Clustering as an EDA method: the case of pedestrian directional flow behavior.
Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion reg...
- Autores:
-
Teknomo, Kardi
E. Estuar, Ma. Regina
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2010
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/25699
- Acceso en línea:
- https://hdl.handle.net/10819/25699
https://doi.org/10.21500/20112084.820
- Palabra clave:
- Gaussian Mixture
directional flow pattern
pedestrian behavior
trajectory analysis
- Rights
- openAccess
- License
- International Journal of Psychological Research - 2010
| id |
SANBUENAV2_c3a065571e22fc050a41e61f378d450f |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/25699 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| spelling |
Teknomo, KardiE. Estuar, Ma. Regina2010-06-30T00:00:00Z2025-07-31T16:11:18Z2010-06-30T00:00:00Z2025-07-31T16:11:18Z2010-06-30Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies.application/pdf10.21500/20112084.8202011-79222011-2084https://hdl.handle.net/10819/25699https://doi.org/10.21500/20112084.820engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/820/596Núm. 1 , Año 2010 : Special Issue of Statistics in Psychology361233International Journal of Psychological ResearchBierlaire, M., Antonini, G., & Weber, M. (2003). Behavioral dynamics for pedestrians. In K. Axhausen, Moving through nets: The physical and social dimensions of travel. Elsevier. Brillinger, D., Preisler, H., Haiganoush, K., Ager, A., & Kie, J. (2004). An exploratory data analysis (EDA) of the paths of moving animals. Journal of Statistical Planning and Inference 122 , 43-63. Chebat, J., Gélinas-Chebat, C., & Therrien, K. (2005). Lost in a mall, the effects of gender, familiarity with the shopping mall and the shopping values on shoppers’ way finding processes. Journal of Business Research , 58 (11), 1590– 1598. de Mast, J., & Trip, A. (2008). Exploratory data analysis in quality improvement projects. Journal of Quality Technology , 39 (4), 301-311. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B , 39 (1), 1-38.International Journal of Psychological Research - 2010info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/IJPR/article/view/820Gaussian Mixturedirectional flow patternpedestrian behaviortrajectory analysisClustering as an EDA method: the case of pedestrian directional flow behavior.Clustering as an EDA method: the case of pedestrian directional flow behavior.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2571https://bibliotecadigital.usb.edu.co/bitstreams/b3ac56da-75ac-40a6-8f05-4b95e883dac1/download0a574b7999a6e06986bc65b45dabc8d5MD5110819/25699oai:bibliotecadigital.usb.edu.co:10819/256992025-07-31 11:11:18.633https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
| dc.title.spa.fl_str_mv |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
| dc.title.translated.spa.fl_str_mv |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
| title |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
| spellingShingle |
Clustering as an EDA method: the case of pedestrian directional flow behavior. Gaussian Mixture directional flow pattern pedestrian behavior trajectory analysis |
| title_short |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
| title_full |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
| title_fullStr |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
| title_full_unstemmed |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
| title_sort |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
| dc.creator.fl_str_mv |
Teknomo, Kardi E. Estuar, Ma. Regina |
| dc.contributor.author.eng.fl_str_mv |
Teknomo, Kardi E. Estuar, Ma. Regina |
| dc.subject.eng.fl_str_mv |
Gaussian Mixture directional flow pattern pedestrian behavior trajectory analysis |
| topic |
Gaussian Mixture directional flow pattern pedestrian behavior trajectory analysis |
| description |
Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies. |
| publishDate |
2010 |
| dc.date.accessioned.none.fl_str_mv |
2010-06-30T00:00:00Z 2025-07-31T16:11:18Z |
| dc.date.available.none.fl_str_mv |
2010-06-30T00:00:00Z 2025-07-31T16:11:18Z |
| dc.date.issued.none.fl_str_mv |
2010-06-30 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/20112084.820 |
| dc.identifier.eissn.none.fl_str_mv |
2011-7922 |
| dc.identifier.issn.none.fl_str_mv |
2011-2084 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/25699 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/20112084.820 |
| identifier_str_mv |
10.21500/20112084.820 2011-7922 2011-2084 |
| url |
https://hdl.handle.net/10819/25699 https://doi.org/10.21500/20112084.820 |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/download/820/596 |
| dc.relation.citationedition.eng.fl_str_mv |
Núm. 1 , Año 2010 : Special Issue of Statistics in Psychology |
| dc.relation.citationendpage.none.fl_str_mv |
36 |
| dc.relation.citationissue.eng.fl_str_mv |
1 |
| dc.relation.citationstartpage.none.fl_str_mv |
23 |
| dc.relation.citationvolume.eng.fl_str_mv |
3 |
| dc.relation.ispartofjournal.eng.fl_str_mv |
International Journal of Psychological Research |
| dc.relation.references.eng.fl_str_mv |
Bierlaire, M., Antonini, G., & Weber, M. (2003). Behavioral dynamics for pedestrians. In K. Axhausen, Moving through nets: The physical and social dimensions of travel. Elsevier. Brillinger, D., Preisler, H., Haiganoush, K., Ager, A., & Kie, J. (2004). An exploratory data analysis (EDA) of the paths of moving animals. Journal of Statistical Planning and Inference 122 , 43-63. Chebat, J., Gélinas-Chebat, C., & Therrien, K. (2005). Lost in a mall, the effects of gender, familiarity with the shopping mall and the shopping values on shoppers’ way finding processes. Journal of Business Research , 58 (11), 1590– 1598. de Mast, J., & Trip, A. (2008). Exploratory data analysis in quality improvement projects. Journal of Quality Technology , 39 (4), 301-311. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B , 39 (1), 1-38. |
| dc.rights.eng.fl_str_mv |
International Journal of Psychological Research - 2010 |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| rights_invalid_str_mv |
International Journal of Psychological Research - 2010 http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.eng.fl_str_mv |
application/pdf |
| dc.publisher.eng.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.eng.fl_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/view/820 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/b3ac56da-75ac-40a6-8f05-4b95e883dac1/download |
| bitstream.checksum.fl_str_mv |
0a574b7999a6e06986bc65b45dabc8d5 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053520201973760 |
