispartofjournal.eng.fl_str_mv International Journal of Psychological Research
dc.relation.references.eng.fl_str_mv Adrian, E. (1929). "motor nerve fibers. part ii. the frequency of discharge in reflex and voluntary contractions". J. Physiol., 67, 119–151. Adrian, E. D., & Zotterman, Y. (1926, August). The impulses produced by sensory nerve endings: Part 3. impulses set up by touch and pressure. J. Physiol., 61(4), 465–483. Allen, A. E., Procyk, C. A., Howarth, M., Walmsley, L., & Brown, T. M. (2016). Visual input to the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and retinotopic order. The Journal of Physiology, 594(7), 1911–1929. Amaral, D., Insausti, R., & Paxinos, G. (1990). The human nervous system. San Diego: Academic, 711–755. Andersen, P., Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (2007). The hippocampal formation. Oxford University Press. Arnts, H., Coolen, S. E., Fernandes, F. W., Schuurman, R., Krauss, J. K., Groe- newegen, H. J., & van den Munckhof, P. (2023, February). The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun, 5(3), fcad003. Bourboulou, R., Marti, G., Michon, F.-X., El Feghaly, E., Nouguier, M., Robbe, D., Koenig, J., & Epsztein, J. (2019). Dynamic control of hippocampal spatial coding resolution by local visual cues. Elife, 8, e44487. Cohen, M. R., & Kohn, A. (2011, June). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14(7), 811–819. Coolen, L. M., Veening, J. G., Wells, A. B., & Shipley, M. T. (2003). Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. Journal of Comparative Neurology, 463(2), 132–156. Covington, B. P., & Al Khalili, Y. (2019). Neuroanatomy, nucleus lateral geniculate. StatPearls Publishing Csicsvari, J., Henze, D. A., Jamieson, B., Harris, K. D., Sirota, A., Barthó, P., Wise, K. D., & Buzsáki, G. (2003, August). Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol., 90(2), 1314–1323. https://doi.org/10.1152/jn.00116.2003 Ding, S.-L. (2013). Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. Journal of Comparative Neurology, 521(18), 4145–4162. Durand, S., Heller, G. R., Ramirez, T. K., Luviano, J. A., Williford, A., Sullivan, D. T., Cahoon, A. J., Farrell, C., Groblewski, P. A., Bennett, C., Siegle, J. H., & Olsen, S. R. (2023, February). Acute head-fixed recordings in awake mice with multiple neuropixels probes. Nature Protocols, 18(2), 424–457. https://doi.org/10.1038/s41596-022-00768-6 Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N. K., & Tolias, A. S. (2010). Decorrelated neuronal firing in cortical microcircuits. Science, 327(5965), 584–587. Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters, 27(8), 861–874. Fontenele, A. J., de Vasconcelos, N. A. P., Feliciano, T., Aguiar, L. A. A., Soares- Cunha, C., Coimbra, B., Dalla Porta, L., Ribeiro, S., Rodrigues, A. J., Sousa, N., Carelli, P. V., & Copelli, M. (2019, May). Criticality between cortical states. Physcal. Review Letters, 122(20), 208101. https://doi.org/10.1103/PhysRevLett.122.208101 Gauriau, C., & Bernard, J.-F. (2004). Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. Journal of Neuroscience, 24(3), 752–761. Hong, G., & Lieber, C. M. (2019). Novel electrode technologies for neural recordings. Nature Reviews Neuroscience, 20(6), 330–345. Hubel, D. H. (1957, March). Tungsten microelectrode for recording from single units. Science, 125(3247), 549–550. Hubel, D. H., & Wiesel, T. N. (1959, October). Receptive fields of single neurones in the cat’s striate cortex. J. Physiol., 148(3), 574–591. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1), 106. Hubel, D. H., & Wiesel, T. N. (1968, March). Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 195(1), 215–243. Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005, November). Fast readout of object identity from macaque inferior temporal cortex. Science, 310(5749), 863–866. Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., B., Lee, A. K., Anastassiou, C. A., Andrei, A., Aydın, Ç., Barbic, M., Blanche, T. J., Bonin, V., Couto, J., Dutta, B., Gratiy, S. L., Gutnisky, D. A., Häusser, M., Karsh, B., Ledochowitsch, P., . . . Harris, T. D. (2017, November). Fully integrated silicon probes for high-density recording of neural activity. Nature, 551(7679), 232–236. https://doi.org/10.1038/nature24636 Kandel, E. R. (2013). Principles of neural science (5th ed.). McGraw- Hill. Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217–230. Lashley, K. S. (1930). Basic neural mechanisms in behavior. Psychological review, 37(1), 1. LeDoux, J. E., Sakaguchi, A., & Reis, D. J. (1984). Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. Journal of Neuroscience, 4(3), 683–698. Marshel, J. H., Garrett, M., Garrett, M. E., Nauhaus, I., & Callaway, E. M. (2011). Functional specialization of seven mouse visual cortical areas. Neuron, 72(6), 1040-1054. https://doi.org/10.1016/j.neuron.2011.12.004 Nicolelis, M. A., Ghazanfar, A. A., Faggin, B. M., Votaw, S., & Oliveira, L. M. (1997, April). Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron, 18(4), 529–537. Nicolelis, M. A., & Lebedev, M. A. (2009). Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nature reviews neuroscience, 10(7), 530–540. Nicolelis, M. A. L., Dimitrov, D., Carmena, J. M., Crist, R., Lehew, G., Kralik, J. D., & Wise, S. P. (2003, September). Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. U. S. A., 100(19), 11041–11046. Niell, C. M., & Stryker, M. P. (2008, July). Highly selective receptive fields in
mouse visual cortex. Journal of Neuroscience, 28(30), 7520–7536. O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experimental neurology, 51(1), 78–109. O’Mara, S. (2005). The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. Journal of anatomy, 207(3), 271–282. Paxinos, G., & Franklin, K. (2001). The mouse brain in stereotaxic coordinates. Academic press. Powell, T. P., & Mountcastle, V. B. (1959, September). Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp., 105, 133–162. Prusky, G., & Douglas, R. (2004). Characterization of mouse cortical spatial vision. Vision research, 44(28), 3411-3418. https://doi.org/10.1016/j.visres.2004.09.001 Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K. D. (2010, January). The asynchronous state in cortical circuits. Science, 327(5965), 587–590. Ringach, D. L. (2004). Mapping receptive fields in primary visual cortex. The Journal of Physiology, 558(3), 717–728. Roth, M. M., Helmchen, F., & Kampa, B. M. (2012). Distinct functional properties of primary and posteromedial visual area of mouse neocortex. The Journal of Neuroscience, 32(28), 9716-9726. https://doi.org/10.1523/jneurosci.0110-12.2012 Smith, P. H., Manning, K. A., & Uhlrich, D. J. (2010). Evaluation of inputs to rat primary auditory cortex from the suprageniculate nucleus and extrastriate visual cortex. Journal of Comparative Neurology, 518(18), 3679–3700. Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., . . . Harris, T. D. (2021, April). Neuropixels 2.0: A miniaturized high- density probe for stable, long-term brain recordings. Science, 372(6539). Steinmetz, N. A., Koch, C., Harris, K. D., & Carandini, M. (2018). Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Current opinion in neurobiology, 50, 92–100. Stevenson, I. H., & Kording, K. P. (2011, February). How advances in neural recording affect data analysis. Nat. Neurosci., 14(2), 139–142. Trautmann, E. M., Hesse, J. K., Stine, G. M., Xia, R., Zhu, S., O’Shea, D. J., Karsh, B., Colonell, J., Lanfranchi, F. F., Vyas, S., Zimnik, A., Steinmann, N. A., Wagenaar, D. A., Andrei, A., Lopez, C. M., O'Callaghan, J., Putzeys, J., Raducanu, B. C., Welkenhuysen, M., Churchland, M., . . . Harris, T. (2023, May). Large-scale high-density brain-wide neural recording in nonhuman primates. bioRxiv. https://doi.org/10.1101/2023.02.01.526664 Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). MIT Press. Wang, Q., & Burkhalter, A. (2007). Area map of mouse visual cortex. The Journal of Comparative Neurology, 502(3), 339-357. https://doi.org/10.1002/cne.21286 Watson, C., Paxinos, G., & Puelles, L. (2011). The mouse nervous system. Academic Press. Whitlock, J. R., Sutherland, R. J., Witter, M. P., Moser, M.-B., & Moser, E. I. (2008). Navigating from hippocampus to parietal cortex. Proceedings of the National Academy of Sciences, 105(39), 14755–14762. Zrinzo, L., Zrinzo, L. V., & Hariz, M. (2007). The peripeduncular nucleus: a novel target for deep brain stimulation? Neuroreport, 18(15), 1631–1632.
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
http://creativecommons.org/licenses/by-nc-nd/4.0
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.eng.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/view/7390
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/12c8626f-2e29-4132-a711-9fc8dbd9aac6/download
bitstream.checksum.fl_str_mv 07a0e2ae96f918bf7956b75ee23cc754
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053582023917568
spelling de Araújo Xavier, Vitóriada Silva Melo, NayaraRibeiro, SidartaA P de Vasconcelos, Nivaldo2024-09-03T00:00:00Z2025-08-22T16:59:35Z2024-09-03T00:00:00Z2025-08-22T16:59:35Z2024-09-03Este estudio se centra en comprender la codificación visual en múltiples áreas del cerebro y sus implicaciones para el procesamiento neural en el sistema visual. Se destaca el uso de registros simultáneos de grandes poblaciones neuronales para investigar cómo se codifica y procesa la información visual en el cerebro. Al estudiar la actividad de múltiples áreas cerebrales, el artículo tiene como objetivo desvelar los mecanismos subyacentes a la percepción visual a nivel cerebral y proporcionar ideas sobre la base neural del procesamiento visual. Los hallazgos de esta investigación contribuyen al campo más amplio de la neurociencia y tienen implicaciones para entender los trastornos visuales y desarrollar intervenciones terapéuticas.This study focuses on understanding visual coding in multiple brain areas and its implications for neural processing in the visual system. It highlights the use of simultaneous recordings of large neuronal populations to investigate how visual information is encoded and processed in the brain. By studying the activity of multiple brain areas, the paper aims to uncover the mechanisms underlying brain-wide visual perception and provide insights into the neural basis of visual processing. The findings of this research contribute to the broader field of neuroscience and have implications for understanding visual disorders and developing therapeutic interventionsapplication/pdf10.21500/20112084.73902011-79222011-2084https://hdl.handle.net/10819/28999https://doi.org/10.21500/20112084.7390engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/7390/5497Núm. 2 , Año 2024 : Interdisciplinary Approaches for Human Cognition: Expanding Perspectives on the Mind7525417International Journal of Psychological ResearchAdrian, E. (1929). "motor nerve fibers. part ii. the frequency of discharge in reflex and voluntary contractions". J. Physiol., 67, 119–151. Adrian, E. D., & Zotterman, Y. (1926, August). The impulses produced by sensory nerve endings: Part 3. impulses set up by touch and pressure. J. Physiol., 61(4), 465–483. Allen, A. E., Procyk, C. A., Howarth, M., Walmsley, L., & Brown, T. M. (2016). Visual input to the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and retinotopic order. The Journal of Physiology, 594(7), 1911–1929. Amaral, D., Insausti, R., & Paxinos, G. (1990). The human nervous system. San Diego: Academic, 711–755. Andersen, P., Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (2007). The hippocampal formation. Oxford University Press. Arnts, H., Coolen, S. E., Fernandes, F. W., Schuurman, R., Krauss, J. K., Groe- newegen, H. J., & van den Munckhof, P. (2023, February). The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun, 5(3), fcad003. Bourboulou, R., Marti, G., Michon, F.-X., El Feghaly, E., Nouguier, M., Robbe, D., Koenig, J., & Epsztein, J. (2019). Dynamic control of hippocampal spatial coding resolution by local visual cues. Elife, 8, e44487. Cohen, M. R., & Kohn, A. (2011, June). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14(7), 811–819. Coolen, L. M., Veening, J. G., Wells, A. B., & Shipley, M. T. (2003). Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. Journal of Comparative Neurology, 463(2), 132–156. Covington, B. P., & Al Khalili, Y. (2019). Neuroanatomy, nucleus lateral geniculate. StatPearls Publishing Csicsvari, J., Henze, D. A., Jamieson, B., Harris, K. D., Sirota, A., Barthó, P., Wise, K. D., & Buzsáki, G. (2003, August). Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol., 90(2), 1314–1323. https://doi.org/10.1152/jn.00116.2003 Ding, S.-L. (2013). Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. Journal of Comparative Neurology, 521(18), 4145–4162. Durand, S., Heller, G. R., Ramirez, T. K., Luviano, J. A., Williford, A., Sullivan, D. T., Cahoon, A. J., Farrell, C., Groblewski, P. A., Bennett, C., Siegle, J. H., & Olsen, S. R. (2023, February). Acute head-fixed recordings in awake mice with multiple neuropixels probes. Nature Protocols, 18(2), 424–457. https://doi.org/10.1038/s41596-022-00768-6 Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N. K., & Tolias, A. S. (2010). Decorrelated neuronal firing in cortical microcircuits. Science, 327(5965), 584–587. Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters, 27(8), 861–874. Fontenele, A. J., de Vasconcelos, N. A. P., Feliciano, T., Aguiar, L. A. A., Soares- Cunha, C., Coimbra, B., Dalla Porta, L., Ribeiro, S., Rodrigues, A. J., Sousa, N., Carelli, P. V., & Copelli, M. (2019, May). Criticality between cortical states. Physcal. Review Letters, 122(20), 208101. https://doi.org/10.1103/PhysRevLett.122.208101 Gauriau, C., & Bernard, J.-F. (2004). Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. Journal of Neuroscience, 24(3), 752–761. Hong, G., & Lieber, C. M. (2019). Novel electrode technologies for neural recordings. Nature Reviews Neuroscience, 20(6), 330–345. Hubel, D. H. (1957, March). Tungsten microelectrode for recording from single units. Science, 125(3247), 549–550. Hubel, D. H., & Wiesel, T. N. (1959, October). Receptive fields of single neurones in the cat’s striate cortex. J. Physiol., 148(3), 574–591. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1), 106. Hubel, D. H., & Wiesel, T. N. (1968, March). Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 195(1), 215–243. Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005, November). Fast readout of object identity from macaque inferior temporal cortex. Science, 310(5749), 863–866. Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., B., Lee, A. K., Anastassiou, C. A., Andrei, A., Aydın, Ç., Barbic, M., Blanche, T. J., Bonin, V., Couto, J., Dutta, B., Gratiy, S. L., Gutnisky, D. A., Häusser, M., Karsh, B., Ledochowitsch, P., . . . Harris, T. D. (2017, November). Fully integrated silicon probes for high-density recording of neural activity. Nature, 551(7679), 232–236. https://doi.org/10.1038/nature24636 Kandel, E. R. (2013). Principles of neural science (5th ed.). McGraw- Hill. Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217–230. Lashley, K. S. (1930). Basic neural mechanisms in behavior. Psychological review, 37(1), 1. LeDoux, J. E., Sakaguchi, A., & Reis, D. J. (1984). Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. Journal of Neuroscience, 4(3), 683–698. Marshel, J. H., Garrett, M., Garrett, M. E., Nauhaus, I., & Callaway, E. M. (2011). Functional specialization of seven mouse visual cortical areas. Neuron, 72(6), 1040-1054. https://doi.org/10.1016/j.neuron.2011.12.004 Nicolelis, M. A., Ghazanfar, A. A., Faggin, B. M., Votaw, S., & Oliveira, L. M. (1997, April). Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron, 18(4), 529–537. Nicolelis, M. A., & Lebedev, M. A. (2009). Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nature reviews neuroscience, 10(7), 530–540. Nicolelis, M. A. L., Dimitrov, D., Carmena, J. M., Crist, R., Lehew, G., Kralik, J. D., & Wise, S. P. (2003, September). Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. U. S. A., 100(19), 11041–11046. Niell, C. M., & Stryker, M. P. (2008, July). Highly selective receptive fields inmouse visual cortex. Journal of Neuroscience, 28(30), 7520–7536. O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experimental neurology, 51(1), 78–109. O’Mara, S. (2005). The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. Journal of anatomy, 207(3), 271–282. Paxinos, G., & Franklin, K. (2001). The mouse brain in stereotaxic coordinates. Academic press. Powell, T. P., & Mountcastle, V. B. (1959, September). Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp., 105, 133–162. Prusky, G., & Douglas, R. (2004). Characterization of mouse cortical spatial vision. Vision research, 44(28), 3411-3418. https://doi.org/10.1016/j.visres.2004.09.001 Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K. D. (2010, January). The asynchronous state in cortical circuits. Science, 327(5965), 587–590. Ringach, D. L. (2004). Mapping receptive fields in primary visual cortex. The Journal of Physiology, 558(3), 717–728. Roth, M. M., Helmchen, F., & Kampa, B. M. (2012). Distinct functional properties of primary and posteromedial visual area of mouse neocortex. The Journal of Neuroscience, 32(28), 9716-9726. https://doi.org/10.1523/jneurosci.0110-12.2012 Smith, P. H., Manning, K. A., & Uhlrich, D. J. (2010). Evaluation of inputs to rat primary auditory cortex from the suprageniculate nucleus and extrastriate visual cortex. Journal of Comparative Neurology, 518(18), 3679–3700. Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., . . . Harris, T. D. (2021, April). Neuropixels 2.0: A miniaturized high- density probe for stable, long-term brain recordings. Science, 372(6539). Steinmetz, N. A., Koch, C., Harris, K. D., & Carandini, M. (2018). Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Current opinion in neurobiology, 50, 92–100. Stevenson, I. H., & Kording, K. P. (2011, February). How advances in neural recording affect data analysis. Nat. Neurosci., 14(2), 139–142. Trautmann, E. M., Hesse, J. K., Stine, G. M., Xia, R., Zhu, S., O’Shea, D. J., Karsh, B., Colonell, J., Lanfranchi, F. F., Vyas, S., Zimnik, A., Steinmann, N. A., Wagenaar, D. A., Andrei, A., Lopez, C. M., O'Callaghan, J., Putzeys, J., Raducanu, B. C., Welkenhuysen, M., Churchland, M., . . . Harris, T. (2023, May). Large-scale high-density brain-wide neural recording in nonhuman primates. bioRxiv. https://doi.org/10.1101/2023.02.01.526664 Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). MIT Press. Wang, Q., & Burkhalter, A. (2007). Area map of mouse visual cortex. The Journal of Comparative Neurology, 502(3), 339-357. https://doi.org/10.1002/cne.21286 Watson, C., Paxinos, G., & Puelles, L. (2011). The mouse nervous system. Academic Press. Whitlock, J. R., Sutherland, R. J., Witter, M. P., Moser, M.-B., & Moser, E. I. (2008). Navigating from hippocampus to parietal cortex. Proceedings of the National Academy of Sciences, 105(39), 14755–14762. Zrinzo, L., Zrinzo, L. V., & Hariz, M. (2007). The peripeduncular nucleus: a novel target for deep brain stimulation? Neuroreport, 18(15), 1631–1632.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.http://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IJPR/article/view/7390sensory processingsensory codingneural circuitsprocesamiento sensorialcodificación sensorialcircuitos neuronalesCodificación visual en múltiples áreas del cerebro.Codificación visual en múltiples áreas del cerebro.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2624https://bibliotecadigital.usb.edu.co/bitstreams/12c8626f-2e29-4132-a711-9fc8dbd9aac6/download07a0e2ae96f918bf7956b75ee23cc754MD5110819/28999oai:bibliotecadigital.usb.edu.co:10819/289992025-08-22 11:59:35.873http://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com