Adopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA
Doctorado
- Autores:
-
Fernández Rengifo, Eliana
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2025
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/25528
- Acceso en línea:
- https://hdl.handle.net/10819/25528
- Palabra clave:
- Administración - Inteligencia artificial (IA)
Toma de decisiones - Innovacion empresrial
Sector empresarial - Nuevas tecnologias
650 - Gerencia y servicios auxiliares::658 - Gerencia general
Adopción de Inteligencia Artificial
Contexto tecnológico
Factores organizacionales
Factores ambientales
Mercados emergentes
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
| id |
SANBUENAV2_bd99a4097214a720a05f2cc74b1c8379 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/25528 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Adopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA |
| dc.title.translated.none.fl_str_mv |
Artificial intelligence (AI) adoption in business environments: The mediating role of organizational and environmental context in the relationship between technological context and AI adoption intention |
| title |
Adopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA |
| spellingShingle |
Adopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA Administración - Inteligencia artificial (IA) Toma de decisiones - Innovacion empresrial Sector empresarial - Nuevas tecnologias 650 - Gerencia y servicios auxiliares::658 - Gerencia general Adopción de Inteligencia Artificial Contexto tecnológico Factores organizacionales Factores ambientales Mercados emergentes |
| title_short |
Adopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA |
| title_full |
Adopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA |
| title_fullStr |
Adopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA |
| title_full_unstemmed |
Adopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA |
| title_sort |
Adopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA |
| dc.creator.fl_str_mv |
Fernández Rengifo, Eliana |
| dc.contributor.advisor.none.fl_str_mv |
Ríos Osorio, José Fabian Salazar Tabima, Jerfenson |
| dc.contributor.author.none.fl_str_mv |
Fernández Rengifo, Eliana |
| dc.contributor.jury.none.fl_str_mv |
Sánchez Leyva, José Luis Robledo Fernández, Juan Carlos Hidalgo Suárez, Carlos Giovanny |
| dc.contributor.researchgroup.none.fl_str_mv |
Grupo de Investigación Economía, Gestión, Territorio y Desarrollo Sostenible (GEOS) (Cali) |
| dc.subject.armarc.none.fl_str_mv |
Administración - Inteligencia artificial (IA) Toma de decisiones - Innovacion empresrial Sector empresarial - Nuevas tecnologias |
| topic |
Administración - Inteligencia artificial (IA) Toma de decisiones - Innovacion empresrial Sector empresarial - Nuevas tecnologias 650 - Gerencia y servicios auxiliares::658 - Gerencia general Adopción de Inteligencia Artificial Contexto tecnológico Factores organizacionales Factores ambientales Mercados emergentes |
| dc.subject.ddc.none.fl_str_mv |
650 - Gerencia y servicios auxiliares::658 - Gerencia general |
| dc.subject.proposal.spa.fl_str_mv |
Adopción de Inteligencia Artificial Contexto tecnológico Factores organizacionales Factores ambientales Mercados emergentes |
| description |
Doctorado |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-24T15:04:32Z |
| dc.date.available.none.fl_str_mv |
2025-07-24T15:04:32Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
acceptedVersion |
| dc.identifier.citation.none.fl_str_mv |
Fernández-Rengifo, E (2025). Adopción de inteligencia artificial (IA) en entornos empresariales: El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA. [Tesis de doctorado en Administración de negocios . Universidad de San Buenaventura Cali. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/25528 |
| identifier_str_mv |
Fernández-Rengifo, E (2025). Adopción de inteligencia artificial (IA) en entornos empresariales: El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA. [Tesis de doctorado en Administración de negocios . Universidad de San Buenaventura Cali. |
| url |
https://hdl.handle.net/10819/25528 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Abdullah, A. A. H., & Almaqtari, F. A. (2024). The impact of artificial intelligence and Industry 4.0 on transforming accounting and auditing practices. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100218. https://doi.org/10.1016/j.joitmc.2024.100218 Aguirre, F. B., Villamizar, N. G., Henao, A., & Rios, L. (2023). Financiamiento público y dinámicas tecnológicas en la industria manufacturera y de servicios en Colombia. Panorama Económico, 31(4), 329-358. Ahmad, A. Y. A. B. (2024). Ethical implications of artificial intelligence in accounting: A framework for responsible ai adoption in multinational corporations in Jordan. International Journal of Data and Network Science, 8(1), 401-414. https://doi.org/10.5267/j.ijdns.2023.9.014 Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, 289. Scopus. https://doi.org/10.1016/j.jclepro.2021.125834 Ahuja, N. S. (2024). 1. AI-Driven Decision Making in Management. SBS Swiss Business School. https://research.sbs.edu/sbsrc/SBSRC24_Paper01.pdf Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. En Action control: From cognition to behavior (pp. 11-39). Springer. Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211. Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological bulletin, 82(2), 261. Alam, S. S., Ali, Md. Y., & Jani, Mohd. F. Mohd. (2011). AN EMPIRICAL STUDY OF FACTORS AFFECTING ELECTRONIC COMMERCE ADOPTION AMONG SMES IN MALAYSIA / VEIKSNIŲ, TURINČIŲ ĮTAKOS ELEKTORINEI PREKYBAI, STUDIJA: MALAIZIJOS PAVYZDYS. Journal of Business Economics and Management, 12(2), 375-399. https://doi.org/10.3846/16111699.2011.576749 Alam, S. S., Masukujjaman, M., Susmit, S., Susmit, S., & Aziz, H. A. (2024). Augmented reality adoption intention among travel and tour operators in Malaysia: Mediation effect of value alignment. Journal of Tourism Futures, 10(2), 185-204. Scopus. https://doi.org/10.1108/JTF-03-2021-0072 Al-Jabri, I. M., & Alabdulhadi, M. H. (2016). Factors affecting cloud computing adoption: Perspectives of IT professionals. International Journal of Business Information Systems, 23(4), 389-405. Scopus. https://doi.org/10.1504/IJBIS.2016.080215 Almogren, A. S., Al-Rahmi, W. M., & Dahri, N. A. (2024). Exploring factors influencing the acceptance of ChatGPT in higher education: A smart education perspective. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e31887 Al-Okaily, M., Alqudah, H. M., Al-Qudah, A. A., & Alkhwaldi, A. F. (2024). Examining the critical factors of computer-assisted audit tools and techniques adoption in the post-COVID-19 period: Internal auditors perspective. VINE Journal of Information and Knowledge Management Systems, 54(5), 1062-1091. Scopus. https://doi.org/10.1108/VJIKMS-12-2021-0311 Al-Shanti, A., Jebreel, M., Qabajeh, M., Nassoura, A., & Airout, R. (2024). The role of organizational antecedents in fostering accounting intelligence adoption: The mediating influence of organizational culture. Human Systems Management, 43(4), 495-511. https://doi.org/10.3233/HSM-230194 Alsheibani, S., Messom, C., & Cheung, Y. (2020). Re-thinking the competitive landscape of artificial intelligence. https://scholarspace.manoa.hawaii.edu/handle/10125/64460 Anh, N. T. M., Hoa, L. T. K., Thao, L. P., Nhi, D. A., Long, N. T., Truc, N. T., & Ngoc Xuan, V. (2024). The Effect of Technology Readiness on Adopting Artificial Intelligence in Accounting and Auditing in Vietnam. Journal of Risk and Financial Management, 17(1). Scopus. https://doi.org/10.3390/jrfm17010027 Arnab, R. (2017). Chapter 3—Simple Random Sampling. En R. Arnab (Ed.), Survey Sampling Theory and Applications (pp. 51-88). Academic Press. https://doi.org/10.1016/B978-0-12-811848-1.00003-0 Arpaci, I., Yardimci, Y. C., Ozkan, S., & Turetken, O. (2012). ADOPCIÓN ORGANIZATIVA DE LAS TECNOLOGÍAS DE LA INFORMACIÓN: UNA REVISIÓN DE LA LITERATURA. 4(2). Asamoah, M. K., Oheneba-Sakyi, Y., & Tagoe, M. (2024). Faculty acceptance of the utilization of learning management systems in teaching. E-Learning and Digital Media, 21(4), 346-366. Scopus. https://doi.org/10.1177/20427530231156168 Asiabar, M. G., Asiabar, M. G., & Asiabar, A. G. (2024). Artificial Intelligence in Strategic Management: Examining Novel AI Applications in Organizational Strategic Decision-Making. Sep. https://www.preprints.org/manuscript/202409.1330/download/final_file Aslam, W., & Jawaid, S. T. (2023). Green banking adoption practices: The pathway of meeting sustainable goals. Environment, Development and Sustainability. Scopus. https://doi.org/10.1007/s10668-023-03893-8 Astrachan, C. B., Patel, V. K., & Wanzenried, G. (2014). A comparative study of CB-SEM and PLS-SEM for theory development in family firm research. Journal of family business strategy, 5(1), 116-128. Awa, H. O., Ukoha, O., & Igwe, S. R. (2017). Revisiting technology-organization-environment (T-O-E) theory for enriched applicability. The Bottom Line, 30(01), 2-22. https://doi.org/10.1108/BL-12-2016-0044 Awad, A. (2024). Artificial intelligence and marketing innovation: The mediating role of organizational culture. Innovative Marketing, 20(3), 170-181. https://doi.org/10.21511/im.20(3).2024.14 Ayanwale, M. A., & Molefi, R. R. (2024). Exploring intention of undergraduate students to embrace chatbots: From the vantage point of Lesotho. International Journal of Educational Technology in Higher Education, 21(1), 20. https://doi.org/10.1186/s41239-024-00451-8 Badghish, S., & Soomro, Y. A. (2024). Artificial Intelligence Adoption by SMEs to Achieve Sustainable Business Performance: Application of Technology–Organization–Environment Framework. Sustainability (Switzerland), 16(5). Scopus. https://doi.org/10.3390/su16051864 Badmus, O., Rajput, S. A., Arogundade, J. B., & Williams, M. (2024). AI-driven business analytics and decision making. World Journal of Advanced Research and Reviews, 24(1), 616-633. Bag, S., Rahman, M. S., Gupta, S., & Wood, L. C. (2022). Understanding and predicting the determinants of blockchain technology adoption and SMEs’ performance. The International Journal of Logistics Management, 34(6), 1781-1807. https://doi.org/10.1108/IJLM-01-2022-0017 Bahari, M., Arpaci, I., Der, O., Akkoyun, F., & Ercetin, A. (2024a). Driving Agricultural Transformation: Unraveling Key Factors Shaping IoT Adoption in Smart Farming with Empirical Insights. Sustainability (Switzerland), 16(5). Scopus. https://doi.org/10.3390/su16052129 Bahari, M., Arpaci, I., Der, O., Akkoyun, F., & Ercetin, A. (2024b). Driving Agricultural Transformation: Unraveling Key Factors Shaping IoT Adoption in Smart Farming with Empirical Insights. Sustainability, 16(5), 2129. https://doi.org/10.3390/su16052129 Baiod, W., & Hussain, M. M. (2024). The impact and adoption of emerging technologies on accounting: Perceptions of Canadian companies. International Journal of Accounting & Information Management, 32(4), 557-592. https://doi.org/10.1108/IJAIM-05-2023-0123 Bani Ahmad, A. Y. A. (2024). Ethical implications of artificial intelligence in accounting: A framework for responsible ai adoption in multinational corporations in Jordan. International Journal of Data and Network Science, 8(1), 401-414. https://doi.org/10.5267/j.ijdns.2023.9.014 Banwo, A. O., Onokala, U., & Momoh, B. (2022). Organizational climate–institutional environment nexus: Why context matters. Journal of Global Entrepreneurship Research, 12(1), 357-369. https://doi.org/10.1007/s40497-022-00330-4 Barodi, M., & Lalaoui, S. (2025). Civil servants’ readiness for AI adoption: The role of change management in Morocco’s public sector. Problems and Perspectives in Management, 23(1), 63-75. https://doi.org/10.21511/ppm.23(1).2025.05 Bayindir, B. J., Shafighi, N., & Hajibashi, A. A. (2024). Analysis of the Impact of Industry 4.0 Technologies on Service Sector. Archives of Business Research, 12(12), Article 12. https://doi.org/10.14738/abr.1212.18102 Becker, J.-M., Cheah, J.-H., Gholamzade, R., Ringle, C. M., & Sarstedt, M. (2023a). PLS-SEM’s most wanted guidance. International Journal of Contemporary Hospitality Management, 35(1), 321-346. Becker, J.-M., Cheah, J.-H., Gholamzade, R., Ringle, C. M., & Sarstedt, M. (2023b). PLS-SEM’s most wanted guidance. International Journal of Contemporary Hospitality Management, 35(1), 321-346. Becker, J.-M., Proksch, D., & Ringle, C. M. (2022). Revisiting Gaussian copulas to handle endogenous regressors. Journal of the Academy of Marketing Science, 50(1), 46-66. https://doi.org/10.1007/s11747-021-00805-y Benitez, J., Henseler, J., & Roldán Salgueiro, J. L. (2016). How to address endogeneity in partial least squares path modeling. https://idus.us.es/handle/11441/76284 Bhattacharyya, S. S., Goswami, S., Mehta, R., & Nayak, B. (2022). Examining the factors influencing adoption of over the top (OTT) services among Indian consumers. Journal of Science and Technology Policy Management, 13(3), 652-682. Scopus. https://doi.org/10.1108/JSTPM-09-2020-0135 Bojica, A. M., & Fuentes, M. D. M. F. (2012). Knowledge acquisition and corporate entrepreneurship: Insights from Spanish SMEs in the ICT sector. Journal of World Business, 47(3), 397-408. https://doi.org/10.1016/j.jwb.2011.05.007 Bolding, L. A., & Bolding, L. A. (2023, junio 1). Institutional Pressures on the Oil and Gas Industry: The Role of Machine Learning (institutional-pressures-on-the-oil-and-gas-industry) [Chapter]. Https://Services.Igi-Global.Com/Resolvedoi/Resolve.Aspx?Doi=10.4018/978-1-6684-8785-3.Ch003; IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-8785-3.ch003 Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International journal of information management, 57, 102225. Busch, F., Geis, R., Wang, Y.-C., Kather, J. N., Khori, N. A., Makowski, M. R., Kolawole, I. K., Truhn, D., Clements, W., Gilbert, S., Adams, L. C., Ortiz-Prado, E., & Bressem, K. K. (2025). AI regulation in healthcare around the world: What is the status quo? (p. 2025.01.25.25321061). medRxiv. https://doi.org/10.1101/2025.01.25.25321061 Cardiff, B., Irani, C. S. S., Risling, T., Booth, R. G., Strudwick, G., Lounsbury, J., Pinter, D., Martin, K., Girouard, A., & Howe, J. F. and R. (2025). From Federal Policy to Bedside Care: A Canadian Perspective on Key Considerations for Nurse Executive Action for AI Adoption – A Commentary. Nursing Leadership, 37(3). https://www.longwoods.com/content/27509/nursing-leadership/from-federal-policy-to-bedside-care-a-canadian-perspective-on-key-considerations-for-nurse-executiv Castro, K. S. de, Guimarães, A. M. da C., & Neto, M. S. D. (2024). AI ACT. Diké - Revista Jurídica, 23(26), Article 26. https://doi.org/10.36113/dike.26.2024.4544 Chairoel, L., Widyarto, S., & Pujani, V. (2015). ICT adoption in affecting organizational performance among Indonesian SMEs. The International Technology Management Review, 5(2), 82-93. Chatterjee, S., Rana, N. P., Dwivedi, Y. K., & Baabdullah, A. M. (2021). Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technological Forecasting and Social Change, 170, 120880. Chen, H., Li, L., & Chen, Y. (2021). Explore success factors that impact artificial intelligence adoption on telecom industry in China. Journal of Management Analytics, 8(1), 36-68. https://doi.org/10.1080/23270012.2020.1852895 Chen, J., Frankwick, G. L., & Zhang, Z. (2022). Adopting Artificial Intelligence to Manage a Turbulent Environment: An Abstract. En F. Pantoja & S. Wu (Eds.), From Micro to Macro: Dealing with Uncertainties in the Global Marketplace (pp. 223-224). Springer International Publishing. https://doi.org/10.1007/978-3-030-89883-0_61 Chin, W. W. (1999). Structural equation modeling analysis with small samples using partial least squares. Statistical Strategies for Small Sample Research/SAGE Publications. Chittipaka, V., Kumar, S., Sivarajah, U., Bowden, J. L.-H., & Baral, M. M. (2023a). Blockchain Technology for Supply Chains operating in emerging markets: An empirical examination of technology-organization-environment (TOE) framework. Annals of Operations Research, 327(1), 465-492. https://doi.org/10.1007/s10479-022-04801-5 Chittipaka, V., Kumar, S., Sivarajah, U., Bowden, J. L.-H., & Baral, M. M. (2023b). Blockchain Technology for Supply Chains operating in emerging markets: An empirical examination of technology-organization-environment (TOE) framework. Annals of Operations Research, 327(1), 465-492. https://doi.org/10.1007/s10479-022-04801-5 Cho, S., Psioda, M. A., & Ibrahim, J. G. (2024). Bayesian joint modeling of multivariate longitudinal and survival outcomes using Gaussian copulas. Biostatistics, 25(4), 962-977. https://doi.org/10.1093/biostatistics/kxae009 Ciro, J. L. M., & Robledo, J. C. (2024). Acumulación regulatoria y crecimiento económico: Una aproximación empírica para Colombia. Revista Desarrollo y Sociedad, 97, 141-162. Dakduk, S., Van Der Woude, D., & Alarcon Nieto, C. (2024). Technological Adoption in Emerging Economies: Insights from Latin America and the Caribbean with a Focus on Low-Income Consumers. En V. Bobek & T. Horvat (Eds.), Business, Management and Economics (Vol. 14). IntechOpen. https://doi.org/10.5772/intechopen.112004 Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. DE ABREU, M. C. S., ALBUQUERQUE, S. C., & DE OLIVEIRA, M. C. (2016). Institutional pressures on disclosure of carbon control issues by oil and gas companies. Revista Base (Administração e Contabilidade) da UNISINOS, 13(1), 79-91. Dent, E. B., & Goldberg, S. G. (1999). Challenging “Resistance to Change”. The Journal of Applied Behavioral Science, 35(1), 25-41. https://doi.org/10.1177/0021886399351003 Dessimoz, J.-D., Koehler, J., & Stadelmann, T. (2015). Artificial Intelligence Research in Switzerland. AI Magazine, 36(2), 102-105. https://doi.org/10.1609/aimag.v36i2.2591 Dey, D., & Bhaumik, D. (2024). APPRAISE: A Governance Framework for Innovation with Artificial Intelligence Systems. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 7, 328-340. https://ojs.aaai.org/index.php/AIES/article/view/31640 Di Vaio, A., Hassan, R., & Palladino, R. (2023). Blockchain technology and gender equality: A systematic literature review. International Journal of Information Management, 68, 102517. https://doi.org/10.1016/j.ijinfomgt.2022.102517 Dirgiatmo, Y. (2023). Testing The Discriminant Validity and Heterotrait–Monotrait Ratio of Correlation (HTMT): A Case in Indonesian SMEs. En Macroeconomic Risk and Growth in the Southeast Asian Countries: Insight from Indonesia (pp. 157-170). Emerald Publishing Limited. https://www.emerald.com/insight/content/doi/10.1108/S1571-03862023000033A011/full/html Donaldson, L. (2001). The contingency theory of organizations. Sage. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296. Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021 Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., & Eirug, A. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International journal of information management, 57, 101994. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002 Edwards, J. R. (2001). Multidimensional Constructs in Organizational Behavior Research: An Integrative Analytical Framework. Organizational Research Methods, 4(2), 144-192. https://doi.org/10.1177/109442810142004 Ejiaku, S. A. (2014). Technology adoption: Issues and challenges in information technology adoption in emerging economies. Journal of International Technology and Information Management, 23(2), 5. Faiz, F., Le, V., & Masli, E. K. (2024). Determinants of digital technology adoption in innovative SMEs. Journal of Innovation & Knowledge, 9(4), 100610. https://doi.org/10.1016/j.jik.2024.100610 Farid, O. (2024). The Role of Artificial Intelligence in Innovation and Leadership. https://www.cambridge.org/engage/coe/article-details/6731e02e7be152b1d0b49689 Fatima, S., Desouza, K. C., & Dawson, G. S. (2020). National strategic artificial intelligence plans: A multi-dimensional analysis. Economic Analysis and Policy, 67, 178-194. https://doi.org/10.1016/j.eap.2020.07.008 Felemban, H., Sohail, M., & Ruikar, K. (2024a). Exploring the Readiness of Organisations to Adopt Artificial Intelligence. Buildings, 14(8), Article 8. https://doi.org/10.3390/buildings14082460 Felemban, H., Sohail, M., & Ruikar, K. (2024b). Exploring the Readiness of Organisations to Adopt Artificial Intelligence. Buildings, 14(8), 2460. https://doi.org/10.3390/buildings14082460 Fenwick, M., Vermeulen, E. P. M., & Compagnucci, M. C. (2024). Business and Regulatory Responses to Artificial Intelligence: Dynamic Regulation, Innovation Ecosystems and the Strategic Management of Disruptive Technology (arXiv:2407.19439). arXiv. https://doi.org/10.48550/arXiv.2407.19439 Fernandes, F., Correia, J., & Pontes, A. (2023). Business Intelligence: Trends and the Impact of Emerging Technologies. Iberian Conf. Inf. Syst. Technol., CISTI, 2023-June. Scopus. https://doi.org/10.23919/CISTI58278.2023.10211645 Fetais, A. H. M. A., Faisal, M. N., Sabir, L. B., & Al Esmael, B. (2022). Artificial Intelligence Adoption for E-Government: Analysis of Enablers in an Emerging Economy. International Journal of Electronic Government Research, 18(1), 1-21. https://doi.org/10.4018/IJEGR.300773 Fetzer, J. H. (1990). What is Artificial Intelligence? En J. H. Fetzer (Ed.), Artificial Intelligence: Its Scope and Limits (pp. 3-27). Springer Netherlands. https://doi.org/10.1007/978-94-009-1900-6_1 Filipe, P., Ruivo, P., & Oliveira, T. (2023). Assessing machine learning adoption at the firm level: The moderating effect of the environmental context. Procedia Computer Science, 219, 1034-1042. https://doi.org/10.1016/j.procs.2023.01.381 Fisher, W. P. (2006). Survey design recommendations. Rasch measurement transactions, 20(3), 1072-1074. Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104 Franke, U. (2024). Algorithmic Transparency, Manipulation, and Two Concepts of Liberty. Philosophy & Technology, 37(1), 22. https://doi.org/10.1007/s13347-024-00713-3 Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of Enterprise Information Management, 28(1), 107-130. https://doi.org/10.1108/JEIM-08-2013-0065 Gil Sanchez, D. F., & Velásquez Álzate, J. F. (2024). Innovación responsable: Una solución a la brecha digital en Colombia. http://repository.unilibre.edu.co/handle/10901/28928 Giotopoulos, I., Kontolaimou, A., Korra, E., & Tsakanikas, A. (2017). What drives ICT adoption by SMEs? Evidence from a large-scale survey in Greece. Journal of Business Research, 81, 60-69. Giraldo, M. F. H., Gallego, J. M., Gutiérrez, H., Vargas, F., & Pereira, M. (2024). La difusión de la inteligencia artificial en una economía emergente: Evidencia a nivel de la empresa en Colombia. IDB Publications. https://doi.org/10.18235/0013325 Gnambs, T., & Hawrot, A. (2025). The development of disparities in digital competencies across adolescence. https://files.de-1.osf.io/v1/resources/gjr6w/providers/osfstorage/6790f736aece051b567c2e4c?action=download&direct&version=1 González Jimenez, D. A., & Salazar-Tabima, J. (2021). La analítica académica y la toma de decisiones en educación superior: Un estudio bibliométrico. Veritas & Research, 3(2), 122-133. Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013a). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long range planning, 46(1-2), 1-12. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013b). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long range planning, 46(1-2), 1-12. Hair Jr, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis. New Jersey, 5(3), 207-219. Hair Jr, J. F., M Hult, G. T., M Ringle, C., Sarstedt, M., Castillo Apraiz, J., Cepeda Carrión, G. A., & Roldán, J. L. (2019a). Manual de partial least squares structural equation modeling (pls-sem). OmniaScience. https://ekoizpen-zientifikoa.ehu.eus/documentos/642c49d1124b445f6ae6772a?lang=de Hair Jr, J. F., M Hult, G. T., M Ringle, C., Sarstedt, M., Castillo Apraiz, J., Cepeda Carrión, G. A., & Roldán, J. L. (2019b). Manual de partial least squares structural equation modeling (pls-sem). OmniaScience. https://ekoizpen-zientifikoa.ehu.eus/documentos/642c49d1124b445f6ae6772a?lang=de Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European business review, 26(2), 106-121. Hamad, B. M., & Jawad, M. K. (2024). The Fourth Industrial Revolution: A Historical and Conceptual Review. Journal of Economics and Administrative Sciences, 30(141), 154-172. Hamadneh, S., Alshurideh, M., Akour, I., Kurdi, B., & Joghe, S. (2023). Factors affecting e-supply chain management systems adoption in Jordan: An empirical study. Uncertain Supply Chain Management, 11(2), 411-422. Haneem, F., Kama, N., Taskin, N., Pauleen, D., & Abu Bakar, N. A. (2019). Determinants of master data management adoption by local government organizations: An empirical study. International Journal of Information Management, 45, 25-43. Scopus. https://doi.org/10.1016/j.ijinfomgt.2018.10.007 Hanna, M., Pantanowitz, L., Jackson, B., Palmer, O., Visweswaran, S., Pantanowitz, J., Deebajah, M., & Rashidi, H. (2024). Ethical and Bias Considerations in Artificial Intelligence (AI)/Machine Learning. Modern Pathology, 100686. Harnadi, B., Widiantoro, A. D., Prasetya, F. H., Sanjaya, R., & Sihombing, R. P. (2025). Role of age, gender and cultural factors as moderator on technology acceptance of online entertainment. Information Discovery and Delivery, 53(1), 72-89. https://doi.org/10.1108/IDD-02-2023-0017 Hasani, T., Rezania, D., Levallet, N., O’Reilly, N., & Mohammadi, M. (2023). Privacy enhancing technology adoption and its impact on SMEs’ performance. International Journal of Engineering Business Management, 15, 184797902311728. https://doi.org/10.1177/18479790231172874 Haschka, R. E. (2024). Endogeneity in stochastic frontier models with «wrong» skewness: Copula approach without external instruments. Statistical Methods & Applications, 33(3), 807-826. https://doi.org/10.1007/s10260-024-00750-4 Henseler, J., Hubona, G., & Ray, P. A. (2016a). Using PLS path modeling in new technology research: Updated guidelines. Industrial management & data systems, 116(1), 2-20. Henseler, J., Hubona, G., & Ray, P. A. (2016b). Using PLS path modeling in new technology research: Updated guidelines. Industrial management & data systems, 116(1), 2-20. Hidayah, N. L., Andini, P. A., Putera, A. W., Anisa, S., & Anshori, M. I. (2024). Peran Revolusi Teknologi Terhadap Budaya Organisasi Dan Interaksi Antar Karyawan Dalam Lingkungan Kerja. Nian Tana Sikka: Jurnal ilmiah Mahasiswa, 2(1), 09-25. Hirzallah, M. N. Y., & Alshurideh, M. T. R. (2023). The effects of the internal and the external factors affecting artificial intelligence (AI) adoption in e-innovation technology projects in the UAE? Applying both innovation and technology acceptance theories. International Journal of Data and Network Science, 7(3), 1321-1332. Scopus. https://doi.org/10.5267/j.ijdns.2023.4.006 Hofeditz, L., Jung, A.-K., Mirbabaie, M., & Stieglitz, S. (2025). Ethical Guidelines for the Application of Generative AI in German Journalism. Digital Society, 4(1), 4. https://doi.org/10.1007/s44206-024-00151-w Horani, O. M., Al-Adwan, A. S., Yaseen, H., Hmoud, H., Al-Rahmi, W. M., & Alkhalifah, A. (2023a). The critical determinants impacting artificial intelligence adoption at the organizational level. Information Development. Scopus. https://doi.org/10.1177/02666669231166889 Horani, O. M., Al-Adwan, A. S., Yaseen, H., Hmoud, H., Al-Rahmi, W. M., & Alkhalifah, A. (2023b). The critical determinants impacting artificial intelligence adoption at the organizational level. Information Development, 02666669231166889. https://doi.org/10.1177/02666669231166889 Hossain, F., Ahmed, G. M. S., Shuvo, S. P. P., Kona, A. N., Raina, M. U. H., & Shikder, F. (2024). Unlocking artificial intelligence for strategic market development and business growth: Innovations, opportunities, and future directions. Edelweiss Applied Science and Technology, 8(6), Article 6. https://doi.org/10.55214/25768484.v8i6.3263 Hult, G. T. M., Hair, J. F., Proksch, D., Sarstedt, M., Pinkwart, A., & Ringle, C. M. (2018). Addressing Endogeneity in International Marketing Applications of Partial Least Squares Structural Equation Modeling. Journal of International Marketing, 26(3), 1-21. https://doi.org/10.1509/jim.17.0151 Humeres, M., Cotoras, D., Moretti, R., Oyarzún-Merino, I., Correa, T., & López, C. (2025). Cooling down AI regulation controversies: Three closure processes in the Chilean legislative arena. Big Data & Society. https://doi.org/10.1177/20539517241311067 Humphrey, D. (2024). Japan’s Society 5.0 and the Organizational Vision of ‘Human-Centric’ AI. https://doi.org/10.1163/22142312-bja10055 Ikpe, E. O. (2024). Adoption and implementation of artificial intelligence in small businesses in selected developing countries. Journal of Health, Applied Sciences and Management, 8(1), Article 1. https://doi.org/10.4314/johasam.v8i1.3 Iqbal, Z., & Sadaf, S. (2023a). Artificial Intelligence/Machine Learning-based Innovations–A Review of Patent Eligibility Standards, Policies, Open Issues and Guiding Framework. Expert Systems with Applications, 121819. Iqbal, Z., & Sadaf, S. (2023b). Artificial Intelligence/Machine Learning-based Innovations–A Review of Patent Eligibility Standards, Policies, Open Issues and Guiding Framework. Expert Systems with Applications, 121819. Islam, N. M., Laughter, L., Sadid-Zadeh, R., Smith, C., Dolan, T. A., Crain, G., & Squarize, C. H. (2022). Adopting artificial intelligence in dental education: A model for academic leadership and innovation. Journal of Dental Education, 86(11), 1545-1551. Scopus. https://doi.org/10.1002/jdd.13010 Ismatullaev, U. V. U., & Kim, S.-H. (2024). Review of the Factors Affecting Acceptance of AI-Infused Systems. Human Factors, 66(1), 126-144. https://doi.org/10.1177/00187208211064707 Jain, S., Dubey, S., & Jain, S. (2016). Designing and validation of questionnaire. International dental & medical journal of advanced research, 2(1), 1-3. Jayasinghe, S. (2024). Harnessing generative AI for self-directed learning: Perspectives from top management. Development and Learning in Organizations. Scopus. https://doi.org/10.1108/DLO-05-2024-0141 Jiang, B., & Li, P. (2024). Nonparametric Crosstalk Evaluation Method Using the Kolmogorov-Smirnov Test. 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 617-622. https://doi.org/10.1109/EMCSIPI49824.2024.10705611 Jo, H., & Bang, Y. (2023). Analyzing ChatGPT adoption drivers with the TOEK framework. Scientific Reports, 13(1). Scopus. https://doi.org/10.1038/s41598-023-49710-0 Johnson, M. D., Herrmann, A., & Huber, F. (2006). The Evolution of Loyalty Intentions. Journal of Marketing, 70(2), 122-132. https://doi.org/10.1509/jmkg.70.2.122 Johnson, R. E., Rosen, C. C., & Chang, C.-H. (2011). To aggregate or not to aggregate: Steps for developing and validating higher-order multidimensional constructs. Journal of Business and Psychology, 26, 241-248. Judijanto, L., Muni, K. S., & Amir, F. L. (2024). Bibliometric Analysis to Understand Research Trends in Data-Driven Economics. West Science Journal Economic and Entrepreneurship, 2(03), Article 03. https://doi.org/10.58812/wsjee.v2i03.1198 Kadam, D. (2019). Artificial intelligence (AI)—An Inflection Point In the Global History and its Significance For a National Strategy. Indian Journal of Plastic Surgery, 52(02), 145-147. https://doi.org/10.1055/s-0039-1700367 Kaiser, O. (1974). Isaiah 13-39 (1974): A Commentary. Westminster John Knox Press. Kajla, T., Sood, K., Gupta, S., Raj, S., & Singh, H. (2024). Identification and prioritization of the factors influencing blockchain adoption in the banking sector: Integrating f |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
| dc.rights.license.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
closedAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.extent.none.fl_str_mv |
190 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de San Buenaventura - Cali |
| dc.publisher.branch.none.fl_str_mv |
Cali |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Económicas |
| dc.publisher.place.none.fl_str_mv |
Cali |
| dc.publisher.program.none.fl_str_mv |
Doctorado en Administración de Negocios |
| publisher.none.fl_str_mv |
Universidad de San Buenaventura - Cali |
| institution |
Universidad de San Buenaventura |
| dc.source.other.none.fl_str_mv |
Cali |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/7ed0404a-20ab-48f1-9b56-19fc25f85a7f/download https://bibliotecadigital.usb.edu.co/bitstreams/ba203ba3-1930-43a0-8d09-c0db307ccf36/download https://bibliotecadigital.usb.edu.co/bitstreams/5df04f3c-66ee-4fb9-92af-a636c76b7eb8/download https://bibliotecadigital.usb.edu.co/bitstreams/f60da5a3-cdf9-43e5-b2d1-07b020cf9815/download https://bibliotecadigital.usb.edu.co/bitstreams/e3ce5f3d-8d75-417f-9e3d-eb1455a51190/download https://bibliotecadigital.usb.edu.co/bitstreams/646b7d34-ce2e-49f4-ae60-37ab75fd6552/download https://bibliotecadigital.usb.edu.co/bitstreams/b7baa710-1360-498a-ae05-8768766cb36f/download https://bibliotecadigital.usb.edu.co/bitstreams/86283e52-5fc1-4657-a352-6ac12fb8ddc2/download |
| bitstream.checksum.fl_str_mv |
ce8fd7f912f132cbeb263b9ddc893467 3b6ce8e9e36c89875e8cf39962fe8920 3af3c9db7d989cdabaf51e084493e0f5 c9daf32a6ffa464a10ac74cad508b7cd 53c3aec42294fb987ad46c143f1cb18e 6c2c22d422787eeee7a1fa0733bb04d4 bdee61b154248b86230ad8aef070ca58 14f03682fc3f699564a86b88a3bdf6d3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053574235095040 |
| spelling |
Ríos Osorio, José FabianSalazar Tabima, JerfensonFernández Rengifo, ElianaSánchez Leyva, José LuisRobledo Fernández, Juan CarlosHidalgo Suárez, Carlos GiovannyGrupo de Investigación Economía, Gestión, Territorio y Desarrollo Sostenible (GEOS) (Cali)2025-07-24T15:04:32Z2025-07-24T15:04:32Z2025DoctoradoDoctor en Administración de NegociosSedes::Cali::Línea de investigación economía y gestión del territorio (Cali)190 páginasapplication/pdfFernández-Rengifo, E (2025). Adopción de inteligencia artificial (IA) en entornos empresariales: El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IA. [Tesis de doctorado en Administración de negocios . Universidad de San Buenaventura Cali.https://hdl.handle.net/10819/25528spaUniversidad de San Buenaventura - CaliCaliFacultad de Ciencias EconómicasCaliDoctorado en Administración de NegociosAbdullah, A. A. H., & Almaqtari, F. A. (2024). The impact of artificial intelligence and Industry 4.0 on transforming accounting and auditing practices. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100218. https://doi.org/10.1016/j.joitmc.2024.100218 Aguirre, F. B., Villamizar, N. G., Henao, A., & Rios, L. (2023). Financiamiento público y dinámicas tecnológicas en la industria manufacturera y de servicios en Colombia. Panorama Económico, 31(4), 329-358. Ahmad, A. Y. A. B. (2024). Ethical implications of artificial intelligence in accounting: A framework for responsible ai adoption in multinational corporations in Jordan. International Journal of Data and Network Science, 8(1), 401-414. https://doi.org/10.5267/j.ijdns.2023.9.014 Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, 289. Scopus. https://doi.org/10.1016/j.jclepro.2021.125834 Ahuja, N. S. (2024). 1. AI-Driven Decision Making in Management. SBS Swiss Business School. https://research.sbs.edu/sbsrc/SBSRC24_Paper01.pdf Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. En Action control: From cognition to behavior (pp. 11-39). Springer. Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211. Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological bulletin, 82(2), 261. Alam, S. S., Ali, Md. Y., & Jani, Mohd. F. Mohd. (2011). AN EMPIRICAL STUDY OF FACTORS AFFECTING ELECTRONIC COMMERCE ADOPTION AMONG SMES IN MALAYSIA / VEIKSNIŲ, TURINČIŲ ĮTAKOS ELEKTORINEI PREKYBAI, STUDIJA: MALAIZIJOS PAVYZDYS. Journal of Business Economics and Management, 12(2), 375-399. https://doi.org/10.3846/16111699.2011.576749 Alam, S. S., Masukujjaman, M., Susmit, S., Susmit, S., & Aziz, H. A. (2024). Augmented reality adoption intention among travel and tour operators in Malaysia: Mediation effect of value alignment. Journal of Tourism Futures, 10(2), 185-204. Scopus. https://doi.org/10.1108/JTF-03-2021-0072 Al-Jabri, I. M., & Alabdulhadi, M. H. (2016). Factors affecting cloud computing adoption: Perspectives of IT professionals. International Journal of Business Information Systems, 23(4), 389-405. Scopus. https://doi.org/10.1504/IJBIS.2016.080215 Almogren, A. S., Al-Rahmi, W. M., & Dahri, N. A. (2024). Exploring factors influencing the acceptance of ChatGPT in higher education: A smart education perspective. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e31887 Al-Okaily, M., Alqudah, H. M., Al-Qudah, A. A., & Alkhwaldi, A. F. (2024). Examining the critical factors of computer-assisted audit tools and techniques adoption in the post-COVID-19 period: Internal auditors perspective. VINE Journal of Information and Knowledge Management Systems, 54(5), 1062-1091. Scopus. https://doi.org/10.1108/VJIKMS-12-2021-0311 Al-Shanti, A., Jebreel, M., Qabajeh, M., Nassoura, A., & Airout, R. (2024). The role of organizational antecedents in fostering accounting intelligence adoption: The mediating influence of organizational culture. Human Systems Management, 43(4), 495-511. https://doi.org/10.3233/HSM-230194 Alsheibani, S., Messom, C., & Cheung, Y. (2020). Re-thinking the competitive landscape of artificial intelligence. https://scholarspace.manoa.hawaii.edu/handle/10125/64460 Anh, N. T. M., Hoa, L. T. K., Thao, L. P., Nhi, D. A., Long, N. T., Truc, N. T., & Ngoc Xuan, V. (2024). The Effect of Technology Readiness on Adopting Artificial Intelligence in Accounting and Auditing in Vietnam. Journal of Risk and Financial Management, 17(1). Scopus. https://doi.org/10.3390/jrfm17010027 Arnab, R. (2017). Chapter 3—Simple Random Sampling. En R. Arnab (Ed.), Survey Sampling Theory and Applications (pp. 51-88). Academic Press. https://doi.org/10.1016/B978-0-12-811848-1.00003-0 Arpaci, I., Yardimci, Y. C., Ozkan, S., & Turetken, O. (2012). ADOPCIÓN ORGANIZATIVA DE LAS TECNOLOGÍAS DE LA INFORMACIÓN: UNA REVISIÓN DE LA LITERATURA. 4(2). Asamoah, M. K., Oheneba-Sakyi, Y., & Tagoe, M. (2024). Faculty acceptance of the utilization of learning management systems in teaching. E-Learning and Digital Media, 21(4), 346-366. Scopus. https://doi.org/10.1177/20427530231156168 Asiabar, M. G., Asiabar, M. G., & Asiabar, A. G. (2024). Artificial Intelligence in Strategic Management: Examining Novel AI Applications in Organizational Strategic Decision-Making. Sep. https://www.preprints.org/manuscript/202409.1330/download/final_file Aslam, W., & Jawaid, S. T. (2023). Green banking adoption practices: The pathway of meeting sustainable goals. Environment, Development and Sustainability. Scopus. https://doi.org/10.1007/s10668-023-03893-8 Astrachan, C. B., Patel, V. K., & Wanzenried, G. (2014). A comparative study of CB-SEM and PLS-SEM for theory development in family firm research. Journal of family business strategy, 5(1), 116-128. Awa, H. O., Ukoha, O., & Igwe, S. R. (2017). Revisiting technology-organization-environment (T-O-E) theory for enriched applicability. The Bottom Line, 30(01), 2-22. https://doi.org/10.1108/BL-12-2016-0044 Awad, A. (2024). Artificial intelligence and marketing innovation: The mediating role of organizational culture. Innovative Marketing, 20(3), 170-181. https://doi.org/10.21511/im.20(3).2024.14 Ayanwale, M. A., & Molefi, R. R. (2024). Exploring intention of undergraduate students to embrace chatbots: From the vantage point of Lesotho. International Journal of Educational Technology in Higher Education, 21(1), 20. https://doi.org/10.1186/s41239-024-00451-8 Badghish, S., & Soomro, Y. A. (2024). Artificial Intelligence Adoption by SMEs to Achieve Sustainable Business Performance: Application of Technology–Organization–Environment Framework. Sustainability (Switzerland), 16(5). Scopus. https://doi.org/10.3390/su16051864 Badmus, O., Rajput, S. A., Arogundade, J. B., & Williams, M. (2024). AI-driven business analytics and decision making. World Journal of Advanced Research and Reviews, 24(1), 616-633. Bag, S., Rahman, M. S., Gupta, S., & Wood, L. C. (2022). Understanding and predicting the determinants of blockchain technology adoption and SMEs’ performance. The International Journal of Logistics Management, 34(6), 1781-1807. https://doi.org/10.1108/IJLM-01-2022-0017 Bahari, M., Arpaci, I., Der, O., Akkoyun, F., & Ercetin, A. (2024a). Driving Agricultural Transformation: Unraveling Key Factors Shaping IoT Adoption in Smart Farming with Empirical Insights. Sustainability (Switzerland), 16(5). Scopus. https://doi.org/10.3390/su16052129 Bahari, M., Arpaci, I., Der, O., Akkoyun, F., & Ercetin, A. (2024b). Driving Agricultural Transformation: Unraveling Key Factors Shaping IoT Adoption in Smart Farming with Empirical Insights. Sustainability, 16(5), 2129. https://doi.org/10.3390/su16052129 Baiod, W., & Hussain, M. M. (2024). The impact and adoption of emerging technologies on accounting: Perceptions of Canadian companies. International Journal of Accounting & Information Management, 32(4), 557-592. https://doi.org/10.1108/IJAIM-05-2023-0123 Bani Ahmad, A. Y. A. (2024). Ethical implications of artificial intelligence in accounting: A framework for responsible ai adoption in multinational corporations in Jordan. International Journal of Data and Network Science, 8(1), 401-414. https://doi.org/10.5267/j.ijdns.2023.9.014 Banwo, A. O., Onokala, U., & Momoh, B. (2022). Organizational climate–institutional environment nexus: Why context matters. Journal of Global Entrepreneurship Research, 12(1), 357-369. https://doi.org/10.1007/s40497-022-00330-4 Barodi, M., & Lalaoui, S. (2025). Civil servants’ readiness for AI adoption: The role of change management in Morocco’s public sector. Problems and Perspectives in Management, 23(1), 63-75. https://doi.org/10.21511/ppm.23(1).2025.05 Bayindir, B. J., Shafighi, N., & Hajibashi, A. A. (2024). Analysis of the Impact of Industry 4.0 Technologies on Service Sector. Archives of Business Research, 12(12), Article 12. https://doi.org/10.14738/abr.1212.18102 Becker, J.-M., Cheah, J.-H., Gholamzade, R., Ringle, C. M., & Sarstedt, M. (2023a). PLS-SEM’s most wanted guidance. International Journal of Contemporary Hospitality Management, 35(1), 321-346. Becker, J.-M., Cheah, J.-H., Gholamzade, R., Ringle, C. M., & Sarstedt, M. (2023b). PLS-SEM’s most wanted guidance. International Journal of Contemporary Hospitality Management, 35(1), 321-346. Becker, J.-M., Proksch, D., & Ringle, C. M. (2022). Revisiting Gaussian copulas to handle endogenous regressors. Journal of the Academy of Marketing Science, 50(1), 46-66. https://doi.org/10.1007/s11747-021-00805-y Benitez, J., Henseler, J., & Roldán Salgueiro, J. L. (2016). How to address endogeneity in partial least squares path modeling. https://idus.us.es/handle/11441/76284 Bhattacharyya, S. S., Goswami, S., Mehta, R., & Nayak, B. (2022). Examining the factors influencing adoption of over the top (OTT) services among Indian consumers. Journal of Science and Technology Policy Management, 13(3), 652-682. Scopus. https://doi.org/10.1108/JSTPM-09-2020-0135 Bojica, A. M., & Fuentes, M. D. M. F. (2012). Knowledge acquisition and corporate entrepreneurship: Insights from Spanish SMEs in the ICT sector. Journal of World Business, 47(3), 397-408. https://doi.org/10.1016/j.jwb.2011.05.007 Bolding, L. A., & Bolding, L. A. (2023, junio 1). Institutional Pressures on the Oil and Gas Industry: The Role of Machine Learning (institutional-pressures-on-the-oil-and-gas-industry) [Chapter]. Https://Services.Igi-Global.Com/Resolvedoi/Resolve.Aspx?Doi=10.4018/978-1-6684-8785-3.Ch003; IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-8785-3.ch003 Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International journal of information management, 57, 102225. Busch, F., Geis, R., Wang, Y.-C., Kather, J. N., Khori, N. A., Makowski, M. R., Kolawole, I. K., Truhn, D., Clements, W., Gilbert, S., Adams, L. C., Ortiz-Prado, E., & Bressem, K. K. (2025). AI regulation in healthcare around the world: What is the status quo? (p. 2025.01.25.25321061). medRxiv. https://doi.org/10.1101/2025.01.25.25321061 Cardiff, B., Irani, C. S. S., Risling, T., Booth, R. G., Strudwick, G., Lounsbury, J., Pinter, D., Martin, K., Girouard, A., & Howe, J. F. and R. (2025). From Federal Policy to Bedside Care: A Canadian Perspective on Key Considerations for Nurse Executive Action for AI Adoption – A Commentary. Nursing Leadership, 37(3). https://www.longwoods.com/content/27509/nursing-leadership/from-federal-policy-to-bedside-care-a-canadian-perspective-on-key-considerations-for-nurse-executiv Castro, K. S. de, Guimarães, A. M. da C., & Neto, M. S. D. (2024). AI ACT. Diké - Revista Jurídica, 23(26), Article 26. https://doi.org/10.36113/dike.26.2024.4544 Chairoel, L., Widyarto, S., & Pujani, V. (2015). ICT adoption in affecting organizational performance among Indonesian SMEs. The International Technology Management Review, 5(2), 82-93. Chatterjee, S., Rana, N. P., Dwivedi, Y. K., & Baabdullah, A. M. (2021). Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technological Forecasting and Social Change, 170, 120880. Chen, H., Li, L., & Chen, Y. (2021). Explore success factors that impact artificial intelligence adoption on telecom industry in China. Journal of Management Analytics, 8(1), 36-68. https://doi.org/10.1080/23270012.2020.1852895 Chen, J., Frankwick, G. L., & Zhang, Z. (2022). Adopting Artificial Intelligence to Manage a Turbulent Environment: An Abstract. En F. Pantoja & S. Wu (Eds.), From Micro to Macro: Dealing with Uncertainties in the Global Marketplace (pp. 223-224). Springer International Publishing. https://doi.org/10.1007/978-3-030-89883-0_61 Chin, W. W. (1999). Structural equation modeling analysis with small samples using partial least squares. Statistical Strategies for Small Sample Research/SAGE Publications. Chittipaka, V., Kumar, S., Sivarajah, U., Bowden, J. L.-H., & Baral, M. M. (2023a). Blockchain Technology for Supply Chains operating in emerging markets: An empirical examination of technology-organization-environment (TOE) framework. Annals of Operations Research, 327(1), 465-492. https://doi.org/10.1007/s10479-022-04801-5 Chittipaka, V., Kumar, S., Sivarajah, U., Bowden, J. L.-H., & Baral, M. M. (2023b). Blockchain Technology for Supply Chains operating in emerging markets: An empirical examination of technology-organization-environment (TOE) framework. Annals of Operations Research, 327(1), 465-492. https://doi.org/10.1007/s10479-022-04801-5 Cho, S., Psioda, M. A., & Ibrahim, J. G. (2024). Bayesian joint modeling of multivariate longitudinal and survival outcomes using Gaussian copulas. Biostatistics, 25(4), 962-977. https://doi.org/10.1093/biostatistics/kxae009 Ciro, J. L. M., & Robledo, J. C. (2024). Acumulación regulatoria y crecimiento económico: Una aproximación empírica para Colombia. Revista Desarrollo y Sociedad, 97, 141-162. Dakduk, S., Van Der Woude, D., & Alarcon Nieto, C. (2024). Technological Adoption in Emerging Economies: Insights from Latin America and the Caribbean with a Focus on Low-Income Consumers. En V. Bobek & T. Horvat (Eds.), Business, Management and Economics (Vol. 14). IntechOpen. https://doi.org/10.5772/intechopen.112004 Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. DE ABREU, M. C. S., ALBUQUERQUE, S. C., & DE OLIVEIRA, M. C. (2016). Institutional pressures on disclosure of carbon control issues by oil and gas companies. Revista Base (Administração e Contabilidade) da UNISINOS, 13(1), 79-91. Dent, E. B., & Goldberg, S. G. (1999). Challenging “Resistance to Change”. The Journal of Applied Behavioral Science, 35(1), 25-41. https://doi.org/10.1177/0021886399351003 Dessimoz, J.-D., Koehler, J., & Stadelmann, T. (2015). Artificial Intelligence Research in Switzerland. AI Magazine, 36(2), 102-105. https://doi.org/10.1609/aimag.v36i2.2591 Dey, D., & Bhaumik, D. (2024). APPRAISE: A Governance Framework for Innovation with Artificial Intelligence Systems. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 7, 328-340. https://ojs.aaai.org/index.php/AIES/article/view/31640 Di Vaio, A., Hassan, R., & Palladino, R. (2023). Blockchain technology and gender equality: A systematic literature review. International Journal of Information Management, 68, 102517. https://doi.org/10.1016/j.ijinfomgt.2022.102517 Dirgiatmo, Y. (2023). Testing The Discriminant Validity and Heterotrait–Monotrait Ratio of Correlation (HTMT): A Case in Indonesian SMEs. En Macroeconomic Risk and Growth in the Southeast Asian Countries: Insight from Indonesia (pp. 157-170). Emerald Publishing Limited. https://www.emerald.com/insight/content/doi/10.1108/S1571-03862023000033A011/full/html Donaldson, L. (2001). The contingency theory of organizations. Sage. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296. Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021 Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., & Eirug, A. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International journal of information management, 57, 101994. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002 Edwards, J. R. (2001). Multidimensional Constructs in Organizational Behavior Research: An Integrative Analytical Framework. Organizational Research Methods, 4(2), 144-192. https://doi.org/10.1177/109442810142004 Ejiaku, S. A. (2014). Technology adoption: Issues and challenges in information technology adoption in emerging economies. Journal of International Technology and Information Management, 23(2), 5. Faiz, F., Le, V., & Masli, E. K. (2024). Determinants of digital technology adoption in innovative SMEs. Journal of Innovation & Knowledge, 9(4), 100610. https://doi.org/10.1016/j.jik.2024.100610 Farid, O. (2024). The Role of Artificial Intelligence in Innovation and Leadership. https://www.cambridge.org/engage/coe/article-details/6731e02e7be152b1d0b49689 Fatima, S., Desouza, K. C., & Dawson, G. S. (2020). National strategic artificial intelligence plans: A multi-dimensional analysis. Economic Analysis and Policy, 67, 178-194. https://doi.org/10.1016/j.eap.2020.07.008 Felemban, H., Sohail, M., & Ruikar, K. (2024a). Exploring the Readiness of Organisations to Adopt Artificial Intelligence. Buildings, 14(8), Article 8. https://doi.org/10.3390/buildings14082460 Felemban, H., Sohail, M., & Ruikar, K. (2024b). Exploring the Readiness of Organisations to Adopt Artificial Intelligence. Buildings, 14(8), 2460. https://doi.org/10.3390/buildings14082460 Fenwick, M., Vermeulen, E. P. M., & Compagnucci, M. C. (2024). Business and Regulatory Responses to Artificial Intelligence: Dynamic Regulation, Innovation Ecosystems and the Strategic Management of Disruptive Technology (arXiv:2407.19439). arXiv. https://doi.org/10.48550/arXiv.2407.19439 Fernandes, F., Correia, J., & Pontes, A. (2023). Business Intelligence: Trends and the Impact of Emerging Technologies. Iberian Conf. Inf. Syst. Technol., CISTI, 2023-June. Scopus. https://doi.org/10.23919/CISTI58278.2023.10211645 Fetais, A. H. M. A., Faisal, M. N., Sabir, L. B., & Al Esmael, B. (2022). Artificial Intelligence Adoption for E-Government: Analysis of Enablers in an Emerging Economy. International Journal of Electronic Government Research, 18(1), 1-21. https://doi.org/10.4018/IJEGR.300773 Fetzer, J. H. (1990). What is Artificial Intelligence? En J. H. Fetzer (Ed.), Artificial Intelligence: Its Scope and Limits (pp. 3-27). Springer Netherlands. https://doi.org/10.1007/978-94-009-1900-6_1 Filipe, P., Ruivo, P., & Oliveira, T. (2023). Assessing machine learning adoption at the firm level: The moderating effect of the environmental context. Procedia Computer Science, 219, 1034-1042. https://doi.org/10.1016/j.procs.2023.01.381 Fisher, W. P. (2006). Survey design recommendations. Rasch measurement transactions, 20(3), 1072-1074. Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104 Franke, U. (2024). Algorithmic Transparency, Manipulation, and Two Concepts of Liberty. Philosophy & Technology, 37(1), 22. https://doi.org/10.1007/s13347-024-00713-3 Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of Enterprise Information Management, 28(1), 107-130. https://doi.org/10.1108/JEIM-08-2013-0065 Gil Sanchez, D. F., & Velásquez Álzate, J. F. (2024). Innovación responsable: Una solución a la brecha digital en Colombia. http://repository.unilibre.edu.co/handle/10901/28928 Giotopoulos, I., Kontolaimou, A., Korra, E., & Tsakanikas, A. (2017). What drives ICT adoption by SMEs? Evidence from a large-scale survey in Greece. Journal of Business Research, 81, 60-69. Giraldo, M. F. H., Gallego, J. M., Gutiérrez, H., Vargas, F., & Pereira, M. (2024). La difusión de la inteligencia artificial en una economía emergente: Evidencia a nivel de la empresa en Colombia. IDB Publications. https://doi.org/10.18235/0013325 Gnambs, T., & Hawrot, A. (2025). The development of disparities in digital competencies across adolescence. https://files.de-1.osf.io/v1/resources/gjr6w/providers/osfstorage/6790f736aece051b567c2e4c?action=download&direct&version=1 González Jimenez, D. A., & Salazar-Tabima, J. (2021). La analítica académica y la toma de decisiones en educación superior: Un estudio bibliométrico. Veritas & Research, 3(2), 122-133. Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013a). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long range planning, 46(1-2), 1-12. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013b). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long range planning, 46(1-2), 1-12. Hair Jr, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis. New Jersey, 5(3), 207-219. Hair Jr, J. F., M Hult, G. T., M Ringle, C., Sarstedt, M., Castillo Apraiz, J., Cepeda Carrión, G. A., & Roldán, J. L. (2019a). Manual de partial least squares structural equation modeling (pls-sem). OmniaScience. https://ekoizpen-zientifikoa.ehu.eus/documentos/642c49d1124b445f6ae6772a?lang=de Hair Jr, J. F., M Hult, G. T., M Ringle, C., Sarstedt, M., Castillo Apraiz, J., Cepeda Carrión, G. A., & Roldán, J. L. (2019b). Manual de partial least squares structural equation modeling (pls-sem). OmniaScience. https://ekoizpen-zientifikoa.ehu.eus/documentos/642c49d1124b445f6ae6772a?lang=de Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European business review, 26(2), 106-121. Hamad, B. M., & Jawad, M. K. (2024). The Fourth Industrial Revolution: A Historical and Conceptual Review. Journal of Economics and Administrative Sciences, 30(141), 154-172. Hamadneh, S., Alshurideh, M., Akour, I., Kurdi, B., & Joghe, S. (2023). Factors affecting e-supply chain management systems adoption in Jordan: An empirical study. Uncertain Supply Chain Management, 11(2), 411-422. Haneem, F., Kama, N., Taskin, N., Pauleen, D., & Abu Bakar, N. A. (2019). Determinants of master data management adoption by local government organizations: An empirical study. International Journal of Information Management, 45, 25-43. Scopus. https://doi.org/10.1016/j.ijinfomgt.2018.10.007 Hanna, M., Pantanowitz, L., Jackson, B., Palmer, O., Visweswaran, S., Pantanowitz, J., Deebajah, M., & Rashidi, H. (2024). Ethical and Bias Considerations in Artificial Intelligence (AI)/Machine Learning. Modern Pathology, 100686. Harnadi, B., Widiantoro, A. D., Prasetya, F. H., Sanjaya, R., & Sihombing, R. P. (2025). Role of age, gender and cultural factors as moderator on technology acceptance of online entertainment. Information Discovery and Delivery, 53(1), 72-89. https://doi.org/10.1108/IDD-02-2023-0017 Hasani, T., Rezania, D., Levallet, N., O’Reilly, N., & Mohammadi, M. (2023). Privacy enhancing technology adoption and its impact on SMEs’ performance. International Journal of Engineering Business Management, 15, 184797902311728. https://doi.org/10.1177/18479790231172874 Haschka, R. E. (2024). Endogeneity in stochastic frontier models with «wrong» skewness: Copula approach without external instruments. Statistical Methods & Applications, 33(3), 807-826. https://doi.org/10.1007/s10260-024-00750-4 Henseler, J., Hubona, G., & Ray, P. A. (2016a). Using PLS path modeling in new technology research: Updated guidelines. Industrial management & data systems, 116(1), 2-20. Henseler, J., Hubona, G., & Ray, P. A. (2016b). Using PLS path modeling in new technology research: Updated guidelines. Industrial management & data systems, 116(1), 2-20. Hidayah, N. L., Andini, P. A., Putera, A. W., Anisa, S., & Anshori, M. I. (2024). Peran Revolusi Teknologi Terhadap Budaya Organisasi Dan Interaksi Antar Karyawan Dalam Lingkungan Kerja. Nian Tana Sikka: Jurnal ilmiah Mahasiswa, 2(1), 09-25. Hirzallah, M. N. Y., & Alshurideh, M. T. R. (2023). The effects of the internal and the external factors affecting artificial intelligence (AI) adoption in e-innovation technology projects in the UAE? Applying both innovation and technology acceptance theories. International Journal of Data and Network Science, 7(3), 1321-1332. Scopus. https://doi.org/10.5267/j.ijdns.2023.4.006 Hofeditz, L., Jung, A.-K., Mirbabaie, M., & Stieglitz, S. (2025). Ethical Guidelines for the Application of Generative AI in German Journalism. Digital Society, 4(1), 4. https://doi.org/10.1007/s44206-024-00151-w Horani, O. M., Al-Adwan, A. S., Yaseen, H., Hmoud, H., Al-Rahmi, W. M., & Alkhalifah, A. (2023a). The critical determinants impacting artificial intelligence adoption at the organizational level. Information Development. Scopus. https://doi.org/10.1177/02666669231166889 Horani, O. M., Al-Adwan, A. S., Yaseen, H., Hmoud, H., Al-Rahmi, W. M., & Alkhalifah, A. (2023b). The critical determinants impacting artificial intelligence adoption at the organizational level. Information Development, 02666669231166889. https://doi.org/10.1177/02666669231166889 Hossain, F., Ahmed, G. M. S., Shuvo, S. P. P., Kona, A. N., Raina, M. U. H., & Shikder, F. (2024). Unlocking artificial intelligence for strategic market development and business growth: Innovations, opportunities, and future directions. Edelweiss Applied Science and Technology, 8(6), Article 6. https://doi.org/10.55214/25768484.v8i6.3263 Hult, G. T. M., Hair, J. F., Proksch, D., Sarstedt, M., Pinkwart, A., & Ringle, C. M. (2018). Addressing Endogeneity in International Marketing Applications of Partial Least Squares Structural Equation Modeling. Journal of International Marketing, 26(3), 1-21. https://doi.org/10.1509/jim.17.0151 Humeres, M., Cotoras, D., Moretti, R., Oyarzún-Merino, I., Correa, T., & López, C. (2025). Cooling down AI regulation controversies: Three closure processes in the Chilean legislative arena. Big Data & Society. https://doi.org/10.1177/20539517241311067 Humphrey, D. (2024). Japan’s Society 5.0 and the Organizational Vision of ‘Human-Centric’ AI. https://doi.org/10.1163/22142312-bja10055 Ikpe, E. O. (2024). Adoption and implementation of artificial intelligence in small businesses in selected developing countries. Journal of Health, Applied Sciences and Management, 8(1), Article 1. https://doi.org/10.4314/johasam.v8i1.3 Iqbal, Z., & Sadaf, S. (2023a). Artificial Intelligence/Machine Learning-based Innovations–A Review of Patent Eligibility Standards, Policies, Open Issues and Guiding Framework. Expert Systems with Applications, 121819. Iqbal, Z., & Sadaf, S. (2023b). Artificial Intelligence/Machine Learning-based Innovations–A Review of Patent Eligibility Standards, Policies, Open Issues and Guiding Framework. Expert Systems with Applications, 121819. Islam, N. M., Laughter, L., Sadid-Zadeh, R., Smith, C., Dolan, T. A., Crain, G., & Squarize, C. H. (2022). Adopting artificial intelligence in dental education: A model for academic leadership and innovation. Journal of Dental Education, 86(11), 1545-1551. Scopus. https://doi.org/10.1002/jdd.13010 Ismatullaev, U. V. U., & Kim, S.-H. (2024). Review of the Factors Affecting Acceptance of AI-Infused Systems. Human Factors, 66(1), 126-144. https://doi.org/10.1177/00187208211064707 Jain, S., Dubey, S., & Jain, S. (2016). Designing and validation of questionnaire. International dental & medical journal of advanced research, 2(1), 1-3. Jayasinghe, S. (2024). Harnessing generative AI for self-directed learning: Perspectives from top management. Development and Learning in Organizations. Scopus. https://doi.org/10.1108/DLO-05-2024-0141 Jiang, B., & Li, P. (2024). Nonparametric Crosstalk Evaluation Method Using the Kolmogorov-Smirnov Test. 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 617-622. https://doi.org/10.1109/EMCSIPI49824.2024.10705611 Jo, H., & Bang, Y. (2023). Analyzing ChatGPT adoption drivers with the TOEK framework. Scientific Reports, 13(1). Scopus. https://doi.org/10.1038/s41598-023-49710-0 Johnson, M. D., Herrmann, A., & Huber, F. (2006). The Evolution of Loyalty Intentions. Journal of Marketing, 70(2), 122-132. https://doi.org/10.1509/jmkg.70.2.122 Johnson, R. E., Rosen, C. C., & Chang, C.-H. (2011). To aggregate or not to aggregate: Steps for developing and validating higher-order multidimensional constructs. Journal of Business and Psychology, 26, 241-248. Judijanto, L., Muni, K. S., & Amir, F. L. (2024). Bibliometric Analysis to Understand Research Trends in Data-Driven Economics. West Science Journal Economic and Entrepreneurship, 2(03), Article 03. https://doi.org/10.58812/wsjee.v2i03.1198 Kadam, D. (2019). Artificial intelligence (AI)—An Inflection Point In the Global History and its Significance For a National Strategy. Indian Journal of Plastic Surgery, 52(02), 145-147. https://doi.org/10.1055/s-0039-1700367 Kaiser, O. (1974). Isaiah 13-39 (1974): A Commentary. Westminster John Knox Press. Kajla, T., Sood, K., Gupta, S., Raj, S., & Singh, H. (2024). Identification and prioritization of the factors influencing blockchain adoption in the banking sector: Integrating fuzzy AHP with TOE framework. International Journal of Quality and Reliability Management, 41(8), 2004-2026. Scopus. https://doi.org/10.1108/IJQRM-03-2023-0079 Kapoor, A., Singh, N., Chaudhary, V., Singh, N., & Soni, N. (2024). Generative AI Through the Lens of Neo-Schumpeterian Economics: Mapping the Future of Business Innovation. OSF. https://doi.org/10.31219/osf.io/khptm Kaushalya, K. W. A. H. H., Thayaparan, M., Weerasinghe, L. N. K., & Attfield, A. (2024). Rogers’ diffusion of innovation theory to enhance BIM implementation in the construction industry of Sri Lanka. Intelligent Buildings International. https://www.tandfonline.com/doi/abs/10.1080/17508975.2024.2430217 Khanfar, A. A., Mavi, R. K., Iranmanesh, M., & Gengatharen, D. (2025). Factors influencing the adoption of artificial intelligence systems: A systematic literature review. Management Decision, ahead-of-print(ahead-of-print). https://doi.org/10.1108/MD-05-2023-0838 Khwaldeh, S., Alkhawaldeh, R. S., Masa’deh, R., AlHadid, I., & Alrowwad, A. (2020). The impact of mobile hotel reservation system on continuous intention to use in Jordan. Tourism and Hospitality Research, 20(3), 358-371. https://doi.org/10.1177/1467358420907176 Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS‐SEM: The inverse square root and gamma‐exponential methods. Information Systems Journal, 28(1), 227-261. https://doi.org/10.1111/isj.12131 Kumar, A., & Gupta, D. (2020). Challenges Within the Industry 4.0 Setup. En A. Nayyar & A. Kumar (Eds.), A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development (pp. 187-205). Springer International Publishing. https://doi.org/10.1007/978-3-030-14544-6_11 Kumar, R., Nilaish, Dr., CMR University, Bangalore, India, V, V., CMR University, Bangalore, India, Rajkumar, Mr., & CMR University, Bangalore, India. (2024). A STUDY ON IMPLEMENTATION OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN BUSINESS AUTOMACHINE. INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN COMMERCE, MANAGEMENT & SOCIAL SCIENCE, 07(01(II)), 206-210. https://doi.org/10.62823/7.1(II).6518 Kumar, S., Lim, W. M., Sivarajah, U., & Kaur, J. (2023). Artificial Intelligence and Blockchain Integration in Business: Trends from a Bibliometric-Content Analysis. Information Systems Frontiers, 25(2), 871-896. Scopus. https://doi.org/10.1007/s10796-022-10279-0 Kurup, S., & Gupta, V. (2022). Factors Influencing the AI Adoption in Organizations. Metamorphosis: A Journal of Management Research, 21(2), 129-139. https://doi.org/10.1177/09726225221124035 Kusmaryono, I., Wijayanti, D., & Maharani, H. R. (2022). Number of Response Options, Reliability, Validity, and Potential Bias in the Use of the Likert Scale Education and Social Science Research: A Literature Review. International Journal of Educational Methodology, 8(4), 625-637. https://doi.org/10.12973/ijem.8.4.625 L. Chen, Z. Qiao, M. Wang, C. Wang, R. Du, & H. E. Stanley. (2018). Which Artificial Intelligence Algorithm Better Predicts the Chinese Stock Market? IEEE Access, 6, 48625-48633. https://doi.org/10.1109/ACCESS.2018.2859809 Ladeira, W. J., Santini, F. D. O., Rasul, T., Cheah, I., Elhajjar, S., Yasin, N., & Akhtar, S. (2024). Big data analytics and the use of artificial intelligence in the services industry: A meta-analysis. Service Industries Journal. Scopus. https://doi.org/10.1080/02642069.2024.2374990 Lagona, F., & Mingione, M. (2024). Copula-based models for correlated circular data (arXiv:2406.04085). arXiv. https://doi.org/10.48550/arXiv.2406.04085 Lahiri, A. (2024). Sociological Implications of the Digital Divide: Exploring Access to Information and Social Inequality in the Age of Artificial Intelligence and Automation. RESEARCH REVIEW International Journal of Multidisciplinary, 9(1), 156-167. Latpate, R., Kshirsagar, J., Kumar Gupta, V., & Chandra, G. (2021). Simple Random Sampling. En R. Latpate, J. Kshirsagar, V. Kumar Gupta, & G. Chandra (Eds.), Advanced Sampling Methods (pp. 11-35). Springer. https://doi.org/10.1007/978-981-16-0622-9_2 Lau, S. L. H., & Abdullah, M. (2024). CONSEPTUAL MODEL ON THE ADOPTION OF CHINESE MOBILE OPERATING SYSTEM WITH ROGERS’ DIFFUSION OF INNOVATIONS THEORY AND ANIMOSITY. Quantum Journal of Social Sciences and Humanities, 5(SI1), Article SI1. https://doi.org/10.55197/qjssh.v5iSI1.565 Lawrence, P. R., & Lorsch, J. W. (1967). Differentiation and integration in complex organizations. Administrative science quarterly, 1-47. Legesse, A., Beshah, B., Berhan, E., & Tesfaye, E. (2024). Exploring the influencing factors of blockchain technology adoption in national quality infrastructure: A Dual-Stage structural equation model and artificial neural network approach using TAM-TOE framework. Cogent Engineering, 11(1). Scopus. https://doi.org/10.1080/23311916.2024.2369220 Li, J., & Jin, X. (2024). The Impact of Artificial Intelligence Adoption Intensity on Corporate Sustainability Performance: The Moderated Mediation Effect of Organizational Change. Sustainability, 16(21), 9350. https://doi.org/10.3390/su16219350 Likert, R. (1932). Escala de Likert. Recuperado de: https://educacion. uncomo. com/articulo/como-utilizar-la …. Liu, D., & Cao, J. (2022). Determinants of Collaborative Robots Innovation Adoption in Small and Medium-Sized Enterprises: An Empirical Study in China. Applied Sciences (Switzerland), 12(19). Scopus. https://doi.org/10.3390/app121910085 Lloyd, C., & Payne, J. (2019). Rethinking country effects: Robotics, AI and work futures in Norway and the UK. New Technology, Work and Employment, 34(3), 208-225. Scopus. https://doi.org/10.1111/ntwe.12149 Martínez Ávila, M., & Fierro Moreno, E. (2018). Aplicación de la técnica PLS-SEM en la gestión del conocimiento: Un enfoque técnico práctico. RIDE. Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 8(16), 130-164. Marzouki, A., Chouikh, A., Mellouli, S., & Haddad, R. (2023). Barriers and actions for the adoption and use of Artificial Intelligence in the public sector. Proceedings of the 16th International Conference on Theory and Practice of Electronic Governance, 94-100. https://doi.org/10.1145/3614321.3614334 Matsepe, N. T., & Van der Lingen, E. (2022). Determinants of emerging technologies adoption in the South African financial sector. South African Journal of Business Management, 53(1). Scopus. https://doi.org/10.4102/sajbm.v53i1.2493 McCarthy, J. F. (1950). The theory of limit design as applied to column analysis. McCarthy, P. J., Hovey, R. J., Ueno, K., & Martell, A. E. (1955). Inner complex chelates. I. Analogs of bisacetylacetoneethylenediimine and its metal chelates1, 2. Journal of the American Chemical Society, 77(22), 5820-5824. McElheran, K., Li, J. F., Brynjolfsson, E., Kroff, Z., Dinlersoz, E., Foster, L., & Zolas, N. (2024). AI adoption in America: Who, what, and where. Journal of Economics & Management Strategy, 33(2), 375-415. https://doi.org/10.1111/jems.12576 Meek, T., Barham, H., Beltaif, N., Kaadoor, A., & Akhter, T. (2016). Managing the ethical and risk implications of rapid advances in artificial intelligence: A literature review. 2016 Portland International Conference on Management of Engineering and Technology (PICMET), 682-693. https://doi.org/10.1109/PICMET.2016.7806752 Mian, S. M., Khan, M. S., Shawez, M., & Kaur, A. (2024). Artificial Intelligence (AI), Machine Learning (ML) & Deep Learning (DL): A Comprehensive Overview on Techniques, Applications and Research Directions. 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), 1404-1409. https://doi.org/10.1109/ICSCSS60660.2024.10625198 Microsoft. (2025, marzo 31). 2 de cada 3 MiPymes en Colombia ya usan inteligencia artificial para ganar productividad, asegurar continuidad y mejorar el servicio, revela estudio de Microsoft. https://news.microsoft.com/es-xl/2-de-cada-3-mipymes-en-colombia-ya-usan-inteligencia-artificial-para-ganar-productividad-asegurar-continuidad-y-mejorar-el-servicio-revela-estudio-de-microsoft/ Midgley, A., & Chrismas, B. (2025). Analysis of quantitative data. En Research Methods in Sports Coaching (2.a ed.). Routledge. Mihai, M.-S. (2023). Analiza implementarii solutiilor IA in sectorul financiar folosind TOE Framework. Audit Financiar, 21(2 (170)), 321-330. Min, S., & Kim, B. (2024). AI Technology Adoption in Corporate IT Network Operations Based on the TOE Model. Digital, 4(4), 947-970. https://doi.org/10.3390/digital4040047 Mirahmadizadeh, A., Delam, H., Seif, M., & Bahrami, R. (2018). Designing, constructing, and analyzing Likert scale data. Journal of Education and Community Health, 5(3), 63-72. Mishra, N. K., Raj, A., Jeyaraj, A., & Gupta, R. (2024). Antecedents and Outcomes of Blockchain Technology Adoption: Meta-Analysis. Journal of Computer Information Systems, 64(3), 342-359. Scopus. https://doi.org/10.1080/08874417.2023.2205370 Mishra, S., Ewing, M. T., & Cooper, H. B. (2022). Artificial intelligence focus and firm performance. Journal of the Academy of Marketing Science, 50(6), 1176-1197. Scopus. https://doi.org/10.1007/s11747-022-00876-5 Moghavvemi, S., Phoong, S. W., & Lee, S. T. (2017). Impact of perceived desirability, perceived feasibility and performance expectancy on use of IT innovation: Technology adoption decisions and use behaviour. http://dr.lib.sjp.ac.lk/handle/123456789/10548 Mukherjee, S., Nagariya, R., Mathiyazhagan, K., Baral, M. M., Pavithra, M. R., & Appolloni, A. (2024). Artificial intelligence-based reverse logistics for improving circular economy performance: A developing country perspective. The International Journal of Logistics Management. https://www.emerald.com/insight/content/doi/10.1108/IJLM-03-2023-0102/full/html Munde, A. (2024). The Machine Learning Pipeline: Algorithms, Applications, and Managerial Implications. En Deep Learning Concepts in Operations Research. Auerbach Publications. Muscalu, E., Iancu, D., & Halmaghi, E.-E. (2016). The influence of the external environment on organizations. Journal of Defense Resources Management, 7(2), 133. Na, S., Heo, S., Han, S., Shin, Y., & Roh, Y. (2022). Acceptance Model of Artificial Intelligence (AI)-Based Technologies in Construction Firms: Applying the Technology Acceptance Model (TAM) in Combination with the Technology–Organisation–Environment (TOE) Framework. Buildings, 12(2). Scopus. https://doi.org/10.3390/buildings12020090 Narain, K., Swami, A., Srivastava, A., & Swami, S. (2019). Evolution and control of artificial superintelligence (ASI): A management perspective. Journal of Advances in Management Research, 16(5), 698-714. Nilsson, N. J. (1985). Artificial intelligence, employment, and income. Human Systems Management, 5(2), 123-135. Scopus. https://doi.org/10.3233/HSM-1985-5205 Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104 Njoroge, J. K., Ongeti, W. J., Kinuu, D., & Kasomi, F. M. (2016). Does external environment influence organizational performance? The case of Kenyan State Corporations. Management and Organizational Studies, 3(3), 41-51. Noor Adinda S.F. Lubis & Muhammad Irwan Padli Nasution. (2023). Optimalisasi Efesiensi Bisnis Organisasi Melalui Pemanfaatan Sistem Dan Teknologi Informasi. Jurnal Teknik Mesin, Industri, Elektro dan Informatika, 2(4), 264-271. https://doi.org/10.55606/jtmei.v2i4.3130 Norvig, P. R., & Intelligence, S. A. (2002). A modern approach. Prentice Hall Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP (2015). An ontology-based adaptive personalized e-learning system, assisted by software agents on cloud storage. Knowledge-Based Systems, 90, 33-48. Nunnally, J. C., & Bernstein, I. H. (1994). The Assessment of Reliability. Psychometric Theory, 3, 248-292. Nyhan, RC, and HA Marlowe.(1997). Development And Psychometric Properties Of The Organizational Trust Inventory. Evaluation Review, 21(5), 614-635. Oamen, T. E. (2023). TECHNOLOGY ACCEPTANCE MODEL (TAM) FOR PHARMACEUTICAL MARKETING EXECUTIVES: VALIDATION AND IMPLICATIONS FOR HUMAN RESOURCE MANAGEMENT. Jurnal Aplikasi Manajemen, 21(4), 876-891. https://doi.org/10.21776/ub.jam.2023.021.04.02 Okolo, C. T. (2023). Towards a Praxis for Intercultural Ethics in Explainable AI (Versión 2). arXiv. https://doi.org/10.48550/ARXIV.2304.11861 Oliveira, T., & Martins, M. F. (2010). Information technology adoption models at Firm Level: Review of literature. Eur. Conf. on Inf. Manag. and Eval., 312-322. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84900811185&partnerID=40&md5=94e968776acd82727117335d45b817fd Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information and Management, 51(5), 497-510. Scopus. https://doi.org/10.1016/j.im.2014.03.006 Paiva, J. (2024). Exploring the Drivers of AI Adoption: A Meta-Analysis of Technological, Organizational and Environmental (TOE) Factors. Research Square. https://doi.org/10.21203/rs.3.rs-5634577/v1 Parra, J. A. B., Núñez, W. N., & Regino, A. F. E. (2024). Artificial Intelligence in Organizations in Colombia. EVOLUTIONARY STUDIES IN IMAGINATIVE CULTURE, 2078-2091. https://doi.org/10.70082/esiculture.vi.1619 Paszkiel, S. (2020). Using Neural Networks for Classification of the Changes in the EEG Signal Based on Facial Expressions. En S. Paszkiel, Analysis and Classification of EEG Signals for Brain–Computer Interfaces (Vol. 852, pp. 41-69). Springer International Publishing. https://doi.org/10.1007/978-3-030-30581-9_7 Patil, D., Rane, N. L., & Rane, J. (2024). Acceptance of ChatGPT and generative artificial intelligence in several business sectors: Key factors, challenges, and implementation strategies. Deep Science Publishing. https://doi.org/10.70593/978-81-981367-8-7 Pelletier, P., Geuna, A., & Souza, D. (2024). Artificial intelligence research in Canadian hospitals: The development of metropolitan competencies. Healthcare Management Forum, 37(6), 445-450. https://doi.org/10.1177/08404704241271218 Pérez, J. L. (2019). Impacto de las tecnologías disruptivas en la percepción remota: Big data, internet de las cosas e inteligencia artificial. UD y la Geomática, 14. Pettersen, L. (2019). Why Artificial Intelligence Will Not Outsmart Complex Knowledge Work. Work, Employment and Society, 33(6), 1058-1067. Scopus. https://doi.org/10.1177/0950017018817489 Phatale, A., & Kaushik, A. (2024). Generative AI Adoption in Automotive Vehicle Technology: Case Study of Custom GPT. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-420. DOI: doi. org/10.47363/JAICC/2024 (3), 400, 2-5. Pillai, R., Sivathanu, B., Mariani, M., Rana, N. P., Yang, B., & Dwivedi, Y. K. (2022). Adoption of AI-empowered industrial robots in auto component manufacturing companies. Production Planning and Control, 33(16), 1517-1533. Scopus. https://doi.org/10.1080/09537287.2021.1882689 Pötsch, J. (2024). Interplay of ISMS and AIMS in context of the EU AI Act (arXiv:2412.18670). arXiv. https://doi.org/10.48550/arXiv.2412.18670 Puttaraju, K. H. (2025). Leading Product-Centric Change: A Strategic Framework for Digital Transformation Success. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-408. DOI: doi. org/10.47363/JEAST/2025 (7), 286, 2-5. Quispe, R., Moreno, Z., & Julca, G. (2024). Technological innovation: Key factors for business success. SCIÉNDO, 27(3), 343-351. https://doi.org/10.17268/sciendo.2024.062 Radif, M., & Hameed, O. M. (2024). AI-DRIVEN INNOVATIONS IN E-LEARNING: TRANSFORMING EDUCATIONAL PARADIGMS FOR ENHANCED LEARNING OUTCOMES. Artseduca, 2024(38), 404-414. Scopus. https://doi.org/10.58262/ArtsEduca.3830 Rahman, M., Ming, T. H., Baigh, T. A., & Sarker, M. (2023). Adoption of artificial intelligence in banking services: An empirical analysis. International Journal of Emerging Markets, 18(10), 4270-4300. Scopus. https://doi.org/10.1108/IJOEM-06-2020-0724 Rashid, Md. M., Hossain, D. M., & Alam, Md. S. (2024). The external organizational environment and its impact on strategic management accounting practices: An empirical investigation. Asian Review of Accounting, 32(4), 646-666. https://doi.org/10.1108/ARA-02-2023-0041 Rawashdeh, A. (2023). The consequences of artificial intelligence: An investigation into the impact of AI on job displacement in accounting. Journal of Science and Technology Policy Management. Scopus. https://doi.org/10.1108/JSTPM-02-2023-0030 Recki, L., Lawo, D., Krauß, V., Pins, D., & Boden, A. (2024). «You Can either Blame Technology or Blame a Person...»—A Conceptual Model of Users’ AI-Risk Perception as a Tool for HCI. Proceedings of the ACM on Human-Computer Interaction, 8(CSCW2), 1-25. https://doi.org/10.1145/3686996 Rico, L. G. (2024). Dimensión geopolítica y de seguridad del cambio climático: Una perspectiva climática de la gobernanza global. ICE, Revista de Economía, 935. https://www.revistasice.com/index.php/ICE/article/view/7792 Rius, A. D. D. M. (2023). Chapter 1: Foundations of artificial intelligence and machine learning. https://www.elgaronline.com/edcollchap/book/9781803926179/book-part-9781803926179-9.xml Rogers, E. (1995). Diffusion of innovations (Fourth Paperback ed.). Rogers, E. M. (1983). Diffusion of innovations (3. ed). Free Press [u.a.]. Rogers, E. M. (2003). The innovation-decision process. Diffusion of innovations, 5, 168-218. ROSLI, W., Sikin, A. M., & Ramli, M. H. (2024). Blockchain Challenges in Halal Food Industry Using Technology-Organization-Environment (TOE) And FMEA Framework. International Journal of Business and Technology Management, 6(1), 357-368. Rouaine, Z., Wynn, M., Kharbouch, O., Aoufi, S. E., & Rouaine, Z. (2025). Technology Innovation and Social and Behavioural Commitment: A Case Study of Digital Transformation in the Moroccan Insurance Industry (2025010332). Preprints. https://doi.org/10.20944/preprints202501.0332.v1 Rudko, I., Bashirpour Bonab, A., Fedele, M., & Formisano, A. V. (2024). New institutional theory and AI: toward rethinking of artificial intelligence in organizations. Journal of Management History. Scopus. https://doi.org/10.1108/JMH-09-2023-0097 Ruehle, C. R. (2020). Understanding the Complex Ethical Landscape of Artificial Intelligence Adoptions [PhD Thesis, University of South Florida]. https://search.proquest.com/openview/c3c856a2c1c819ce8cfe0583c2751224/1?pq-origsite=gscholar&cbl=18750&diss=y Saini, A., Dhuriya, G., Jain, A., & Mishra, A. (2024). Machine Learning Algorithms and Applications. En Artificial Intelligence for Precision Agriculture. Auerbach Publications. Salah, O. H., & Ayyash, M. M. (2024). E-commerce adoption by SMEs and its effect on marketing performance: An extended of TOE framework with ai integration, innovation culture, and customer tech-savviness. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100183. https://doi.org/10.1016/j.joitmc.2023.100183 Salahshour Rad, M., Nilashi, M., & Mohamed Dahlan, H. (2018). Information technology adoption: A review of the literature and classification. Universal Access in the Information Society, 17(2), 361-390. https://doi.org/10.1007/s10209-017-0534-z Salazar-Tabima, J. (2022). Toma de decisiones con analítica académica para la efectividad educativa y el rendimiento organizacional en instituciones de educación superior en Colombia. Universidad San Buenaventura Cali. Saleem, F. (2024). Classification of Environmental Strategies by Corporations. Journal of Ecohumanism, 3(7), Article 7. https://doi.org/10.62754/joe.v3i7.4233 Salgado-Reyes, N., Nicolalde-Rodriguez, D., Meza, J., & Vaca-Cardenas, M. (2024). Artificial Intelligence and Its Impact on Digital Transformation Processes. En Á. Rocha, C. H. Fajardo-Toro, & J. M. R. Rodríguez (Eds.), Developments and Advances in Defense and Security (Vol. 380, pp. 37-44). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8894-5_4 Salman, H. A., Ahmad, M. A., Ibrahim, R., & Mahmood, J. (2025). Systematic analysis of generative AI tools integration in academic research and peer review. Online Journal of Communication and Media Technologies, 15(1), e202502. https://doi.org/10.30935/ojcmt/15832 Sandeep, M. M., Lavanya, V., & Balakrishnan, J. (2025). Leveraging AI in recruitment: Enhancing intellectual capital through resource-based view and dynamic capability framework. Journal of Intellectual Capital. https://www.emerald.com/insight/content/doi/10.1108/JIC-05-2024-0155/full/html Santos, I. L. dos, Santos, R. C. dos, & Junior, D. de S. S. (2019). Análise da Indústria 4.0 como Elemento Rompedor na Administração de Produção. Future Studies Research Journal: Trends and Strategies, 11(1), 48-64. https://doi.org/10.24023/FutureJournal/2175-5825/2019.v11i1.381 Sari, M. M., Pranata, S., Amroni, Raihan, & Sulaiman, V. D. (2024). Innovative Economic Development in Developing Countries through AI and Tackling Globalization. 2024 3rd International Conference on Creative Communication and Innovative Technology (ICCIT), 1-6. https://doi.org/10.1109/ICCIT62134.2024.10701223 Sarioguz, O., & Miser, E. (2024). AI-powered business model innovation: Analyzing the implications of generative AI on value creation, operational efficiency and market dynamics. World Journal of Advanced Engineering Technology and Sciences, 13(2), 215-228. https://doi.org/10.30574/wjaets.2024.13.2.0564 Sarstedt, M., Hair, J. F., Pick, M., Liengaard, B. D., Radomir, L., & Ringle, C. M. (2022). Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychology & Marketing, 39(5), 1035-1064. https://doi.org/10.1002/mar.21640 Sayari, K., Jannathl Firdouse, M. K., & Al Abri, F. (2025). Artificial intelligence and machine learning adoption in the financial sector: A holistic review. IAES International Journal of Artificial Intelligence (IJ-AI), 14(1), 19. https://doi.org/10.11591/ijai.v14.i1.pp19-31 Shafique, F. (2015). Where is information society, it is lost in the knowledge society: Survival issues for developing countries in the knowledge society and need of knowledge management initiatives in the education sector. 305-310. Shahid, M. K., Zia, T., Bangfan, L., Iqbal, Z., & Ahmad, F. (2024). Exploring the relationship of psychological factors and adoption readiness in determining university teachers’ attitude on AI-based assessment systems. International Journal of Management Education, 22(2). Scopus. https://doi.org/10.1016/j.ijme.2024.100967 Shahvaroughi Farahani, M., & Ghasemi, G. (2024). Artificial Intelligence and Inequality: Challenges and Opportunities. Qeios. https://doi.org/10.32388/7HWUZ2 Shahzad, A., Bin Zakaria, M. S. A., Kotzab, H., Makki, M. A. M., Hussain, A., & Fischer, J. (2023). Adoption of fourth industrial revolution 4.0 among Malaysian small and medium enterprises (SMEs). Humanities and Social Sciences Communications, 10(1), 693. https://doi.org/10.1057/s41599-023-02076-0 Shaik, A. S., Alshibani, S. M., Jain, G., Gupta, B., & Mehrotra, A. (2024). Artificial intelligence (AI)-driven strategic business model innovations in small- and medium-sized enterprises. Insights on technological and strategic enablers for carbon neutral businesses. Business Strategy and the Environment, 33(4), 2731-2751. Scopus. https://doi.org/10.1002/bse.3617 Shakdwipee, P., Agarwal, K., Kunwar, H., & Singh, S. (2023). Artificial Intelligence in Finance and Accounting: Opportunities and Challenges. En Tuba M., Akashe S., & Joshi A. (Eds.), Lect. Notes Networks Syst.: Vol. 765 LNNS (pp. 165-177). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-99-5652-4_17 Sharıfy, A. J. (2024). Positive and Negative Effects of Technology on Organization Culture. Akademik Tarih ve Düşünce Dergisi, 11(1), Article 1. https://doi.org/10.46868/atdd.2024.653 Sharma, R., Shishodia, A., Gunasekaran, A., Min, H., & Munim, Z. H. (2022). The role of artificial intelligence in supply chain management: Mapping the territory. International Journal of Production Research, 60(24), 7527-7550. Scopus. https://doi.org/10.1080/00207543.2022.2029611 Sharma, S. (2023). Artificial intelligence for fracture diagnosis in orthopedic X-rays: Current developments and future potential. SICOT-J, 9. Scopus. https://doi.org/10.1051/sicotj/2023018 Sharma, S., Singh, G., Islam, N., & Dhir, A. (2024). Why Do SMEs Adopt Artificial Intelligence-Based Chatbots? IEEE Transactions on Engineering Management, 71, 1773-1786. https://doi.org/10.1109/TEM.2022.3203469 Sharmila, V. (2024). A study on digital literacy of rural women based on their educational qualification. GRT Journal of Education, Science and Technology, 2(2), 52-56. Simion, P.-S., Ciornei, L., Todirica, I. C., Petcu, V., & Joita-Pacureanu, M. (2023). A Decade of Bibliometric Analysis of Biodiversity. Annals of «Valahia» University of Târgovişte. Agriculture, 15(2), 43-49. https://doi.org/10.2478/agr-2023-0017 Siradhana, N. K., & Arora, R. G. (2024). Examining the Influence of Artificial Intelligence Implementation in HRM Practices Using T-O-E Model. Vision: The Journal of Business Perspective, 09722629241231458. https://doi.org/10.1177/09722629241231458 Smit, D., Eybers, S., Van Der Merwe, A., & Wies, R. (2023). Exploring the Suitability of the TOE Framework and DOI Theory Towards Understanding AI Adoption as Part of Sociotechnical Systems. En A. Gerber & M. Coetzee (Eds.), South African Institute of Computer Scientists and Information Technologists (Vol. 1878, pp. 228-240). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-39652-6_15 Smuha, N. A. (2019). The EU Approach to Ethics Guidelines for Trustworthy Artificial Intelligence. Computer Law Review International, 20(4), 97-106. https://doi.org/10.9785/cri-2019-200402 Spearman, C. (1904). «General Intelligence,» Objectively Determined and Measured. The American Journal of Psychology, 15(2), 201. https://doi.org/10.2307/1412107 Stansbury, M. (2003). Access, skills, economic opportunities, and democratic participation: Connecting four facets of the digital divide through research. Proceedings of the Annual Conference of CAIS/Actes du congrès annuel de l’ACSI. http://journals.library.ualberta.ca/ojs.cais-acsi.ca/index.php/cais-asci/article/view/534 Streukens, S., & Leroi-Werelds, S. (2023). Multicollinearity: An Overview and Introduction of Ridge PLS-SEM Estimation. En H. Latan, J. F. Hair, & R. Noonan (Eds.), Partial Least Squares Path Modeling (pp. 183-207). Springer International Publishing. https://doi.org/10.1007/978-3-031-37772-3_7 Sundaram, A., & Wesselbaum, D. (2024). Economic development reloaded: The AI revolution in developing nations. New Zealand Economic Papers, 1-7. https://doi.org/10.1080/00779954.2024.2439955 Suryani, U., Arief, M., Bramantoro, S., & Hamsal, M. (2022). THE IMPACT OF DIGITAL LITERACY AND E-COMMERCE ADOPTION WITH O2O BUSINESS ADOPTION ON THE PERFORMANCE OF SMALL AND MEDIUM ENTERPRISES. International Journal of eBusiness and eGovernment Studies, 14(2), 199-223. Scopus. https://doi.org/10.34109/ijebeg.202214130 Tantivejakul, N., Chantharasombat, J., & Kongpolphrom, W. (2024). Voices of the Future: Exploring Students’ Views on the Use of GenAI in Academic and Professional PR Writing. LEARN Journal: Language Education and Acquisition Research Network, 17(2), 511-537. Scopus. Tarka, P. (2018). An overview of structural equation modeling: Its beginnings, historical development, usefulness and controversies in the social sciences. Quality & Quantity, 52(1), 313-354. https://doi.org/10.1007/s11135-017-0469-8 Taylor, A. (2021). Organisational Structures Influence Telehealth Services. En A. Taylor, Healthcare Technology in Context (pp. 121-139). Springer Singapore. https://doi.org/10.1007/978-981-16-4075-9_6 Teh, R., Subramaniam, A., Ho, J. A., & Basha, N. K. (2024). The mediation role of top management support in the adoption of cloud computing in Malaysian SMEs. International Journal of Management and Enterprise Development, 23(1), 73-96. Scopus. https://doi.org/10.1504/IJMED.2024.138452 Tornatzky, L., & Fleischer, M. (1990). The process of technology innovation, Lexington, MA. Tornatzky, L. G., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on engineering management, 1, 28-45. Torres Chipana, A., Espinoza Rivas, G. R., Zuloaga Candia, P. R., & Rimascca Rodríguez, I. K. (2024). Alfabetización digital en docentes de educación superior. Revista InveCom, 4(2). https://ve.scielo.org/scielo.php?pid=S2739-00632024000200164&script=sci_arttext Tortoise. (2024, 19 de septiembre). Ranking Table. https://www.tortoisemedia.com/data/global-ai#rankings Turing, A. (1950). Computing, Machinery and Intelligence. Mind, 59(236), 433-460. https://doi.org/10.1093/mind/LIX.236.433Ulmanen, J., & Bergek, A. (2021a). Influences of technological and sectoral contexts on technological innovation systems. Environmental Innovation and Societal Transitions, 40, 20-39. https://doi.org/10.1016/j.eist.2021.04.007 Ulmanen, J., & Bergek, A. (2021b). Influences of technological and sectoral contexts on technological innovation systems. Environmental Innovation and Societal Transitions, 40, 20-39. https://doi.org/10.1016/j.eist.2021.04.007 Utterback, J. M. (1971). The Process of Technological Innovation Within the Firm. Academy of Management Journal, 14(1), 75-88. https://doi.org/10.5465/254712 Vargas, F., & Muente, A. (2025). Artificial Intelligence Framework for the Inter-American Development Group. IDB Publications. https://doi.org/10.18235/0013377 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. Verganti, R., Vendraminelli, L., & Iansiti, M. (2020). Innovation and Design in the Age of Artificial Intelligence. Journal of Product Innovation Management, 37(3), 212-227. https://doi.org/10.1111/jpim.12523 Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. Journal of the academy of marketing science, 44, 119-134. Wach, K., Duong, C. D., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J., & Ziemba, E. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(2), 7-30. Scopus. https://doi.org/10.15678/EBER.2023.110201 Werts, C. E., Linn, R. L., & Jöreskog, K. G. (1974). Intraclass Reliability Estimates: Testing Structural Assumptions. Educational and Psychological Measurement, 34(1), 25-33. https://doi.org/10.1177/001316447403400104 Widodo, K. P., Rachmawati, A., & WIjayanti, L. E. (2022). Using the Technology Acceptance Model to Analyze Information System Performance. International Journal of Business, Humanities, Education and Social Sciences (IJBHES), 4(2), 72-77. https://doi.org/10.46923/ijbhes.v4i2.198 Williams, L. J., Vandenberg, R. J., & Edwards, J. R. (2009). 12 Structural Equation Modeling in Management Research: A Guide for Improved Analysis. Academy of Management Annals, 3(1), 543-604. https://doi.org/10.5465/19416520903065683 Willits, F. K., Theodori, G. L., & Luloff, A. E. (2016). Another look at Likert scales. Journal of Rural Social Sciences, 31(3), 6. Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial Intelligence and the Public Sector—Applications and Challenges. International Journal of Public Administration, 42(7), 596-615. https://doi.org/10.1080/01900692.2018.1498103 Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample Size Requirements for Structural Equation Models: An Evaluation of Power, Bias, and Solution Propriety. Educational and Psychological Measurement, 73(6), 913-934. https://doi.org/10.1177/0013164413495237 Wong, L.-W., Leong, L.-Y., Hew, J.-J., Tan, G. W.-H., & Ooi, K.-B. (2020). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. International Journal of Information Management, 52, 101997. https://doi.org/10.1016/j.ijinfomgt.2019.08.005 Wright, S. (1918). On the nature of size factors. Genetics, 3(4), 367. Xu, W., & Liu, C. (2024). External environment uncertainty, key resources acquisition, and corporate technological innovation. Managerial and Decision Economics, 45(1), 4-18. https://doi.org/10.1002/mde.3979 Yang, J., Chu, S.-C., & Cao, Y. (2024). Adopting AI Advertising Creative Technology in China: A Mixed Method Study Through the Technology-Organization-Environment (TOE) Framework, Perceived Value and Ethical Concerns. Journal of Current Issues & Research in Advertising, 0(0), 1-24. https://doi.org/10.1080/10641734.2024.2403485 Yang, K. (2024). Evolution of Quality Through Industrial Revolutions. https://ieeexplore.ieee.org/abstract/document/10529793/ Yoo, S.-K., & Kim, B.-Y. (2018). A decision-making model for adopting a cloud computing system. Sustainability (Switzerland), 10(8). Scopus. https://doi.org/10.3390/su10082952 Yunis, M., Tarhini, A., & Kassar, A. (2018). The role of ICT and innovation in enhancing organizational performance: The catalysing effect of corporate entrepreneurship. Journal of Business Research, 88, 344-356. https://doi.org/10.1016/j.jbusres.2017.12.030 Yunita, T., Sasmoko, Bandur, A., & Alamsjah, F. (2023). Technological Capacity and Organizational Culture: The Importance of Organizational Ambidexterity in the Banking Sector. International Journal of Professional Business Review, 8(5), e01479. https://doi.org/10.26668/businessreview/2023.v8i5.1479 Zeebaree, M., Ismael, G. Y., Nakshabandi, O. A., Saleh, S. S., & Aqel, M. (2020). Impact of innovation technology in enhancing organizational management. Studies of Applied Economics, 38(4). https://ojs.ual.es/ojs/index.php/eea/article/view/3970 Zhao, Z., Omar, N. A., & Zaki, H. O. (2025). Appraisal factors of sustainable purchase intentions in online shopping platform context: PLS-SEM with theory extensions. Journal of Retailing and Consumer Services, 82, 104118. https://doi.org/10.1016/j.jretconser.2024.104118info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/CaliAdministración - Inteligencia artificial (IA)Toma de decisiones - Innovacion empresrialSector empresarial - Nuevas tecnologias650 - Gerencia y servicios auxiliares::658 - Gerencia generalAdopción de Inteligencia ArtificialContexto tecnológicoFactores organizacionalesFactores ambientalesMercados emergentesAdopción de inteligencia artificial (IA) en entornos empresariales : El rol mediador del contexto organizacional y ambiental en la relación entre el contexto tecnológico y la intención de adopción de IAArtificial intelligence (AI) adoption in business environments: The mediating role of organizational and environmental context in the relationship between technological context and AI adoption intentionTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/acceptedVersionEmpresas, Docentes, Estudiantes, Comunidad cientifica colombianaPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-82079https://bibliotecadigital.usb.edu.co/bitstreams/7ed0404a-20ab-48f1-9b56-19fc25f85a7f/downloadce8fd7f912f132cbeb263b9ddc893467MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bibliotecadigital.usb.edu.co/bitstreams/ba203ba3-1930-43a0-8d09-c0db307ccf36/download3b6ce8e9e36c89875e8cf39962fe8920MD56ORIGINALFormato_Autorizacion_Publicacion_Repositorio_USBCol (1).pdfFormato_Autorizacion_Publicacion_Repositorio_USBCol (1).pdfapplication/pdf238967https://bibliotecadigital.usb.edu.co/bitstreams/5df04f3c-66ee-4fb9-92af-a636c76b7eb8/download3af3c9db7d989cdabaf51e084493e0f5MD57Adopcion_Inteligencia Artificial_Fernandez_2025.pdfAdopcion_Inteligencia Artificial_Fernandez_2025.pdfapplication/pdf2268650https://bibliotecadigital.usb.edu.co/bitstreams/f60da5a3-cdf9-43e5-b2d1-07b020cf9815/downloadc9daf32a6ffa464a10ac74cad508b7cdMD58TEXTFormato_Autorizacion_Publicacion_Repositorio_USBCol (1).pdf.txtFormato_Autorizacion_Publicacion_Repositorio_USBCol (1).pdf.txtExtracted texttext/plain7547https://bibliotecadigital.usb.edu.co/bitstreams/e3ce5f3d-8d75-417f-9e3d-eb1455a51190/download53c3aec42294fb987ad46c143f1cb18eMD59Adopcion_Inteligencia Artificial_Fernandez_2025.pdf.txtAdopcion_Inteligencia Artificial_Fernandez_2025.pdf.txtExtracted texttext/plain101918https://bibliotecadigital.usb.edu.co/bitstreams/646b7d34-ce2e-49f4-ae60-37ab75fd6552/download6c2c22d422787eeee7a1fa0733bb04d4MD511THUMBNAILFormato_Autorizacion_Publicacion_Repositorio_USBCol (1).pdf.jpgFormato_Autorizacion_Publicacion_Repositorio_USBCol (1).pdf.jpgGenerated Thumbnailimage/jpeg15603https://bibliotecadigital.usb.edu.co/bitstreams/b7baa710-1360-498a-ae05-8768766cb36f/downloadbdee61b154248b86230ad8aef070ca58MD510Adopcion_Inteligencia Artificial_Fernandez_2025.pdf.jpgAdopcion_Inteligencia Artificial_Fernandez_2025.pdf.jpgGenerated Thumbnailimage/jpeg6851https://bibliotecadigital.usb.edu.co/bitstreams/86283e52-5fc1-4657-a352-6ac12fb8ddc2/download14f03682fc3f699564a86b88a3bdf6d3MD51210819/25528oai:bibliotecadigital.usb.edu.co:10819/255282025-07-25 04:32:21.218http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPlJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5JVkVSU0lEQUQgREUgU0FOIEJVRU5BVkVOVFVSQSAtIENPTE9NQklBPC9oMz4KPHA+ClTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBnZW5lcmFsIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWw8L3A+PC9jZW50ZXI+CjxQIEFMSUdOPWNlbnRlcj4KUG9yIG1lZGlvIGRlIGVzdGUgZm9ybWF0byBtYW5pZmllc3RvIG1pIHZvbHVudGFkIGRlIEFVVE9SSVpBUiBhIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIFNlZGUgQm9nb3TDoSB5IDxCUj5TZWNjaW9uYWxlcyBNZWRlbGzDrW4sIENhbGkgeSBDYXJ0YWdlbmEsIGxhIGRpZnVzacOzbiBlbiB0ZXh0byBjb21wbGV0byBkZSBtYW5lcmEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gZW4gZWw8QlI+IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgZWwgZG9jdW1lbnRvIGFjYWTDqW1pY28gLSBpbnZlc3RpZ2F0aXZvIG9iamV0byBkZSBsYSBwcmVzZW50ZSA8QlI+YXV0b3JpemFjacOzbiwgY29uIGZpbmVzIGVzdHJpY3RhbWVudGUgZWR1Y2F0aXZvcywgY2llbnTDrcKtZmljb3MgeSBjdWx0dXJhbGVzLCBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgPEJSPiAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGRlcmVjaG9zPEJSPiBkZSBhdXRvci4gPEJSPiAKIApDb21vIGF1dG9yIG1hbmlmaWVzdG8gcXVlIGVsIHByZXNlbnRlIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBlcyBvcmlnaW5hbCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyA8QlI+IHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrcKtYSB5IHBvc2VvIGxhIHRpdHVsYXJpZGFkIDxCUj4gc29icmUgbGEgbWlzbWEuIExhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZGUgbmluZ3VuYSB1dGlsaXphY2nDs24gaW5kZWJpZGEgZGVsIGRvY3VtZW50byA8QlI+cG9yIHBhcnRlIGRlIHRlcmNlcm9zIHkgc2Vyw6EgZXhjbHVzaXZhbWVudGUgbWkgcmVzcG9uc2FiaWxpZGFkIGF0ZW5kZXIgcGVyc29uYWxtZW50ZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSBwdWVkYTxCUj4gcHJlc2VudGFyc2UgYSBsYSBVbml2ZXJzaWRhZC4gPEJSPgogCkF1dG9yaXpvIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGFsIGZvcm1hdG8gcXVlIDxCUj5yZXF1aWVyYSAoaW1wcmVzbywgZGlnaXRhbCwgZWxlY3Ryw7NuaWNvIG8gY3VhbHF1aWVyIG90cm8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgbyBjb24gZmluZXMgZGU8QlI+IHByZXNlcnZhY2nDs24gZGlnaXRhbC4gPEJSPgogCkVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHBvc3Rlcmlvcm1lbnRlIGxhIG9icmEsIGVuIGZvcm1hIHRvdGFsIG8gPEJSPnBhcmNpYWwsIHBvciBsbyBjdWFsIHBvZHLDqSwgZGFuZG8gYXZpc28gcG9yIGVzY3JpdG8gY29uIG5vIG1lbm9zIGRlIHVuIG1lcyBkZSBhbnRlbGFjacOzbiwgc29saWNpdGFyIHF1ZSBlbCA8QlI+ZG9jdW1lbnRvIGRlamUgZGUgZXN0YXIgZGlzcG9uaWJsZSBwYXJhIGVsIHDDumJsaWNvIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgPEJSPiBhc8Otwq0gbWlzbW8sIGN1YW5kbyBzZSByZXF1aWVyYSBwb3IgcmF6b25lcyBsZWdhbGVzIHkvbyByZWdsYXMgZGVsIGVkaXRvciBkZSB1bmEgcmV2aXN0YS4gPEJSPjwvUD4K |
