Clustering as an EDA method: the case of pedestrian directional flow behavior.

Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion reg...

Full description

Autores:
Teknomo, Kardi
E. Estuar, Ma. Regina
Tipo de recurso:
Article of journal
Fecha de publicación:
2010
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/25699
Acceso en línea:
https://hdl.handle.net/10819/25699
https://doi.org/10.21500/20112084.820
Palabra clave:
Gaussian Mixture
directional flow pattern
pedestrian behavior
trajectory analysis
Rights
openAccess
License
International Journal of Psychological Research - 2010
id SANBUENAV2_c3a065571e22fc050a41e61f378d450f
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/25699
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
spelling Teknomo, KardiE. Estuar, Ma. Regina2010-06-30T00:00:00Z2025-07-31T16:11:18Z2010-06-30T00:00:00Z2025-07-31T16:11:18Z2010-06-30Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies.application/pdf10.21500/20112084.8202011-79222011-2084https://hdl.handle.net/10819/25699https://doi.org/10.21500/20112084.820engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/820/596Núm. 1 , Año 2010 : Special Issue of Statistics in Psychology361233International Journal of Psychological ResearchBierlaire, M., Antonini, G., & Weber, M. (2003). Behavioral dynamics for pedestrians. In K. Axhausen, Moving through nets: The physical and social dimensions of travel. Elsevier. Brillinger, D., Preisler, H., Haiganoush, K., Ager, A., & Kie, J. (2004). An exploratory data analysis (EDA) of the paths of moving animals. Journal of Statistical Planning and Inference 122 , 43-63. Chebat, J., Gélinas-Chebat, C., & Therrien, K. (2005). Lost in a mall, the effects of gender, familiarity with the shopping mall and the shopping values on shoppers’ way finding processes. Journal of Business Research , 58 (11), 1590– 1598. de Mast, J., & Trip, A. (2008). Exploratory data analysis in quality improvement projects. Journal of Quality Technology , 39 (4), 301-311. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B , 39 (1), 1-38.International Journal of Psychological Research - 2010info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/IJPR/article/view/820Gaussian Mixturedirectional flow patternpedestrian behaviortrajectory analysisClustering as an EDA method: the case of pedestrian directional flow behavior.Clustering as an EDA method: the case of pedestrian directional flow behavior.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2571https://bibliotecadigital.usb.edu.co/bitstreams/b3ac56da-75ac-40a6-8f05-4b95e883dac1/download0a574b7999a6e06986bc65b45dabc8d5MD5110819/25699oai:bibliotecadigital.usb.edu.co:10819/256992025-07-31 11:11:18.633https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com
dc.title.spa.fl_str_mv Clustering as an EDA method: the case of pedestrian directional flow behavior.
dc.title.translated.spa.fl_str_mv Clustering as an EDA method: the case of pedestrian directional flow behavior.
title Clustering as an EDA method: the case of pedestrian directional flow behavior.
spellingShingle Clustering as an EDA method: the case of pedestrian directional flow behavior.
Gaussian Mixture
directional flow pattern
pedestrian behavior
trajectory analysis
title_short Clustering as an EDA method: the case of pedestrian directional flow behavior.
title_full Clustering as an EDA method: the case of pedestrian directional flow behavior.
title_fullStr Clustering as an EDA method: the case of pedestrian directional flow behavior.
title_full_unstemmed Clustering as an EDA method: the case of pedestrian directional flow behavior.
title_sort Clustering as an EDA method: the case of pedestrian directional flow behavior.
dc.creator.fl_str_mv Teknomo, Kardi
E. Estuar, Ma. Regina
dc.contributor.author.eng.fl_str_mv Teknomo, Kardi
E. Estuar, Ma. Regina
dc.subject.eng.fl_str_mv Gaussian Mixture
directional flow pattern
pedestrian behavior
trajectory analysis
topic Gaussian Mixture
directional flow pattern
pedestrian behavior
trajectory analysis
description Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies.
publishDate 2010
dc.date.accessioned.none.fl_str_mv 2010-06-30T00:00:00Z
2025-07-31T16:11:18Z
dc.date.available.none.fl_str_mv 2010-06-30T00:00:00Z
2025-07-31T16:11:18Z
dc.date.issued.none.fl_str_mv 2010-06-30
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20112084.820
dc.identifier.eissn.none.fl_str_mv 2011-7922
dc.identifier.issn.none.fl_str_mv 2011-2084
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/25699
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20112084.820
identifier_str_mv 10.21500/20112084.820
2011-7922
2011-2084
url https://hdl.handle.net/10819/25699
https://doi.org/10.21500/20112084.820
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/download/820/596
dc.relation.citationedition.eng.fl_str_mv Núm. 1 , Año 2010 : Special Issue of Statistics in Psychology
dc.relation.citationendpage.none.fl_str_mv 36
dc.relation.citationissue.eng.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 23
dc.relation.citationvolume.eng.fl_str_mv 3
dc.relation.ispartofjournal.eng.fl_str_mv International Journal of Psychological Research
dc.relation.references.eng.fl_str_mv Bierlaire, M., Antonini, G., & Weber, M. (2003). Behavioral dynamics for pedestrians. In K. Axhausen, Moving through nets: The physical and social dimensions of travel. Elsevier. Brillinger, D., Preisler, H., Haiganoush, K., Ager, A., & Kie, J. (2004). An exploratory data analysis (EDA) of the paths of moving animals. Journal of Statistical Planning and Inference 122 , 43-63. Chebat, J., Gélinas-Chebat, C., & Therrien, K. (2005). Lost in a mall, the effects of gender, familiarity with the shopping mall and the shopping values on shoppers’ way finding processes. Journal of Business Research , 58 (11), 1590– 1598. de Mast, J., & Trip, A. (2008). Exploratory data analysis in quality improvement projects. Journal of Quality Technology , 39 (4), 301-311. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B , 39 (1), 1-38.
dc.rights.eng.fl_str_mv International Journal of Psychological Research - 2010
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv International Journal of Psychological Research - 2010
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.eng.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/view/820
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/b3ac56da-75ac-40a6-8f05-4b95e883dac1/download
bitstream.checksum.fl_str_mv 0a574b7999a6e06986bc65b45dabc8d5
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053520201973760