Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess

This paper shows a comparison of three different empirical correlations found in the literature for the estimation of the oxygen transfer coefficient in an aeration pilot plant. To this end, a phenomenological-based semi-physical model (PBSM) of the aeration pilot plant is used. This evaluation test...

Full description

Autores:
Ruiz-Botero, Maribel
Zuluaga-Bedoya, Christian
Ospina-Alarcon, Manuel
Garcia-Tirado, Jose
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/27366
Acceso en línea:
https://hdl.handle.net/10819/27366
https://doi.org/10.21500/20275846.2618
Palabra clave:
Aeration
Bioprocess
Estimation
Mass transfer coefficient
Oxygen scavenger
Rights
openAccess
License
Ingenierías USBmed - 2016
id SANBUENAV2_b53778799545c3259400aaa300710988
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/27366
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
dc.title.translated.eng.fl_str_mv Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
spellingShingle Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
Aeration
Bioprocess
Estimation
Mass transfer coefficient
Oxygen scavenger
title_short Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title_full Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title_fullStr Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title_full_unstemmed Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title_sort Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
dc.creator.fl_str_mv Ruiz-Botero, Maribel
Zuluaga-Bedoya, Christian
Ospina-Alarcon, Manuel
Garcia-Tirado, Jose
dc.contributor.author.spa.fl_str_mv Ruiz-Botero, Maribel
Zuluaga-Bedoya, Christian
Ospina-Alarcon, Manuel
Garcia-Tirado, Jose
dc.subject.eng.fl_str_mv Aeration
Bioprocess
Estimation
Mass transfer coefficient
Oxygen scavenger
topic Aeration
Bioprocess
Estimation
Mass transfer coefficient
Oxygen scavenger
description This paper shows a comparison of three different empirical correlations found in the literature for the estimation of the oxygen transfer coefficient in an aeration pilot plant. To this end, a phenomenological-based semi-physical model (PBSM) of the aeration pilot plant is used. This evaluation tested the relationship between empirical correlations and the oxygen transfer phenomenon from the gas phase to the liquid phase was assessed. The results show that empirical correlations of the oxygen transfer coefficient found in the literature are not based on the knowledge of the physical phenomena, and hence are not suitable to generalize the transference mechanism in other similar processes.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2016-10-04T00:00:00Z
2025-08-21T22:04:35Z
dc.date.available.none.fl_str_mv 2016-10-04T00:00:00Z
2025-08-21T22:04:35Z
dc.date.issued.none.fl_str_mv 2016-10-04
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20275846.2618
dc.identifier.eissn.none.fl_str_mv 2027-5846
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/27366
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20275846.2618
identifier_str_mv 10.21500/20275846.2618
2027-5846
url https://hdl.handle.net/10819/27366
https://doi.org/10.21500/20275846.2618
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/2618/2383
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2016 : Ingenierías USBMed
dc.relation.citationendpage.none.fl_str_mv 20
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 14
dc.relation.citationvolume.spa.fl_str_mv 7
dc.relation.ispartofjournal.spa.fl_str_mv Ingenierías USBMed
dc.relation.references.eng.fl_str_mv L. Åmand, “Control of aeration systems in activated sludge processes – a review,” IVL Swedish Environ. Res. Institute/Department Inf. Technol. Uppsala Univ. Uppsala, Sweden, pp. 1–19, 2011. [2] A. Amicarelli, F. Di Sciascio, J. M. Toibero, and H. Alvarez, “Including dissolved oxygen dynamics into the Bt δ -Endotoxins Production process model and its application to process control,” Brazilian J. Chem. Eng., vol. 27, no. 01, pp. 41–62, 2010. [3] D. M. Atia, F. H. Fahmy, N. M. Ahmed, and H. T. Dorrah, “Design and Control Strategy of Diffused Air Aeration System,” World Acad. Sci. Eng. Technol., vol. 6, no. 3, pp. 666–670, 2012. [4] L. Åmand, G. Olsson, and B. Carlsson, “Aeration control - A review,” Water Sci. Technol., vol. 67, pp. 2374–2398, 2013. [5] H. Álvarez, R. Lamanna, P. Vega, and S. Revollar, “Metodología para la Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a una Sulfitadora de Jugo de Caña de Azúcar,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 6, no. 3, pp. 10–20, 2009. [6] M. A. Kelland, Production Chemicals for the Oil and Gas Industry, Second Edition. CRC Press, 2014. [7] P. Hui and H. Palmer, “Uncatalyzed oxidation of aqueous sodium sulfite and its ability to simulate bacterial respiration,” Biotechnol. Bioeng., vol. 37, pp. 392–396, 1991. [8] Y. Shi, X. Zhan, L. Ma, L. Li, and C. Li, “Evaluation of antioxidants using oxidation reaction rate constants,” Front. Chem. China, vol. 2, no. 2, pp. 140–145, 2007. [9] P. M. Wilkinson, B. Doldersum, P. H. M. R. Cramers, and L. L. Van Dierendonck, “The kinetics of uncatalyzed sodium sulfite oxidation,” Chem. Eng. Sci., vol. 48, no. 5, pp. 933–941, 1993. [10] R. Hermann, N. Walther, U. Maier, and J. Buchs, “Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation,” Biotechnol. Bioeng., vol. 74, no. 5, pp. 355–363, 2001. [11] E. L. Schierholz, J. S. Gulliver, S. C. Wilhelms, and H. E. Henneman, “Gas transfer from air diffusers,” Water Res., vol. 40, pp. 1018–1026, 2006. [12] K. K. Al-Ahmady, “Mathematical Model for Calculating Oxygen Mass Transfer Coefficient in Diffused Air Systems,” Al-Rafadain Eng. J., vol. 19, no. 4, pp. 43–54, 2011. [13] E. Pittoors, Y. Guo, and S. W. H. Van Hulle, “Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks,” Chem. Eng. J., vol. 243, pp. 51–59, 2014. [14] M. Moltzer, “Analysis of Robust Stability of Model Predictive Control for Biological Wastewater Treatment Plants,” Eindhoven University of Technology, Eindhoven, Holanda, 2008. [15] M. Henze, W. Gujer, T. Mino, and M. C. M. van Loosdrecht, “Activated Sludge Models ASM1, ASM2, ASM2d and ASM3,” IWA Publ., p. 121, 2000.
dc.rights.eng.fl_str_mv Ingenierías USBmed - 2016
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Ingenierías USBmed - 2016
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.eng.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2618
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/d23b0761-c065-4b42-919f-e5d104f3bd35/download
bitstream.checksum.fl_str_mv 962b3b29fa44b51b24bfb0dbe830c315
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053628549234688
spelling Ruiz-Botero, MaribelZuluaga-Bedoya, ChristianOspina-Alarcon, ManuelGarcia-Tirado, Jose2016-10-04T00:00:00Z2025-08-21T22:04:35Z2016-10-04T00:00:00Z2025-08-21T22:04:35Z2016-10-04This paper shows a comparison of three different empirical correlations found in the literature for the estimation of the oxygen transfer coefficient in an aeration pilot plant. To this end, a phenomenological-based semi-physical model (PBSM) of the aeration pilot plant is used. This evaluation tested the relationship between empirical correlations and the oxygen transfer phenomenon from the gas phase to the liquid phase was assessed. The results show that empirical correlations of the oxygen transfer coefficient found in the literature are not based on the knowledge of the physical phenomena, and hence are not suitable to generalize the transference mechanism in other similar processes.application/pdf10.21500/20275846.26182027-5846https://hdl.handle.net/10819/27366https://doi.org/10.21500/20275846.2618engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/2618/2383Núm. 2 , Año 2016 : Ingenierías USBMed202147Ingenierías USBMedL. Åmand, “Control of aeration systems in activated sludge processes – a review,” IVL Swedish Environ. Res. Institute/Department Inf. Technol. Uppsala Univ. Uppsala, Sweden, pp. 1–19, 2011. [2] A. Amicarelli, F. Di Sciascio, J. M. Toibero, and H. Alvarez, “Including dissolved oxygen dynamics into the Bt δ -Endotoxins Production process model and its application to process control,” Brazilian J. Chem. Eng., vol. 27, no. 01, pp. 41–62, 2010. [3] D. M. Atia, F. H. Fahmy, N. M. Ahmed, and H. T. Dorrah, “Design and Control Strategy of Diffused Air Aeration System,” World Acad. Sci. Eng. Technol., vol. 6, no. 3, pp. 666–670, 2012. [4] L. Åmand, G. Olsson, and B. Carlsson, “Aeration control - A review,” Water Sci. Technol., vol. 67, pp. 2374–2398, 2013. [5] H. Álvarez, R. Lamanna, P. Vega, and S. Revollar, “Metodología para la Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a una Sulfitadora de Jugo de Caña de Azúcar,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 6, no. 3, pp. 10–20, 2009. [6] M. A. Kelland, Production Chemicals for the Oil and Gas Industry, Second Edition. CRC Press, 2014. [7] P. Hui and H. Palmer, “Uncatalyzed oxidation of aqueous sodium sulfite and its ability to simulate bacterial respiration,” Biotechnol. Bioeng., vol. 37, pp. 392–396, 1991. [8] Y. Shi, X. Zhan, L. Ma, L. Li, and C. Li, “Evaluation of antioxidants using oxidation reaction rate constants,” Front. Chem. China, vol. 2, no. 2, pp. 140–145, 2007. [9] P. M. Wilkinson, B. Doldersum, P. H. M. R. Cramers, and L. L. Van Dierendonck, “The kinetics of uncatalyzed sodium sulfite oxidation,” Chem. Eng. Sci., vol. 48, no. 5, pp. 933–941, 1993. [10] R. Hermann, N. Walther, U. Maier, and J. Buchs, “Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation,” Biotechnol. Bioeng., vol. 74, no. 5, pp. 355–363, 2001. [11] E. L. Schierholz, J. S. Gulliver, S. C. Wilhelms, and H. E. Henneman, “Gas transfer from air diffusers,” Water Res., vol. 40, pp. 1018–1026, 2006. [12] K. K. Al-Ahmady, “Mathematical Model for Calculating Oxygen Mass Transfer Coefficient in Diffused Air Systems,” Al-Rafadain Eng. J., vol. 19, no. 4, pp. 43–54, 2011. [13] E. Pittoors, Y. Guo, and S. W. H. Van Hulle, “Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks,” Chem. Eng. J., vol. 243, pp. 51–59, 2014. [14] M. Moltzer, “Analysis of Robust Stability of Model Predictive Control for Biological Wastewater Treatment Plants,” Eindhoven University of Technology, Eindhoven, Holanda, 2008. [15] M. Henze, W. Gujer, T. Mino, and M. C. M. van Loosdrecht, “Activated Sludge Models ASM1, ASM2, ASM2d and ASM3,” IWA Publ., p. 121, 2000.Ingenierías USBmed - 2016info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2618AerationBioprocessEstimationMass transfer coefficientOxygen scavengerComparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocessComparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocessArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2765https://bibliotecadigital.usb.edu.co/bitstreams/d23b0761-c065-4b42-919f-e5d104f3bd35/download962b3b29fa44b51b24bfb0dbe830c315MD5110819/27366oai:bibliotecadigital.usb.edu.co:10819/273662025-08-21 17:04:35.606https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com