Compresión de imágenes, en el servicio radiológico como un componente de infraestructura en el modelo de salud colombiano - Images Compression Process in the Radiological Service Unit as an Infrastructure Component in the Colombian Health Model

El artículo muestra el proceso de compresión de imágenes para la Transformada Discreta del Coseno (DCT).  Siendo una de las transformaciones más importantes en el área de la compresión de imágenes digitales. La DCT transforma un bloque de datos en un nuevo conjunto de valores. Se expone un  estudio ...

Full description

Autores:
Aparicio Pico, Lilia Edith
López Sevillano, Alexandra
Cardenas, Julian Luciano
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/28699
Acceso en línea:
https://hdl.handle.net/10819/28699
https://doi.org/10.21500/01247492.2151
Palabra clave:
Compresión de imagen
Transformada Discreta del Coseno (DCT)
Desarrollo del proceso de Compresión.
Radiología
infraestructura en el modelo causal
componente de infraestructura.
Rights
openAccess
License
Ingenium - 2016
Description
Summary:El artículo muestra el proceso de compresión de imágenes para la Transformada Discreta del Coseno (DCT).  Siendo una de las transformaciones más importantes en el área de la compresión de imágenes digitales. La DCT transforma un bloque de datos en un nuevo conjunto de valores. Se expone un  estudio  de  compresión  de imágenes  aplicada  al  campo  de  la  salud específicamente para el servicio de radiología,  donde se utiliza el proceso de la  Transformada Discreta del Coseno (DCT) como la Transformada Inversa Discreta del Coseno (IDCT). En este caso, un algoritmo  rápido  es  usado  para  la  DCT,  el  cual  es  realizado  empleando  aritmética  paralela permitiendo que la  arquitectura  diseñada   alcance  un  mejor  desempeño  de  las  implementaciones  en software. Primero   se muestra   las   diferentes   modalidades   de imagen que se introducen al sistema de compresión, para obtener los resultados mediante simulaciones en Mathlab.    Posteriormente,    con    base    en    los    resultados se observa la aplicación del servicio de radiología dentro del componente de infraestructura en el sector salud y finalmente un análisis de producción desde el año 2011 hasta el 2014 de las instituciones hospitalarias.