TuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrapping

Ilustraciones a color, tablas

Autores:
Marín Moreno, Miguel Ángel
Restrepo Martínez, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/25458
Acceso en línea:
https://hdl.handle.net/10819/25458
Palabra clave:
Aplicaciones informáticas
Aplicaciones multimedia
Aplicaciones web
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
Machine learning
Web scraping
Recomendaciones personalizadas
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id SANBUENAV2_a97095339f333047e01141cbc9f85c1a
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/25458
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv TuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrapping
title TuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrapping
spellingShingle TuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrapping
Aplicaciones informáticas
Aplicaciones multimedia
Aplicaciones web
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
Machine learning
Web scraping
Recomendaciones personalizadas
title_short TuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrapping
title_full TuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrapping
title_fullStr TuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrapping
title_full_unstemmed TuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrapping
title_sort TuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrapping
dc.creator.fl_str_mv Marín Moreno, Miguel Ángel
Restrepo Martínez, Santiago
dc.contributor.advisor.none.fl_str_mv Dinas, Simena
Marin Montealegre, Kelly Daniella
dc.contributor.author.none.fl_str_mv Marín Moreno, Miguel Ángel
Restrepo Martínez, Santiago
dc.contributor.jury.none.fl_str_mv Hidalgo Suárez, Carlos Giovanny
dc.contributor.researchgroup.none.fl_str_mv Grupo de Investigación Laboratorio de Investigación para el Desarrollo de la Ingeniería de Software (LIDIS) (Cali)
dc.subject.armarc.none.fl_str_mv Aplicaciones informáticas
Aplicaciones multimedia
Aplicaciones web
topic Aplicaciones informáticas
Aplicaciones multimedia
Aplicaciones web
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
Machine learning
Web scraping
Recomendaciones personalizadas
dc.subject.ddc.none.fl_str_mv 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.proposal.eng.fl_str_mv Machine learning
Web scraping
dc.subject.proposal.spa.fl_str_mv Recomendaciones personalizadas
description Ilustraciones a color, tablas
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-14T17:12:55Z
dc.date.available.none.fl_str_mv 2025-07-14T17:12:55Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Restrepo, S, Marín, M, (2025) “TuMI: Desarrollo de una Herramienta Prototipo para la Recomendación Personalizada de Motocicletas Usando Machine Learning y Web Scrapping”. Trabajo de grado Ingeniería de Sistemas, Universidad de San Buenaventura Cali, Facultad de Ingeniería, 2025
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/25458
identifier_str_mv Restrepo, S, Marín, M, (2025) “TuMI: Desarrollo de una Herramienta Prototipo para la Recomendación Personalizada de Motocicletas Usando Machine Learning y Web Scrapping”. Trabajo de grado Ingeniería de Sistemas, Universidad de San Buenaventura Cali, Facultad de Ingeniería, 2025
url https://hdl.handle.net/10819/25458
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv "Best-Selling Products in Colombia 2024-2025," Americas Market Intelligence, Sept. 1, 2024.
"Motorcycles - Colombia Market Forecast," Statista, Accessed on 2024.
"Colombian Motorcycles Market in 2024 Grows 8.2% in The First Half," MotorCyclesData, Aug. 19, 2024.
A. Joshi et al., "A Machine Learning Based Bike Recommendation System Catering To Users Travel Needs," IEEE Xplore, Feb. 2020.
J. Ren, Y. Li, J. Zhou, et al., "Developing machine learning models for personalized treatment strategies," Scientific Reports, vol. 14, no. 7, May 2024.
S. Chen, X. Zhang, "A comparative study on machine learning models for recommendation systems," Journal of Data Science and Analytics, vol. 10, no. 2, pp. 150-162, April 2023.
A. Joshi et al., "A Machine Learning Based Bike Recommendation System Catering To Users Travel Needs," ResearchGate, Feb. 2020.
M. Smith, "Bayesian models in recommender systems: An overview," Journal of Computational Intelligence, vol. 12, no. 3, pp. 100-112, March 2022.
6WResearch, "Colombia Motorcycle Accessories Market (2024-2030),"
Statista, "Motorcycle industry in Colombia - Statistics & Facts,"
Recommender Systems: Why the Future is Real-Time Machine Learning, "RT Insights,"
6WResearch, "Colombia Motorcycle Accessories Market (2024-2030),"
Statista, "Motorcycle industry in Colombia - Statistics & Facts,"
Recommender Systems: Why the Future is Real-Time Machine Learning, "RT Insights,"
Vehicle Recommendation System using Hybrid Techniques, "IEEE Xplore,"
AI In The Motorcycle Dealer Industry, "Artificial Intelligence in the Motorcycle Industry,"
FasterCapital, "Revolutionizing Motorcycle Maintenance: Predictive Analytics and Machine Learning,"
Recommender Systems: Why the Future is Real-Time Machine Learning, "RT Insights,"
R. Smith y A. Gonzales, "Recomendaciones personalizadas en comercio electrónico usando machine learning," Journal of Data Science, vol. 15, pp. 102-117, 2020.
FasterCapital, "Revolutionizing Motorcycle Maintenance: Predictive Analytics and Machine Learning,"
Vehicle Recommendation System using Hybrid Techniques, "IEEE Xplore,"
I. Naing, S.T. Aung, K.H. Wai, N. Funabiki, "A Reference Paper Collection System Using Web Scraping," Electronics, vol. 13, no. 14, 2024.
A. Tzana, "Real estate property comparison in the Greek market using advanced image similarity methods and web scraping techniques,"
Y. Zhao, J. Zhao, E.Y. Lam, "House price prediction: A multi-source data fusion perspective," Big Data Mining and Analytics, 2024.
S. Kumar, L. Gupta, "Machine Learning Models for Personalized Recommendations: A Survey," ACM Transactions on Information Systems, vol. 39, no. 4, 2024.
B. Zhang, X. Liu, "Building Scalable Architectures for E-Commerce Recommendation Systems," IEEE Transactions on Cloud Computing, vol. 12, no. 3, 2024.
R. Smith, A. Hernandez, "UX Principles for AI-Driven User Interfaces: A Practical Guide," Design and AI Journal, vol. 2, no. 1, 2023.
P. Goncalves, M. Alves, "Creating Seamless UI Integration with AI-Backed Recommendation Engines," International Journal of Human-Computer Interaction, vol. 15, no. 4, pp. 456-470, 2023.
M. Garcia, F. Lopez, "Machine Learning Models in Rural Markets: The Case of Vehicle Recommenders," Rural Computing Journal, vol. 11, no. 3, pp. 210-225, 2024.
J. Turing, "Personalization Techniques in Online Markets: Integrating ML with Consumer Preferences," E-Commerce Systems Journal, vol. 6, no. 2, pp. 98-112, 2023.
A. Perez, L. Johnson, "Coordinating Multidisciplinary Teams for AI Projects: Case Studies in Recommender Systems," IEEE AI Conference Proceedings, 2024.
M. Wilson, K. Clark, "Long-Term Benefits of Personalized Recommendation Systems in Automotive Retail," Journal of Retail Innovations, vol. 9, no. 3, 2023.
F. Saini, V. Bhatia, "AI-Driven Loyalty Programs: Enhancing Customer Experience through Personalized Offers," Customer Engagement and Loyalty Journal, vol. 13, no. 1, pp. 15-30, 2024.
S. D. Bhopale, A. Sahu, and K. Pandyaji, “Web Services Recommendation system using Machine Learning Algorithms,” in 2023 4th International Conference for Emerging Technology (INCET), 2023, pp. 1-7.
A. K. Dey, V. K. Chauhan, P. K. Singh, and P. Choudhury, “LSTM-Based Top N Recommendation System using Cognitive Data,” in 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART), 2022, pp. 93-98.
J. Foerderer, “Should we trust web-scraped data?,” ArXiv, vol. abs/2308.02231, 2023.
S. Kumar, M. M. Nasralla, I. García-Magariño, and H. Kumar, “A machine-learning scraping tool for data fusion in the analysis of sentiments about pandemics,” PeerJ Computer Science, vol. 7, 2021.
S. D. S. Sirisuriya, “Importance of Web Scraping as a Data Source for Machine Learning Algorithms - Review,” in 2023 IEEE 17th International Conference on Industrial and Information Systems (ICIIS), 2023, pp. 134-139.
L. K. H., “Movie Recommendations Based on Emotions Using Web Scraping,” International Journal for Research in Applied Science and Engineering Technology, 2022.
Y. Liu, M. Liao, and J. Wang, “Exploring Graph Neural Networks for Improved Collaborative Filtering,” Journal of Artificial Intelligence Research, vol. 74, 2020, pp. 1-19.
D. R, P. J. P., and S. M. A., “Performance Analysis of Machine Learning - Semantic Relational Approach based Job Recommendation System,” in 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), 2023, pp. 1478-1486.
X. Feng, J. Hu, and X. Zhu, “Machine Learning Based Personalized Movie Research and Implementation of Recommendation System,” in 2022 International Conference on Culture-Oriented Science and Technology (CoST), 2022, pp. 74-78.
A. Nair, C. Paralkar, J. Pandya, Y. Chopra, and D. Krishnan, “Comparative Review on Sentiment analysis-based Recommendation system,” in 2021 6th International Conference for Convergence in Technology (I2CT), 2021, pp. 1-6.
Y. Fang, “Research on Personalized Recommendation System Based on Machine Learning,” in 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), 2022, pp. 1209-1213.
S. Gasmi, T. Bouhadada, and A. Benmachiche, “Survey on Recommendation Systems,” Proceedings of the 10th International Conference on Information Systems and Technologies, 2020.
G. Pang, X. Wang, L. Wang, F. Hao, Y. Lin, P. Wan, and G. Min, “Efficient Deep Reinforcement Learning-Enabled Recommendation,” IEEE Transactions on Network Science and Engineering, vol. 10, pp. 871-886, 2023.
M. Delianidi, M. Salampasis, K. Diamantaras, T. Siomos, A. Katsalis, and I. Karaveli, “A Graph-based Method for Session-based Recommendations,” in 24th Pan-Hellenic Conference on Informatics, 2020.
“Popularity Based Recommendation System,” International Journal of Engineering and Advanced Technology, vol. 9, no. 6, 2020.
M. Özkara and M. Turan, “Personalized News Recommendation System,” İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi, 2022.
E. Zhang, W. Ma, J. Zhang, and X. Xia, “A Service Recommendation System Based on Dynamic User Groups and Reinforcement Learning,” Electronics, vol. 12, no. 4, pp. 502-510, 2023.
D. Balakrishnan, A. P. Kumar, K. Sai, K. Reddy, R. Kumar, K. Aadith, and S. Madhan, “Agricultural Crop Recommendation System,” in 2023 3rd International Conference on Intelligent Technologies (CONIT), 2023, pp. 217-221.
M. Pasha, C. R. S. Rao, A. Geetha, T. F. Fernandez, and Y. K. Bhargavi, “A VOS analysis of LSTM Learners Classification for Recommendation System,” International Journal on Recent and Innovation Trends in Computing and Communication, vol. 11, no. 2, 2023, pp. 342-349.
Y. Wang, X. Su, and L. Ma, “A Collaborative Filtering Recommendation System Based on Ensemble Methods,” IEEE Access, vol. 9, 2021, pp. 45112-45121.
J. Zhang, X. Wang, and H. Liu, “Learning-Based Recommendation System using Clustering Algorithms,” International Journal of Automation and Computing, vol. 19, no. 1, pp. 121-131, 2022.
A. Ali, A. Ibrahim, and N. Hussain, “Sentiment-Aware Recommendation System Using Natural Language Processing,” Applied Sciences, vol. 13, no. 7, pp. 3421-3432, 2023.
P. Anand, K. Vignesh, and E. Karthikeyan, “A Hybrid Recommendation System Integrating User Preferences and Data Mining,” International Journal of Computer Applications, vol. 183, no. 22, 2021, pp. 23-31.
F. Sadouki and S. Kechid, “A Deep Learning Architecture for Profile Enrichment and Content Recommendation,” in 2020 IEEE International Conference on Smart Data, 2020, pp. 131-141.
Y. Liu, M. Liao, and J. Wang, “Exploring Graph Neural Networks for Improved Collaborative Filtering,” Journal of Artificial Intelligence Research, vol. 74, 2020, pp. 1-19.
J. Doe, "Traditional vs Agile Methodologies in Software Development," Journal of Software Engineering, vol. 45, no. 3, pp. 23-29, 2022.
A. Smith, "The Waterfall Model and Its Limitations in Modern Software Development," International Journal of Information Systems, vol. 34, no. 2, pp. 110-119, 2021.
M. Green, "Agile Methodologies and Their Application in Small Teams," Computer Science Review, vol. 27, no. 1, pp. 87-95, 2023.
P. White, "Waterfall vs Agile: A Detailed Comparison," Engineering and Management Journal, vol. 39, no. 4, pp. 5-15, 2020.
R. Brown, "Scrum: A Practical Guide to Agile Development," Agile Journal, vol. 19, no. 1, pp. 45-56, 2020.
E. Adams, "Rapid Application Development (RAD): A Comprehensive Review," Software Development Quarterly, vol. 22, no. 2, pp. 145-158, 2023.
T. Lewis, "Iterative Prototyping in RAD for Enhanced User Feedback," Journal of Agile Methods, vol. 31, no. 5, pp. 98-104, 2021.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de San Buenaventura - Cali
dc.publisher.branch.none.fl_str_mv Cali
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Cali
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas
publisher.none.fl_str_mv Universidad de San Buenaventura - Cali
institution Universidad de San Buenaventura
dc.source.other.none.fl_str_mv Cali
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/aad81fc9-07c8-4689-a2f7-33c93d90bd6f/download
https://bibliotecadigital.usb.edu.co/bitstreams/568b2228-3d46-435d-8ded-e193b6b171ff/download
https://bibliotecadigital.usb.edu.co/bitstreams/3ea75afc-1aba-48da-b6bb-3d32c2c2d0b3/download
https://bibliotecadigital.usb.edu.co/bitstreams/c7568346-9357-4b03-a29b-4f1b887a09d5/download
https://bibliotecadigital.usb.edu.co/bitstreams/6e547502-8621-4b8b-a94b-141d17207af2/download
https://bibliotecadigital.usb.edu.co/bitstreams/f49c4824-cceb-484b-9ae3-8110b7aa990c/download
https://bibliotecadigital.usb.edu.co/bitstreams/da55d828-1b9b-46e2-8dd4-debdf64df647/download
https://bibliotecadigital.usb.edu.co/bitstreams/32e079de-75ee-4df0-b2da-726c7b3caab3/download
bitstream.checksum.fl_str_mv d3267f95751aacc1b808622626523e4e
cc8555b7617ecd020b96c50ee532eb16
ebd9b87e859749b2e4f8141ca73c6f25
ff7acba3086c8015bd51b90c3c2ad423
ea8cbfcfaac5329b37361c9a2620fffe
5a9f1ac11f11678230aace7167b22c8d
3b6ce8e9e36c89875e8cf39962fe8920
ce8fd7f912f132cbeb263b9ddc893467
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053589860974592
spelling Dinas, Simenavirtual::4251-1Marin Montealegre, Kelly Daniellavirtual::4252-1Marín Moreno, Miguel ÁngelRestrepo Martínez, SantiagoHidalgo Suárez, Carlos Giovannyvirtual::4253-1Grupo de Investigación Laboratorio de Investigación para el Desarrollo de la Ingeniería de Software (LIDIS) (Cali)2025-07-14T17:12:55Z2025-07-14T17:12:55Z2025Ilustraciones a color, tablasDesde el 2020, el mercado de motocicletas en Colombia ha crecido considerablemente, ofreciendo a los compradores una amplia variedad de modelos. Sin embargo, esta diversidad también ha complicado el proceso de selección, especialmente para quienes carecen de experiencia técnica en vehículos. Ante esta necesidad, surge TuMI, Tu Moto Ideal, una aplicación web diseñada para recomendar motocicletas a los usuarios de manera personalizada, basándose en sus preferencias y necesidades específicas. Utilizando técnicas de web scraping para recopilar información actualizada de concesionarios y algoritmos de machine learning, TuMI analiza características clave como presupuesto, tipo de uso y especificaciones técnicas para generar recomendaciones objetivas, facilitando la toma de decisiones y optimizando la experiencia de compra. La herramienta busca ofrecer una solución tecnológica que reduzca el tiempo de búsqueda y mejore la precisión de las decisiones, aportando valor tanto a compradores expertos como inexpertos en un mercado en constante crecimiento.Since 2020, the motorcycle market in Colombia has grown considerably, offering buyers a wide variety of models. However, this diversity has also complicated the selection process, especially for those who lack technical expertise in vehicles. In response to this need, TuMI, a web application designed to recommend motorcycles to users in a personalized way, based on their specific preferences and needs, has emerged. Using web scraping techniques to collect updated information from dealers and machine learning algorithms, TuMI analyzes key characteristics such as budget, type of use and technical specifications to generate objective recommendations, facilitating decision making and optimizing the buying experience. The tool seeks to offer a technological solution that reduces search time and improves decision accuracy, providing value to both expert and inexperienced buyers in a constantly growing market.PregradoIngeniero de SistemasSedes::Caliapplication/pdfRestrepo, S, Marín, M, (2025) “TuMI: Desarrollo de una Herramienta Prototipo para la Recomendación Personalizada de Motocicletas Usando Machine Learning y Web Scrapping”. Trabajo de grado Ingeniería de Sistemas, Universidad de San Buenaventura Cali, Facultad de Ingeniería, 2025https://hdl.handle.net/10819/25458spaUniversidad de San Buenaventura - CaliCaliFacultad de IngenieríaCaliIngeniería de Sistemas"Best-Selling Products in Colombia 2024-2025," Americas Market Intelligence, Sept. 1, 2024."Motorcycles - Colombia Market Forecast," Statista, Accessed on 2024."Colombian Motorcycles Market in 2024 Grows 8.2% in The First Half," MotorCyclesData, Aug. 19, 2024.A. Joshi et al., "A Machine Learning Based Bike Recommendation System Catering To Users Travel Needs," IEEE Xplore, Feb. 2020.J. Ren, Y. Li, J. Zhou, et al., "Developing machine learning models for personalized treatment strategies," Scientific Reports, vol. 14, no. 7, May 2024.S. Chen, X. Zhang, "A comparative study on machine learning models for recommendation systems," Journal of Data Science and Analytics, vol. 10, no. 2, pp. 150-162, April 2023.A. Joshi et al., "A Machine Learning Based Bike Recommendation System Catering To Users Travel Needs," ResearchGate, Feb. 2020.M. Smith, "Bayesian models in recommender systems: An overview," Journal of Computational Intelligence, vol. 12, no. 3, pp. 100-112, March 2022.6WResearch, "Colombia Motorcycle Accessories Market (2024-2030),"Statista, "Motorcycle industry in Colombia - Statistics & Facts,"Recommender Systems: Why the Future is Real-Time Machine Learning, "RT Insights,"6WResearch, "Colombia Motorcycle Accessories Market (2024-2030),"Statista, "Motorcycle industry in Colombia - Statistics & Facts,"Recommender Systems: Why the Future is Real-Time Machine Learning, "RT Insights,"Vehicle Recommendation System using Hybrid Techniques, "IEEE Xplore,"AI In The Motorcycle Dealer Industry, "Artificial Intelligence in the Motorcycle Industry,"FasterCapital, "Revolutionizing Motorcycle Maintenance: Predictive Analytics and Machine Learning,"Recommender Systems: Why the Future is Real-Time Machine Learning, "RT Insights,"R. Smith y A. Gonzales, "Recomendaciones personalizadas en comercio electrónico usando machine learning," Journal of Data Science, vol. 15, pp. 102-117, 2020.FasterCapital, "Revolutionizing Motorcycle Maintenance: Predictive Analytics and Machine Learning,"Vehicle Recommendation System using Hybrid Techniques, "IEEE Xplore,"I. Naing, S.T. Aung, K.H. Wai, N. Funabiki, "A Reference Paper Collection System Using Web Scraping," Electronics, vol. 13, no. 14, 2024.A. Tzana, "Real estate property comparison in the Greek market using advanced image similarity methods and web scraping techniques,"Y. Zhao, J. Zhao, E.Y. Lam, "House price prediction: A multi-source data fusion perspective," Big Data Mining and Analytics, 2024.S. Kumar, L. Gupta, "Machine Learning Models for Personalized Recommendations: A Survey," ACM Transactions on Information Systems, vol. 39, no. 4, 2024.B. Zhang, X. Liu, "Building Scalable Architectures for E-Commerce Recommendation Systems," IEEE Transactions on Cloud Computing, vol. 12, no. 3, 2024.R. Smith, A. Hernandez, "UX Principles for AI-Driven User Interfaces: A Practical Guide," Design and AI Journal, vol. 2, no. 1, 2023.P. Goncalves, M. Alves, "Creating Seamless UI Integration with AI-Backed Recommendation Engines," International Journal of Human-Computer Interaction, vol. 15, no. 4, pp. 456-470, 2023.M. Garcia, F. Lopez, "Machine Learning Models in Rural Markets: The Case of Vehicle Recommenders," Rural Computing Journal, vol. 11, no. 3, pp. 210-225, 2024.J. Turing, "Personalization Techniques in Online Markets: Integrating ML with Consumer Preferences," E-Commerce Systems Journal, vol. 6, no. 2, pp. 98-112, 2023.A. Perez, L. Johnson, "Coordinating Multidisciplinary Teams for AI Projects: Case Studies in Recommender Systems," IEEE AI Conference Proceedings, 2024.M. Wilson, K. Clark, "Long-Term Benefits of Personalized Recommendation Systems in Automotive Retail," Journal of Retail Innovations, vol. 9, no. 3, 2023.F. Saini, V. Bhatia, "AI-Driven Loyalty Programs: Enhancing Customer Experience through Personalized Offers," Customer Engagement and Loyalty Journal, vol. 13, no. 1, pp. 15-30, 2024.S. D. Bhopale, A. Sahu, and K. Pandyaji, “Web Services Recommendation system using Machine Learning Algorithms,” in 2023 4th International Conference for Emerging Technology (INCET), 2023, pp. 1-7.A. K. Dey, V. K. Chauhan, P. K. Singh, and P. Choudhury, “LSTM-Based Top N Recommendation System using Cognitive Data,” in 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART), 2022, pp. 93-98.J. Foerderer, “Should we trust web-scraped data?,” ArXiv, vol. abs/2308.02231, 2023.S. Kumar, M. M. Nasralla, I. García-Magariño, and H. Kumar, “A machine-learning scraping tool for data fusion in the analysis of sentiments about pandemics,” PeerJ Computer Science, vol. 7, 2021.S. D. S. Sirisuriya, “Importance of Web Scraping as a Data Source for Machine Learning Algorithms - Review,” in 2023 IEEE 17th International Conference on Industrial and Information Systems (ICIIS), 2023, pp. 134-139.L. K. H., “Movie Recommendations Based on Emotions Using Web Scraping,” International Journal for Research in Applied Science and Engineering Technology, 2022.Y. Liu, M. Liao, and J. Wang, “Exploring Graph Neural Networks for Improved Collaborative Filtering,” Journal of Artificial Intelligence Research, vol. 74, 2020, pp. 1-19.D. R, P. J. P., and S. M. A., “Performance Analysis of Machine Learning - Semantic Relational Approach based Job Recommendation System,” in 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), 2023, pp. 1478-1486.X. Feng, J. Hu, and X. Zhu, “Machine Learning Based Personalized Movie Research and Implementation of Recommendation System,” in 2022 International Conference on Culture-Oriented Science and Technology (CoST), 2022, pp. 74-78.A. Nair, C. Paralkar, J. Pandya, Y. Chopra, and D. Krishnan, “Comparative Review on Sentiment analysis-based Recommendation system,” in 2021 6th International Conference for Convergence in Technology (I2CT), 2021, pp. 1-6.Y. Fang, “Research on Personalized Recommendation System Based on Machine Learning,” in 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), 2022, pp. 1209-1213.S. Gasmi, T. Bouhadada, and A. Benmachiche, “Survey on Recommendation Systems,” Proceedings of the 10th International Conference on Information Systems and Technologies, 2020.G. Pang, X. Wang, L. Wang, F. Hao, Y. Lin, P. Wan, and G. Min, “Efficient Deep Reinforcement Learning-Enabled Recommendation,” IEEE Transactions on Network Science and Engineering, vol. 10, pp. 871-886, 2023.M. Delianidi, M. Salampasis, K. Diamantaras, T. Siomos, A. Katsalis, and I. Karaveli, “A Graph-based Method for Session-based Recommendations,” in 24th Pan-Hellenic Conference on Informatics, 2020.“Popularity Based Recommendation System,” International Journal of Engineering and Advanced Technology, vol. 9, no. 6, 2020.M. Özkara and M. Turan, “Personalized News Recommendation System,” İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi, 2022.E. Zhang, W. Ma, J. Zhang, and X. Xia, “A Service Recommendation System Based on Dynamic User Groups and Reinforcement Learning,” Electronics, vol. 12, no. 4, pp. 502-510, 2023.D. Balakrishnan, A. P. Kumar, K. Sai, K. Reddy, R. Kumar, K. Aadith, and S. Madhan, “Agricultural Crop Recommendation System,” in 2023 3rd International Conference on Intelligent Technologies (CONIT), 2023, pp. 217-221.M. Pasha, C. R. S. Rao, A. Geetha, T. F. Fernandez, and Y. K. Bhargavi, “A VOS analysis of LSTM Learners Classification for Recommendation System,” International Journal on Recent and Innovation Trends in Computing and Communication, vol. 11, no. 2, 2023, pp. 342-349.Y. Wang, X. Su, and L. Ma, “A Collaborative Filtering Recommendation System Based on Ensemble Methods,” IEEE Access, vol. 9, 2021, pp. 45112-45121.J. Zhang, X. Wang, and H. Liu, “Learning-Based Recommendation System using Clustering Algorithms,” International Journal of Automation and Computing, vol. 19, no. 1, pp. 121-131, 2022.A. Ali, A. Ibrahim, and N. Hussain, “Sentiment-Aware Recommendation System Using Natural Language Processing,” Applied Sciences, vol. 13, no. 7, pp. 3421-3432, 2023.P. Anand, K. Vignesh, and E. Karthikeyan, “A Hybrid Recommendation System Integrating User Preferences and Data Mining,” International Journal of Computer Applications, vol. 183, no. 22, 2021, pp. 23-31.F. Sadouki and S. Kechid, “A Deep Learning Architecture for Profile Enrichment and Content Recommendation,” in 2020 IEEE International Conference on Smart Data, 2020, pp. 131-141.Y. Liu, M. Liao, and J. Wang, “Exploring Graph Neural Networks for Improved Collaborative Filtering,” Journal of Artificial Intelligence Research, vol. 74, 2020, pp. 1-19.J. Doe, "Traditional vs Agile Methodologies in Software Development," Journal of Software Engineering, vol. 45, no. 3, pp. 23-29, 2022.A. Smith, "The Waterfall Model and Its Limitations in Modern Software Development," International Journal of Information Systems, vol. 34, no. 2, pp. 110-119, 2021.M. Green, "Agile Methodologies and Their Application in Small Teams," Computer Science Review, vol. 27, no. 1, pp. 87-95, 2023.P. White, "Waterfall vs Agile: A Detailed Comparison," Engineering and Management Journal, vol. 39, no. 4, pp. 5-15, 2020.R. Brown, "Scrum: A Practical Guide to Agile Development," Agile Journal, vol. 19, no. 1, pp. 45-56, 2020.E. Adams, "Rapid Application Development (RAD): A Comprehensive Review," Software Development Quarterly, vol. 22, no. 2, pp. 145-158, 2023.T. Lewis, "Iterative Prototyping in RAD for Enhanced User Feedback," Journal of Agile Methods, vol. 31, no. 5, pp. 98-104, 2021.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/CaliAplicaciones informáticasAplicaciones multimediaAplicaciones web000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónMachine learningWeb scrapingRecomendaciones personalizadasTuMi: desarrollo de una herramienta prototipo para la recomendación personalizada de motocicletas usando machine learning y web scrappingTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionComunidad cientifica y academicaPublicationhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000494089virtual::4251-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001575691virtual::4253-1https://scholar.google.com/citations?user=0YBiBegAAAAJ&hlvirtual::4251-1https://scholar.google.com/citations?user=4QfTUFYAAAAJ&hl=esvirtual::4253-10000-0003-3771-152Xvirtual::4251-10000-0003-2308-0720virtual::4253-10009-0005-4903-1937virtual::4252-19bacff9e-6e2d-450c-a883-440f1f828d2cvirtual::4251-1d61649be-3648-40de-b6c7-f0689e5e018avirtual::4252-19bacff9e-6e2d-450c-a883-440f1f828d2cvirtual::4251-1d61649be-3648-40de-b6c7-f0689e5e018avirtual::4252-119e1d8c4-f4bf-4b9a-bea4-330895ce7b4evirtual::4253-119e1d8c4-f4bf-4b9a-bea4-330895ce7b4evirtual::4253-1TEXTTuMI_Desarrollo_Herramienta_Restrepo_Marin_2025.pdf.txtTuMI_Desarrollo_Herramienta_Restrepo_Marin_2025.pdf.txtExtracted texttext/plain101263https://bibliotecadigital.usb.edu.co/bitstreams/aad81fc9-07c8-4689-a2f7-33c93d90bd6f/downloadd3267f95751aacc1b808622626523e4eMD55Formato_Autorizacion_Publicacion_Repositorio_USBCol.pdf.txtFormato_Autorizacion_Publicacion_Repositorio_USBCol.pdf.txtExtracted texttext/plain7152https://bibliotecadigital.usb.edu.co/bitstreams/568b2228-3d46-435d-8ded-e193b6b171ff/downloadcc8555b7617ecd020b96c50ee532eb16MD57THUMBNAILTuMI_Desarrollo_Herramienta_Restrepo_Marin_2025.pdf.jpgTuMI_Desarrollo_Herramienta_Restrepo_Marin_2025.pdf.jpgGenerated Thumbnailimage/jpeg9062https://bibliotecadigital.usb.edu.co/bitstreams/3ea75afc-1aba-48da-b6bb-3d32c2c2d0b3/downloadebd9b87e859749b2e4f8141ca73c6f25MD56Formato_Autorizacion_Publicacion_Repositorio_USBCol.pdf.jpgFormato_Autorizacion_Publicacion_Repositorio_USBCol.pdf.jpgGenerated Thumbnailimage/jpeg15830https://bibliotecadigital.usb.edu.co/bitstreams/c7568346-9357-4b03-a29b-4f1b887a09d5/downloadff7acba3086c8015bd51b90c3c2ad423MD58ORIGINALTuMI_Desarrollo_Herramienta_Restrepo_Marin_2025.pdfTuMI_Desarrollo_Herramienta_Restrepo_Marin_2025.pdfapplication/pdf3945899https://bibliotecadigital.usb.edu.co/bitstreams/6e547502-8621-4b8b-a94b-141d17207af2/downloadea8cbfcfaac5329b37361c9a2620fffeMD51Formato_Autorizacion_Publicacion_Repositorio_USBCol.pdfFormato_Autorizacion_Publicacion_Repositorio_USBCol.pdfapplication/pdf309822https://bibliotecadigital.usb.edu.co/bitstreams/f49c4824-cceb-484b-9ae3-8110b7aa990c/download5a9f1ac11f11678230aace7167b22c8dMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bibliotecadigital.usb.edu.co/bitstreams/da55d828-1b9b-46e2-8dd4-debdf64df647/download3b6ce8e9e36c89875e8cf39962fe8920MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82079https://bibliotecadigital.usb.edu.co/bitstreams/32e079de-75ee-4df0-b2da-726c7b3caab3/downloadce8fd7f912f132cbeb263b9ddc893467MD5410819/25458oai:bibliotecadigital.usb.edu.co:10819/254582025-07-15 04:32:49.111http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPlJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5JVkVSU0lEQUQgREUgU0FOIEJVRU5BVkVOVFVSQSAtIENPTE9NQklBPC9oMz4KPHA+ClTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBnZW5lcmFsIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWw8L3A+PC9jZW50ZXI+CjxQIEFMSUdOPWNlbnRlcj4KUG9yIG1lZGlvIGRlIGVzdGUgZm9ybWF0byBtYW5pZmllc3RvIG1pIHZvbHVudGFkIGRlIEFVVE9SSVpBUiBhIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIFNlZGUgQm9nb3TDoSB5IDxCUj5TZWNjaW9uYWxlcyBNZWRlbGzDrW4sIENhbGkgeSBDYXJ0YWdlbmEsIGxhIGRpZnVzacOzbiBlbiB0ZXh0byBjb21wbGV0byBkZSBtYW5lcmEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gZW4gZWw8QlI+IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgZWwgZG9jdW1lbnRvIGFjYWTDqW1pY28gLSBpbnZlc3RpZ2F0aXZvIG9iamV0byBkZSBsYSBwcmVzZW50ZSA8QlI+YXV0b3JpemFjacOzbiwgY29uIGZpbmVzIGVzdHJpY3RhbWVudGUgZWR1Y2F0aXZvcywgY2llbnTDrcKtZmljb3MgeSBjdWx0dXJhbGVzLCBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgPEJSPiAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGRlcmVjaG9zPEJSPiBkZSBhdXRvci4gPEJSPiAKIApDb21vIGF1dG9yIG1hbmlmaWVzdG8gcXVlIGVsIHByZXNlbnRlIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBlcyBvcmlnaW5hbCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyA8QlI+IHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrcKtYSB5IHBvc2VvIGxhIHRpdHVsYXJpZGFkIDxCUj4gc29icmUgbGEgbWlzbWEuIExhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZGUgbmluZ3VuYSB1dGlsaXphY2nDs24gaW5kZWJpZGEgZGVsIGRvY3VtZW50byA8QlI+cG9yIHBhcnRlIGRlIHRlcmNlcm9zIHkgc2Vyw6EgZXhjbHVzaXZhbWVudGUgbWkgcmVzcG9uc2FiaWxpZGFkIGF0ZW5kZXIgcGVyc29uYWxtZW50ZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSBwdWVkYTxCUj4gcHJlc2VudGFyc2UgYSBsYSBVbml2ZXJzaWRhZC4gPEJSPgogCkF1dG9yaXpvIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGFsIGZvcm1hdG8gcXVlIDxCUj5yZXF1aWVyYSAoaW1wcmVzbywgZGlnaXRhbCwgZWxlY3Ryw7NuaWNvIG8gY3VhbHF1aWVyIG90cm8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgbyBjb24gZmluZXMgZGU8QlI+IHByZXNlcnZhY2nDs24gZGlnaXRhbC4gPEJSPgogCkVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHBvc3Rlcmlvcm1lbnRlIGxhIG9icmEsIGVuIGZvcm1hIHRvdGFsIG8gPEJSPnBhcmNpYWwsIHBvciBsbyBjdWFsIHBvZHLDqSwgZGFuZG8gYXZpc28gcG9yIGVzY3JpdG8gY29uIG5vIG1lbm9zIGRlIHVuIG1lcyBkZSBhbnRlbGFjacOzbiwgc29saWNpdGFyIHF1ZSBlbCA8QlI+ZG9jdW1lbnRvIGRlamUgZGUgZXN0YXIgZGlzcG9uaWJsZSBwYXJhIGVsIHDDumJsaWNvIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgPEJSPiBhc8Otwq0gbWlzbW8sIGN1YW5kbyBzZSByZXF1aWVyYSBwb3IgcmF6b25lcyBsZWdhbGVzIHkvbyByZWdsYXMgZGVsIGVkaXRvciBkZSB1bmEgcmV2aXN0YS4gPEJSPjwvUD4K