Evaluating the redesign of a prosthesis joint using finite element analysis
El pie de Jaipur es una prótesis ideal para amputados en países en desarrollo porque está hecho de materiales económicos y se centra en la asequibilidad y la funcionalidad. Algunos estudios han examinado las áreas del pie de Jaipur que presentan mayor daño, pero no la unión entre el tubo de polietil...
- Autores:
-
Olaya Mira, Natali
Rivera Velásquez, Camilo Alberto
Plata Contreras, Jesus Alberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/29033
- Acceso en línea:
- https://hdl.handle.net/10819/29033
https://doi.org/10.21500/20275846.6293
- Palabra clave:
- Jaipur Foot
low-cost prosthetics
prosthesis juncture
3D scanning
finite element analysis
- Rights
- openAccess
- License
- Ingenierías USBMed - 2023
| id |
SANBUENAV2_bfb71e059ab2f07eb0527c5cf5be520e |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/29033 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Evaluating the redesign of a prosthesis joint using finite element analysis |
| dc.title.translated.eng.fl_str_mv |
Evaluating the redesign of a prosthesis joint using finite element analysis |
| title |
Evaluating the redesign of a prosthesis joint using finite element analysis |
| spellingShingle |
Evaluating the redesign of a prosthesis joint using finite element analysis Jaipur Foot low-cost prosthetics prosthesis juncture 3D scanning finite element analysis |
| title_short |
Evaluating the redesign of a prosthesis joint using finite element analysis |
| title_full |
Evaluating the redesign of a prosthesis joint using finite element analysis |
| title_fullStr |
Evaluating the redesign of a prosthesis joint using finite element analysis |
| title_full_unstemmed |
Evaluating the redesign of a prosthesis joint using finite element analysis |
| title_sort |
Evaluating the redesign of a prosthesis joint using finite element analysis |
| dc.creator.fl_str_mv |
Olaya Mira, Natali Rivera Velásquez, Camilo Alberto Plata Contreras, Jesus Alberto |
| dc.contributor.author.spa.fl_str_mv |
Olaya Mira, Natali Rivera Velásquez, Camilo Alberto Plata Contreras, Jesus Alberto |
| dc.subject.spa.fl_str_mv |
Jaipur Foot low-cost prosthetics prosthesis juncture 3D scanning finite element analysis |
| topic |
Jaipur Foot low-cost prosthetics prosthesis juncture 3D scanning finite element analysis |
| description |
El pie de Jaipur es una prótesis ideal para amputados en países en desarrollo porque está hecho de materiales económicos y se centra en la asequibilidad y la funcionalidad. Algunos estudios han examinado las áreas del pie de Jaipur que presentan mayor daño, pero no la unión entre el tubo de polietileno de alta densidad y el pie protésico. Se pretende evaluar diferentes diseños para la unión entre el Pie de Jaipur y el tubo de esta prótesis exoesquelética mediante análisis de elementos finitos. La geometría del pie de Jaipur se modeló utilizando escaneo 3D. Se realizaron múltiples simulaciones utilizando elementos finitos. Los modelos de unión que incluyen pernos múltiples presentaron fallas por esfuerzos máximos sobre el bloque de madera. Por el contrario, el modelo con un solo perno no falló y el modelo adhesivo resultó ser la mejor solución a la unión entre los componentes de la prótesis. La mejor opción de unión es el adhesivo epóxico ya que las cargas están más uniformemente distribuidas. Por lo tanto, se puede controlar más eficientemente el daño en esa zona, alargando así la vida útil de la prótesis. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-09-18T11:40:58Z 2025-08-22T17:04:28Z |
| dc.date.available.none.fl_str_mv |
2023-09-18T11:40:58Z 2025-08-22T17:04:28Z |
| dc.date.issued.none.fl_str_mv |
2023-09-18 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.spa.fl_str_mv |
Text |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/20275846.6293 |
| dc.identifier.eissn.none.fl_str_mv |
2027-5846 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/29033 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/20275846.6293 |
| identifier_str_mv |
10.21500/20275846.6293 2027-5846 |
| url |
https://hdl.handle.net/10819/29033 https://doi.org/10.21500/20275846.6293 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6293/5208 |
| dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2023 : Ingenierías USBMed |
| dc.relation.citationendpage.none.fl_str_mv |
55 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.none.fl_str_mv |
49 |
| dc.relation.citationvolume.spa.fl_str_mv |
14 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Ingenierías USBMed |
| dc.relation.references.spa.fl_str_mv |
A. P. Arya, L. Klenerman, and E. Professor, “The Jaipur foot,” J Bone Joint Surg [Br], pp. 90–1414, 2008, doi: 10.1302/0301-620X.90B11. [2] R. Bhargava, “The Jaipur foot and the ‘Jaipur Prosthesis,’” Indian Journal of Orthopaedics, vol. 53, no. 1. Wolters Kluwer Medknow Publications, pp. 5–7, Jan. 01, 2019. doi: 10.4103/ortho.IJOrtho_162_18. [3] H. S. Mali and A. Singh, “Manufacturing Standardization of Jaipur Foot by Additive Manufacturing,” pp. 149–158, 2020, doi: 10.1007/978-981-32-9433-2_12. [4] L. Herdiman, S. Susmartini, I. Priadythama, and L. Herdiman, “Application of the Total Ergonomics in Designing Functional Prosthetic Ankle with Low Cost in Indonesia,” in IOP Conference Series: Materials Science and Engineering, Dec. 2020, vol. 1003, no. 1. doi: 10.1088/1757-899X/1003/1/012004. [5] P. Sharma, S. Sharma, S. Vidhya, and M. K. Mathur, “Comparative Finite Element Analysis of Jaipur Foot and Polyurethane Foot,” Engineering, vol. 5, no. October, pp. 518–521, 2013, doi: 10.4236/eng.2013.510B106 P. [6] S. Krishnamoorthy and M. Karthikeyan, “Design and analysis of sensor centered prostheses for handicaps,” in Materials Today: Proceedings, 2021, vol. 45, pp. 1992–1996. doi: 10.1016/j.matpr.2020.09.303. [7] A. M. Cárdenas, J. Uribe, J. M. Font-Llagunes, A. M. Hernández, and J. A. Plata, “The effect of prosthetic alignment on the stump temperature and ground reaction forces during gait in transfemoral amputees,” Gait and Posture, vol. 95, pp. 76–83, Jun. 2022, doi: 10.1016/j.gaitpost.2022.04.003. [8] N. Olaya Mira and C. Viloria Barragán, “Development of a Protocol for the Evaluation of the Mechanical Behavior of a Transtibial Prosthesis by Infrared Thermography,” in IFMBE Proceedings 75, 2020, pp. 805–811. [9] J. G. Wolynski, B. B. Wheatley, H. S. Mali, A. K. Jain, and T. L. Haut Donahue, “Finite element analysis of the Jaipur foot: Implications for design improvement,” Journal of Prosthetics and Orthotics, vol. 31, no. 3, pp. 181–188, 2019, doi: 10.1097/JPO.0000000000000253. [10] I. Huber et al., “Epidemiological study of failures of the Jaipur Foot,” Disability and Rehabilitation: Assistive Technology, vol. 13, no. 8, pp. 740–744, 2018, doi: 10.1080/17483107.2017.1369593. [11] H. S. Mali, A. Jain, L. Abrams, S. A. Sorby, and T. L. Haut Donahue, “CAD/CAE of Jaipur foot for standardized and contemporary manufacturing,” Disability and Rehabilitation: Assistive Technology, vol. 0, no. 0, pp. 1–6, 2019, doi: 10.1080/17483107.2018.1555865. [12] R. H. Teater et al., “Assessment of the compressive and tensile mechanical properties of materials used in the Jaipur Foot prosthesis,” Prosthetics and Orthotics International, vol. 42, no. 5, pp. 511–517, 2018, doi: 10.1177/0309364618767143. [13] J. S. Jensen, J. G. Craig, L. B. Mtalo, and C. M. Zelaya, “Clinical field follow-up of high density polyethylene (HDPE)-Jaipur prosthetic technology for trans-tibial amputees,” Prosthetics and Orthotics International, vol. 28, no. 3, pp. 230–244, 2004, doi: 10.3109/03093640409167755. [14] O. Panagiotopoulou, “Finite element analysis (FEA): Applying an engineering method to functional morphology in anthropology and human biology,” Annals of Human Biology, vol. 36, no. 5, pp. 609–623, 2009, doi: 10.1080/03014460903019879. [15] A. Erdemir, T. M. Guess, J. Halloran, S. C. Tadepalli, and T. M. Morrison, “Considerations for reporting finite element analysis studies in biomechanics,” Journal of Biomechanics, vol. 45, no. 4, pp. 625–633, 2012, doi: 10.1016/j.jbiomech.2011.11.038. [16] R. H. Teater et al., “Assessment of the compressive and tensile mechanical properties of materials used in the Jaipur Foot prosthesis,” Prosthetics and Orthotics International, vol. 42, no. 5, pp. 511–517, Oct. 2018, doi: 10.1177/0309364618767143. [17] T. Marasović, M. Cecić, and V. Zanchi, “Analysis and interpretation of ground reaction forces in normal gait,” WSEAS Transactions on Systems, vol. 8, no. 9, pp. 1105–1114, 2009. [18] J. S. Jensen and W. Raab, “Clinical field testing of vulcanized Jaipur rubber feet for trans-tibial amputees in low-income countries,” Prosthetics and Orthotics International, vol. 30, no. 3, pp. 225–236, 2006, doi: 10.1080/03093640600867233. [19] G. Narayanan et al., “Improved design and development of a functional moulded prosthetic foot,” Disability and Rehabilitation: Assistive Technology, vol. 11, no. 5, pp. 407–412, 2016, doi: 10.3109/17483107.2014.979331. |
| dc.rights.spa.fl_str_mv |
Ingenierías USBMed - 2023 |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
| rights_invalid_str_mv |
Ingenierías USBMed - 2023 http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.spa.fl_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6293 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/bbc3a412-89d3-4b2f-b06f-28a4ff050aed/download |
| bitstream.checksum.fl_str_mv |
cc4e5e57f0d3c7332f16d1038b5858b1 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053643343593472 |
| spelling |
Olaya Mira, NataliRivera Velásquez, Camilo AlbertoPlata Contreras, Jesus Alberto2023-09-18T11:40:58Z2025-08-22T17:04:28Z2023-09-18T11:40:58Z2025-08-22T17:04:28Z2023-09-18El pie de Jaipur es una prótesis ideal para amputados en países en desarrollo porque está hecho de materiales económicos y se centra en la asequibilidad y la funcionalidad. Algunos estudios han examinado las áreas del pie de Jaipur que presentan mayor daño, pero no la unión entre el tubo de polietileno de alta densidad y el pie protésico. Se pretende evaluar diferentes diseños para la unión entre el Pie de Jaipur y el tubo de esta prótesis exoesquelética mediante análisis de elementos finitos. La geometría del pie de Jaipur se modeló utilizando escaneo 3D. Se realizaron múltiples simulaciones utilizando elementos finitos. Los modelos de unión que incluyen pernos múltiples presentaron fallas por esfuerzos máximos sobre el bloque de madera. Por el contrario, el modelo con un solo perno no falló y el modelo adhesivo resultó ser la mejor solución a la unión entre los componentes de la prótesis. La mejor opción de unión es el adhesivo epóxico ya que las cargas están más uniformemente distribuidas. Por lo tanto, se puede controlar más eficientemente el daño en esa zona, alargando así la vida útil de la prótesis.The Jaipur Foot is a prosthesis ideally suited for amputees in developing countries because it is made of inexpensive materials and focused on affordability and functionality. Studies have examined the areas of the Jaipur foot that present the greatest damage, but not the juncture between the high-density polyethylene tube and the prosthetic foot. This paper aims to evaluate different designs for the juncture between the Jaipur Foot and the tube of this exoskeletal prosthesis through finite element analysis. The geometry of the Jaipur foot was modeled using 3D scanning. Multiple simulations were conducted using finite elements, as well as a linear study to prove the convergence of the mesh and a nonlinear study that reproduced a variable load simulating the conditions during gait. The junction models that include multiple bolts presented failures due to maximum stresses on the wooden block and maximum displacements. On the contrary, the model with a single bolt did not fail, and the adhesive model turned out to be the best solution. The best juncture option is epoxy adhesive because the stresses are less concentrated. Therefore, the damage to that area can be more efficiently controlled, extending the lifetime of the prosthesis and improving its characteristicsapplication/pdf10.21500/20275846.62932027-5846https://hdl.handle.net/10819/29033https://doi.org/10.21500/20275846.6293spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6293/5208Núm. 2 , Año 2023 : Ingenierías USBMed5524914Ingenierías USBMedA. P. Arya, L. Klenerman, and E. Professor, “The Jaipur foot,” J Bone Joint Surg [Br], pp. 90–1414, 2008, doi: 10.1302/0301-620X.90B11. [2] R. Bhargava, “The Jaipur foot and the ‘Jaipur Prosthesis,’” Indian Journal of Orthopaedics, vol. 53, no. 1. Wolters Kluwer Medknow Publications, pp. 5–7, Jan. 01, 2019. doi: 10.4103/ortho.IJOrtho_162_18. [3] H. S. Mali and A. Singh, “Manufacturing Standardization of Jaipur Foot by Additive Manufacturing,” pp. 149–158, 2020, doi: 10.1007/978-981-32-9433-2_12. [4] L. Herdiman, S. Susmartini, I. Priadythama, and L. Herdiman, “Application of the Total Ergonomics in Designing Functional Prosthetic Ankle with Low Cost in Indonesia,” in IOP Conference Series: Materials Science and Engineering, Dec. 2020, vol. 1003, no. 1. doi: 10.1088/1757-899X/1003/1/012004. [5] P. Sharma, S. Sharma, S. Vidhya, and M. K. Mathur, “Comparative Finite Element Analysis of Jaipur Foot and Polyurethane Foot,” Engineering, vol. 5, no. October, pp. 518–521, 2013, doi: 10.4236/eng.2013.510B106 P. [6] S. Krishnamoorthy and M. Karthikeyan, “Design and analysis of sensor centered prostheses for handicaps,” in Materials Today: Proceedings, 2021, vol. 45, pp. 1992–1996. doi: 10.1016/j.matpr.2020.09.303. [7] A. M. Cárdenas, J. Uribe, J. M. Font-Llagunes, A. M. Hernández, and J. A. Plata, “The effect of prosthetic alignment on the stump temperature and ground reaction forces during gait in transfemoral amputees,” Gait and Posture, vol. 95, pp. 76–83, Jun. 2022, doi: 10.1016/j.gaitpost.2022.04.003. [8] N. Olaya Mira and C. Viloria Barragán, “Development of a Protocol for the Evaluation of the Mechanical Behavior of a Transtibial Prosthesis by Infrared Thermography,” in IFMBE Proceedings 75, 2020, pp. 805–811. [9] J. G. Wolynski, B. B. Wheatley, H. S. Mali, A. K. Jain, and T. L. Haut Donahue, “Finite element analysis of the Jaipur foot: Implications for design improvement,” Journal of Prosthetics and Orthotics, vol. 31, no. 3, pp. 181–188, 2019, doi: 10.1097/JPO.0000000000000253. [10] I. Huber et al., “Epidemiological study of failures of the Jaipur Foot,” Disability and Rehabilitation: Assistive Technology, vol. 13, no. 8, pp. 740–744, 2018, doi: 10.1080/17483107.2017.1369593. [11] H. S. Mali, A. Jain, L. Abrams, S. A. Sorby, and T. L. Haut Donahue, “CAD/CAE of Jaipur foot for standardized and contemporary manufacturing,” Disability and Rehabilitation: Assistive Technology, vol. 0, no. 0, pp. 1–6, 2019, doi: 10.1080/17483107.2018.1555865. [12] R. H. Teater et al., “Assessment of the compressive and tensile mechanical properties of materials used in the Jaipur Foot prosthesis,” Prosthetics and Orthotics International, vol. 42, no. 5, pp. 511–517, 2018, doi: 10.1177/0309364618767143. [13] J. S. Jensen, J. G. Craig, L. B. Mtalo, and C. M. Zelaya, “Clinical field follow-up of high density polyethylene (HDPE)-Jaipur prosthetic technology for trans-tibial amputees,” Prosthetics and Orthotics International, vol. 28, no. 3, pp. 230–244, 2004, doi: 10.3109/03093640409167755. [14] O. Panagiotopoulou, “Finite element analysis (FEA): Applying an engineering method to functional morphology in anthropology and human biology,” Annals of Human Biology, vol. 36, no. 5, pp. 609–623, 2009, doi: 10.1080/03014460903019879. [15] A. Erdemir, T. M. Guess, J. Halloran, S. C. Tadepalli, and T. M. Morrison, “Considerations for reporting finite element analysis studies in biomechanics,” Journal of Biomechanics, vol. 45, no. 4, pp. 625–633, 2012, doi: 10.1016/j.jbiomech.2011.11.038. [16] R. H. Teater et al., “Assessment of the compressive and tensile mechanical properties of materials used in the Jaipur Foot prosthesis,” Prosthetics and Orthotics International, vol. 42, no. 5, pp. 511–517, Oct. 2018, doi: 10.1177/0309364618767143. [17] T. Marasović, M. Cecić, and V. Zanchi, “Analysis and interpretation of ground reaction forces in normal gait,” WSEAS Transactions on Systems, vol. 8, no. 9, pp. 1105–1114, 2009. [18] J. S. Jensen and W. Raab, “Clinical field testing of vulcanized Jaipur rubber feet for trans-tibial amputees in low-income countries,” Prosthetics and Orthotics International, vol. 30, no. 3, pp. 225–236, 2006, doi: 10.1080/03093640600867233. [19] G. Narayanan et al., “Improved design and development of a functional moulded prosthetic foot,” Disability and Rehabilitation: Assistive Technology, vol. 11, no. 5, pp. 407–412, 2016, doi: 10.3109/17483107.2014.979331.Ingenierías USBMed - 2023info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6293Jaipur Footlow-cost prostheticsprosthesis juncture3D scanningfinite element analysisEvaluating the redesign of a prosthesis joint using finite element analysisEvaluating the redesign of a prosthesis joint using finite element analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2649https://bibliotecadigital.usb.edu.co/bitstreams/bbc3a412-89d3-4b2f-b06f-28a4ff050aed/downloadcc4e5e57f0d3c7332f16d1038b5858b1MD5110819/29033oai:bibliotecadigital.usb.edu.co:10819/290332025-08-22 12:04:28.728https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
