Analyzing reaction times
Reaction times (RTs) are an important source of information in experimental psychology. Classical methodological considerations pertaining to the statistical analysis of RT data are optimized for analyses of aggregated data, based on subject or item means (c.f., Forster & Dickinson, 1976...
- Autores:
-
Harald Baayen, R.
Milin, Petar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2010
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/25687
- Acceso en línea:
- https://hdl.handle.net/10819/25687
https://doi.org/10.21500/20112084.807
- Palabra clave:
- Reaction times
distributions
outliers
transformations
temporal dependencies
linear mixed-effects modeling
- Rights
- openAccess
- License
- International Journal of Psychological Research - 2010
| id |
SANBUENAV2_ccae61a00414463ff85e877cd8e18a07 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/25687 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| spelling |
Harald Baayen, R.Milin, Petar2010-12-30T00:00:00Z2025-07-31T16:11:14Z2010-12-30T00:00:00Z2025-07-31T16:11:14Z2010-12-30Reaction times (RTs) are an important source of information in experimental psychology. Classical methodological considerations pertaining to the statistical analysis of RT data are optimized for analyses of aggregated data, based on subject or item means (c.f., Forster & Dickinson, 1976). Mixed-effects modeling (see, e.g., Baayen, Davidson, & Bates, 2008) does not require prior aggregation and allows the researcher the more ambitious goal of predicting individual responses. Mixed-modeling calls for a reconsideration of the classical methodological strategies for analysing rts. In this study, we argue for empirical exibility with respect to the choice of transformation for the RTs. We advocate minimal a-priori data trimming, combined with model criticism. We also show how trial-to-trial, longitudinal dependencies between individual observations can be brought into the statistical model. These strategies are illustrated for a large dataset with a non-trivial random-effects structure. Special attention is paid to the evaluation of interactions involving fixed-effect factors that partition the levels sampled by random-effect factors.application/pdf10.21500/20112084.8072011-79222011-2084https://hdl.handle.net/10819/25687https://doi.org/10.21500/20112084.807engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/807/584282123International Journal of Psychological ResearchBaayen, R. H. (2007). Storage and computation in the mental lexicon. In G. Jarema & G. Libben (Eds.), The mental lexicon: Core perspectives. Oxford: Elsevier. Baayen, R. H. (2010). languager: Data sets and functions with "analyzing linguistic data: A practical introduction to statistics". [Computer software manual]. Available from http://CRAN.R-project.org/package=languageR (R package version 1.0)International Journal of Psychological Research - 2010info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/IJPR/article/view/807Reaction timesdistributionsoutlierstransformationstemporal dependencieslinear mixed-effects modelingAnalyzing reaction timesAnalyzing reaction timesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2457https://bibliotecadigital.usb.edu.co/bitstreams/824e9052-45f9-49ce-af06-d1dad09cc825/download4512e62330684c82c224c3194175e696MD5110819/25687oai:bibliotecadigital.usb.edu.co:10819/256872025-07-31 11:11:14.533https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
| dc.title.spa.fl_str_mv |
Analyzing reaction times |
| dc.title.translated.spa.fl_str_mv |
Analyzing reaction times |
| title |
Analyzing reaction times |
| spellingShingle |
Analyzing reaction times Reaction times distributions outliers transformations temporal dependencies linear mixed-effects modeling |
| title_short |
Analyzing reaction times |
| title_full |
Analyzing reaction times |
| title_fullStr |
Analyzing reaction times |
| title_full_unstemmed |
Analyzing reaction times |
| title_sort |
Analyzing reaction times |
| dc.creator.fl_str_mv |
Harald Baayen, R. Milin, Petar |
| dc.contributor.author.eng.fl_str_mv |
Harald Baayen, R. Milin, Petar |
| dc.subject.eng.fl_str_mv |
Reaction times distributions outliers transformations temporal dependencies linear mixed-effects modeling |
| topic |
Reaction times distributions outliers transformations temporal dependencies linear mixed-effects modeling |
| description |
Reaction times (RTs) are an important source of information in experimental psychology. Classical methodological considerations pertaining to the statistical analysis of RT data are optimized for analyses of aggregated data, based on subject or item means (c.f., Forster & Dickinson, 1976). Mixed-effects modeling (see, e.g., Baayen, Davidson, & Bates, 2008) does not require prior aggregation and allows the researcher the more ambitious goal of predicting individual responses. Mixed-modeling calls for a reconsideration of the classical methodological strategies for analysing rts. In this study, we argue for empirical exibility with respect to the choice of transformation for the RTs. We advocate minimal a-priori data trimming, combined with model criticism. We also show how trial-to-trial, longitudinal dependencies between individual observations can be brought into the statistical model. These strategies are illustrated for a large dataset with a non-trivial random-effects structure. Special attention is paid to the evaluation of interactions involving fixed-effect factors that partition the levels sampled by random-effect factors. |
| publishDate |
2010 |
| dc.date.accessioned.none.fl_str_mv |
2010-12-30T00:00:00Z 2025-07-31T16:11:14Z |
| dc.date.available.none.fl_str_mv |
2010-12-30T00:00:00Z 2025-07-31T16:11:14Z |
| dc.date.issued.none.fl_str_mv |
2010-12-30 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/20112084.807 |
| dc.identifier.eissn.none.fl_str_mv |
2011-7922 |
| dc.identifier.issn.none.fl_str_mv |
2011-2084 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/25687 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/20112084.807 |
| identifier_str_mv |
10.21500/20112084.807 2011-7922 2011-2084 |
| url |
https://hdl.handle.net/10819/25687 https://doi.org/10.21500/20112084.807 |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/download/807/584 |
| dc.relation.citationendpage.none.fl_str_mv |
28 |
| dc.relation.citationissue.eng.fl_str_mv |
2 |
| dc.relation.citationstartpage.none.fl_str_mv |
12 |
| dc.relation.citationvolume.eng.fl_str_mv |
3 |
| dc.relation.ispartofjournal.eng.fl_str_mv |
International Journal of Psychological Research |
| dc.relation.references.eng.fl_str_mv |
Baayen, R. H. (2007). Storage and computation in the mental lexicon. In G. Jarema & G. Libben (Eds.), The mental lexicon: Core perspectives. Oxford: Elsevier. Baayen, R. H. (2010). languager: Data sets and functions with "analyzing linguistic data: A practical introduction to statistics". [Computer software manual]. Available from http://CRAN.R-project.org/package=languageR (R package version 1.0) |
| dc.rights.eng.fl_str_mv |
International Journal of Psychological Research - 2010 |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| rights_invalid_str_mv |
International Journal of Psychological Research - 2010 http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.eng.fl_str_mv |
application/pdf |
| dc.publisher.eng.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.eng.fl_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/view/807 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/824e9052-45f9-49ce-af06-d1dad09cc825/download |
| bitstream.checksum.fl_str_mv |
4512e62330684c82c224c3194175e696 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053655404314624 |
