Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias

  La enfermedad de Parkinson (EP) es un trastorno neurodegenerativo común a nivel mundial, con más de 6.2 millones de casos registrados. El análisis de la marcha desempeña un papel fundamental en la evaluación de las anomalías motoras asociadas con esta enfermedad. Sin embargo, los méto...

Full description

Autores:
Portilla , Jean
Rangel, Edgar
Guayacán, Luis
Martínez, Fabio
Tipo de recurso:
Article of journal
Fecha de publicación:
2024
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/29001
Acceso en línea:
https://hdl.handle.net/10819/29001
https://doi.org/10.21500/20112084.7405
Palabra clave:
Parkinson’s disease
posture
artificial neural networks
gait
Enfermedad de Parkinson
postura
redes neuronales artificiales
marcha
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id SANBUENAV2_d9e4b463d124903b431d3e9935cb4f33
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/29001
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias
dc.title.translated.spa.fl_str_mv Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias
title Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias
spellingShingle Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias
Parkinson’s disease
posture
artificial neural networks
gait
Enfermedad de Parkinson
postura
redes neuronales artificiales
marcha
title_short Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias
title_full Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias
title_fullStr Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias
title_full_unstemmed Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias
title_sort Una arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermedias
dc.creator.fl_str_mv Portilla , Jean
Rangel, Edgar
Guayacán, Luis
Martínez, Fabio
dc.contributor.author.eng.fl_str_mv Portilla , Jean
Rangel, Edgar
Guayacán, Luis
Martínez, Fabio
dc.subject.eng.fl_str_mv Parkinson’s disease
posture
artificial neural networks
gait
topic Parkinson’s disease
posture
artificial neural networks
gait
Enfermedad de Parkinson
postura
redes neuronales artificiales
marcha
dc.subject.spa.fl_str_mv Enfermedad de Parkinson
postura
redes neuronales artificiales
marcha
description   La enfermedad de Parkinson (EP) es un trastorno neurodegenerativo común a nivel mundial, con más de 6.2 millones de casos registrados. El análisis de la marcha desempeña un papel fundamental en la evaluación de las anomalías motoras asociadas con esta enfermedad. Sin embargo, los métodos actuales, como sistemas basados en marcadores, son intrusivos y dependientes de expertos. Se han propuesto alternativas sin marcadores, como el análisis de secuencias de video, que tienden a proporcionar puntajes de clasificación globales y carecen de la capacidad de interpretar la cinemática articular detalladamente. Se presenta una técnica innovadora utilizando redes convolucionales volumétricas que pueden aprender patrones posturales intermedios y distinguir entre pacientes con Parkinson y sujetos control. Este enfoque utiliza activaciones de OpenPose, y luego aplica una convolución jerárquica para minimizar la clasificación. En pruebas realizadas con 14 pacientes Parkinson y 16 sujetos control, este método alcanzó una precisión del 98% en clasificación.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-03T00:00:00Z
2025-08-22T16:59:36Z
dc.date.available.none.fl_str_mv 2024-09-03T00:00:00Z
2025-08-22T16:59:36Z
dc.date.issued.none.fl_str_mv 2024-09-03
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20112084.7405
dc.identifier.eissn.none.fl_str_mv 2011-7922
dc.identifier.issn.none.fl_str_mv 2011-2084
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/29001
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20112084.7405
identifier_str_mv 10.21500/20112084.7405
2011-7922
2011-2084
url https://hdl.handle.net/10819/29001
https://doi.org/10.21500/20112084.7405
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/download/7405/5522
dc.relation.citationedition.eng.fl_str_mv Núm. 2 , Año 2024 : Interdisciplinary Approaches for Human Cognition: Expanding Perspectives on the Mind
dc.relation.citationendpage.none.fl_str_mv 90
dc.relation.citationissue.eng.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 84
dc.relation.citationvolume.eng.fl_str_mv 17
dc.relation.ispartofjournal.eng.fl_str_mv International Journal of Psychological Research
dc.relation.references.eng.fl_str_mv Baker, R. (2006). Gait analysis methods in rehabilitation. Journal of NeuroEngineering and Reha-bilitation, 3(1), 1–10. https://doi.org/10.1186/1743-0003-3-1 Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2021). OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172–186. https://doi.org/10.1109/TPAMI.2019.2929257 Dorsey, E., Sherer, T., Okun, M. S., & Bloem, B. R. (2018). The emerging evidence of the Parkin-son pandemic. Journal of Parkinson’s Disease, 8(s1), S3–S8. https://doi.org/10.3233/JPD-181474 Feigin, V. L., Vos, T., Alahdab, F., Amit, A. M. L., Bärnighausen, T. W., Beghi, E., Beheshti, M., Chavan, P. P., Criqui, M. H., Desai, R., Dhamminda Dharmaratne, S., Dorsey, E. R., Wilder Eagan, A., Elgendy, I. Y., Filip, I., Giampaoli, S., Giussani, G., Hafezi-Nejad, N., Hole, M. K., … Murray, C. J. L. (2021). Burden of neurological disorders across the US from 1990–2017: A global burden of disease study. JAMA Neurology, 78(2), 165–176. https://doi.org/10.1001/jamaneurol.2020.4152 Guayacán, L. C., & Martínez, F. (2021). Visualising and quantifying relevant Parkinsonian gait patterns using 3D convolutional network. Journal of Biomedical Informatics, 123, 103935. https://doi.org/10.1016/j.jbi.2021.103935 The Lancet. (2017). Artificial intelligence in health care: Within touching distance. The Lancet, 390(10114), 2739. https://doi.org/10.1016/S0140-6736(17)32846-5 Rovini, E., Maremmani, C., & Cavallo, F. (2017). How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review. Frontiers in Neuroscience, 11, 555. https://doi.org/10.3389/fnins.2017.00555 Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556 Tolosa, E., Garrido, A., Scholz, S. W., & Poewe, W. (2021). Challenges in the diagnosis of Par-kinson’s disease. The Lancet Neurology, 20(5), 385–397. https://doi.org/10.1016/S1474-4422(21)00030-2 Varol, G., Laptev, I., & Schmid, C. (2017). Long-term temporal convolutions for action recogni-tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1510–1517. https://doi.org/10.1109/TPAMI.2017.272304
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
http://creativecommons.org/licenses/by-nc-nd/4.0
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.eng.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/view/7405
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/b0ae0721-5214-4aaf-a276-62f3b4539613/download
bitstream.checksum.fl_str_mv 6977ecc7ccaf393ea8a0270e333a0d8f
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053595510702080
spelling Portilla , JeanRangel, EdgarGuayacán, LuisMartínez, Fabio2024-09-03T00:00:00Z2025-08-22T16:59:36Z2024-09-03T00:00:00Z2025-08-22T16:59:36Z2024-09-03  La enfermedad de Parkinson (EP) es un trastorno neurodegenerativo común a nivel mundial, con más de 6.2 millones de casos registrados. El análisis de la marcha desempeña un papel fundamental en la evaluación de las anomalías motoras asociadas con esta enfermedad. Sin embargo, los métodos actuales, como sistemas basados en marcadores, son intrusivos y dependientes de expertos. Se han propuesto alternativas sin marcadores, como el análisis de secuencias de video, que tienden a proporcionar puntajes de clasificación globales y carecen de la capacidad de interpretar la cinemática articular detalladamente. Se presenta una técnica innovadora utilizando redes convolucionales volumétricas que pueden aprender patrones posturales intermedios y distinguir entre pacientes con Parkinson y sujetos control. Este enfoque utiliza activaciones de OpenPose, y luego aplica una convolución jerárquica para minimizar la clasificación. En pruebas realizadas con 14 pacientes Parkinson y 16 sujetos control, este método alcanzó una precisión del 98% en clasificación.Parkinson’s disease (PD) is a common neurodegenerative disorder worldwide, with over 6.2 million registered cases. Gait analysis plays a fundamental role in evaluating motor abnormalities associated with this disease. However, current methods, such as marker-based systems, are intrusive and expert-dependent. Markerless alternatives, like video sequence analysis, have been proposed, but they tend to provide overall classification scores and lack the ability to interpret joint kinematics in detail. An innovative technique is presented using volumetric convolutional networks that can learn intermediate postural patterns and distinguish between Parkinson’s patients and control subjects. This approach utilizes OpenPose activations and then applies hierarchical convolution to minimize classification. In tests conducted with 14 Parkinson’s patients and 16 control subjects, this method achieved a classification accuracy of 98%.application/pdf10.21500/20112084.74052011-79222011-2084https://hdl.handle.net/10819/29001https://doi.org/10.21500/20112084.7405engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/7405/5522Núm. 2 , Año 2024 : Interdisciplinary Approaches for Human Cognition: Expanding Perspectives on the Mind9028417International Journal of Psychological ResearchBaker, R. (2006). Gait analysis methods in rehabilitation. Journal of NeuroEngineering and Reha-bilitation, 3(1), 1–10. https://doi.org/10.1186/1743-0003-3-1 Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2021). OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172–186. https://doi.org/10.1109/TPAMI.2019.2929257 Dorsey, E., Sherer, T., Okun, M. S., & Bloem, B. R. (2018). The emerging evidence of the Parkin-son pandemic. Journal of Parkinson’s Disease, 8(s1), S3–S8. https://doi.org/10.3233/JPD-181474 Feigin, V. L., Vos, T., Alahdab, F., Amit, A. M. L., Bärnighausen, T. W., Beghi, E., Beheshti, M., Chavan, P. P., Criqui, M. H., Desai, R., Dhamminda Dharmaratne, S., Dorsey, E. R., Wilder Eagan, A., Elgendy, I. Y., Filip, I., Giampaoli, S., Giussani, G., Hafezi-Nejad, N., Hole, M. K., … Murray, C. J. L. (2021). Burden of neurological disorders across the US from 1990–2017: A global burden of disease study. JAMA Neurology, 78(2), 165–176. https://doi.org/10.1001/jamaneurol.2020.4152 Guayacán, L. C., & Martínez, F. (2021). Visualising and quantifying relevant Parkinsonian gait patterns using 3D convolutional network. Journal of Biomedical Informatics, 123, 103935. https://doi.org/10.1016/j.jbi.2021.103935 The Lancet. (2017). Artificial intelligence in health care: Within touching distance. The Lancet, 390(10114), 2739. https://doi.org/10.1016/S0140-6736(17)32846-5 Rovini, E., Maremmani, C., & Cavallo, F. (2017). How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review. Frontiers in Neuroscience, 11, 555. https://doi.org/10.3389/fnins.2017.00555 Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556 Tolosa, E., Garrido, A., Scholz, S. W., & Poewe, W. (2021). Challenges in the diagnosis of Par-kinson’s disease. The Lancet Neurology, 20(5), 385–397. https://doi.org/10.1016/S1474-4422(21)00030-2 Varol, G., Laptev, I., & Schmid, C. (2017). Long-term temporal convolutions for action recogni-tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1510–1517. https://doi.org/10.1109/TPAMI.2017.272304info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.http://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IJPR/article/view/7405Parkinson’s diseasepostureartificial neural networksgaitEnfermedad de Parkinsonposturaredes neuronales artificialesmarchaUna arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermediasUna arquitectura volumétrica profunda para discriminar patrones parkinsonianos desde representaciones de poses intermediasArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2724https://bibliotecadigital.usb.edu.co/bitstreams/b0ae0721-5214-4aaf-a276-62f3b4539613/download6977ecc7ccaf393ea8a0270e333a0d8fMD5110819/29001oai:bibliotecadigital.usb.edu.co:10819/290012025-08-22 11:59:36.916http://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com