Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis

El consumo de alcohol se encuentra dentro de las primeras cinco sustancias con mayor riesgo asociado con enfermedades, discapacidad y muerte en el mundo. El comportamiento ansioso se ha relacionado con la conductaadictiva al alcohol. El objetivo del presente estudio fue evaluar tres cepas con conduc...

Full description

Autores:
T Mendoza, Elizabeth
Villada, María
Velasquez Martinez, Maria Carolina
Tipo de recurso:
Article of journal
Fecha de publicación:
2024
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/28987
Acceso en línea:
https://hdl.handle.net/10819/28987
https://doi.org/10.21500/20112084.7060
Palabra clave:
Ansiedad
Etanol
Alcohol
Consumo
Anxiety
Ethanol
Alcohol
Consumption
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id SANBUENAV2_a3cb0ff260e34e11b80a43a96bf93d0c
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/28987
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis
dc.title.translated.spa.fl_str_mv Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis
title Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis
spellingShingle Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis
Ansiedad
Etanol
Alcohol
Consumo
Anxiety
Ethanol
Alcohol
Consumption
title_short Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis
title_full Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis
title_fullStr Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis
title_full_unstemmed Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis
title_sort Consumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-Uis
dc.creator.fl_str_mv T Mendoza, Elizabeth
Villada, María
Velasquez Martinez, Maria Carolina
dc.contributor.author.eng.fl_str_mv T Mendoza, Elizabeth
Villada, María
Velasquez Martinez, Maria Carolina
dc.subject.spa.fl_str_mv Ansiedad
Etanol
Alcohol
Consumo
topic Ansiedad
Etanol
Alcohol
Consumo
Anxiety
Ethanol
Alcohol
Consumption
dc.subject.eng.fl_str_mv Anxiety
Ethanol
Alcohol
Consumption
description El consumo de alcohol se encuentra dentro de las primeras cinco sustancias con mayor riesgo asociado con enfermedades, discapacidad y muerte en el mundo. El comportamiento ansioso se ha relacionado con la conductaadictiva al alcohol. El objetivo del presente estudio fue evaluar tres cepas con conductas de ansiedad diferenciales: una cepa normal; una cepa “Reactiva”, con aumento de conductas ansiosas; y una cepa “No-Reactiva”, conmenor comportamiento ansioso, antes y después del protocolo de consumo voluntario de etanol (10%). Para evaluar la ansiedad, los animales fueron expuestos al laberinto en cruz elevado 24 h antes y después del protocolo de consumo. En el protocolo de consumo voluntario de etanol, los animales fueron expuestos a una botella de agua y a una de etanol. Se registró elpeso del líquido consumido durante 40 días. Resultados: todas las cepas aumentaron el consumo de alcohol vs agua: General: día 8; R: día 10; NR: día 31. El consumo de etanol redujo el número y el porcentaje de entradas debrazos abiertos solo en la cepa General. Conclusión: los niveles de ansiedad pueden predisponer a un aumento del consumo de etanol y mantenimiento de comportamientos relacionados con la ansiedad.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-08T00:00:00Z
2025-08-22T16:59:29Z
dc.date.available.none.fl_str_mv 2024-05-08T00:00:00Z
2025-08-22T16:59:29Z
dc.date.issued.none.fl_str_mv 2024-05-08
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20112084.7060
dc.identifier.eissn.none.fl_str_mv 2011-7922
dc.identifier.issn.none.fl_str_mv 2011-2084
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/28987
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20112084.7060
identifier_str_mv 10.21500/20112084.7060
2011-7922
2011-2084
url https://hdl.handle.net/10819/28987
https://doi.org/10.21500/20112084.7060
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/download/7060/5381
dc.relation.citationedition.eng.fl_str_mv Núm. 1 , Año 2024 : Vol. 17 No. 1 (2024)
dc.relation.citationendpage.none.fl_str_mv 72
dc.relation.citationissue.eng.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 63
dc.relation.citationvolume.eng.fl_str_mv 17
dc.relation.ispartofjournal.eng.fl_str_mv International Journal of Psychological Research
dc.relation.references.spa.fl_str_mv Acevedo, M. B., Nizhnikov, M. E., Molina, J. C., & Pautassi, R. M. (2014). Relationship between ethanol-induced activity and anxiolysis in the open field, elevated plus maze, light-dark box, and ethanol intake in adolescent rats. Behavioural Brain Research, 265, 203-215. doi:10.1016/j.bbr.2014.02.032
Adermark, L., Jonsson, S., Ericson, M., & Soderpalm, B. (2011). Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rats. Neuropharmacology, 61(7), 1160-1165. doi:10.1016/j.neuropharm.2011.01.014
Baez, A., Ayala JA., Conde CA. (2001). Evaluacion comportamental comparativa por genero y seleccion genetica de ratas expuestas al laberinto en cruz elevado. Salud UIS, 33(3), 197-202.
Bell, R. L., Hauser, S., Rodd, Z. A., Liang, T., Sari, Y., McClintick, J., . . . Engleman, E. A. (2016). A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. Int Rev Neurobiol, 126, 179-261. doi:10.1016/bs.irn.2016.02.017
Briand, L. A., & Blendy, J. A. (2010). Molecular and genetic substrates linking stress and addiction. Brain Res, 1314, 219-234. doi:10.1016/j.brainres.2009.11.002
Carnicella S, Ron D, Barak S. Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse. Alcohol. 2014 May;48(3):243-52. doi: 10.1016/j.alcohol.2014.01.006. Epub 2014 Mar 15. PMID: 24721195; PMCID: PMC4102254.
Chappell, A. M., Carter, E., McCool, B. A., & Weiner, J. L. (2013). Adolescent rearing conditions influence the relationship between initial anxiety-like behavior and ethanol drinking in male Long Evans rats. Alcohol Clin Exp Res, 37 Suppl 1(Suppl 1), E394-403. doi:10.1111/j.1530-0277.2012.01926.x
Cippitelli, A., Damadzic, R., Singley, E., Thorsell, A., Ciccocioppo, R., Eskay, R. L., & Heilig, M. (2012). Pharmacological blockade of corticotropin-releasing hormone receptor 1 (CRH1R) reduces voluntary consumption of high alcohol concentrations in non-dependent Wistar rats. Pharmacol Biochem Behav, 100(3), 522-529. doi:10.1016/j.pbb.2011.10.016
Conde C, T. C. (2000). PROSTCOM: Un conjunto de programas para registro y procesamiento de datos comportamentales en investigaciones de fisiologiay farmacologia. Biotemas, 13, 14.
Dharavath RN, Pina-Leblanc C, Tang VM, Sloan ME, Nikolova YS, Pangarov P, Ruocco AC, Shield K, Voineskos D, Blumberger DM, Boileau I, Bozinoff N, Gerretsen P, Vieira E, Melamed OC, Sibille E, Quilty LC and Prevot TD (2023) GABAergic signaling in alcohol use disorder and withdrawal: pathological involvement and therapeutic potential. Front. Neural Circuits 17:1218737. doi: 10.3389/fncir.2023.1218737
Ericson, M., Molander, A., Lof, E., Engel, J. A., & Soderpalm, B. (2003). Ethanol elevates accumbal dopamine levels via indirect activation of ventral tegmental nicotinic acetylcholine receptors. Eur J Pharmacol, 467(1-3), 85-93. doi:10.1016/s0014-2999(03)01564-4
Ewin SE, Morgan JW, Niere F, McMullen NP, Barth SH, Almonte AG, Raab-Graham KF, Weiner JL. Chronic Intermittent Ethanol Exposure Selectively Increases Synaptic Excitability in the Ventral Domain of the Rat Hippocampus. Neuroscience. 2019 Feb 1;398:144-157. doi: 10.1016/j.neuroscience.2018.11.028. Epub 2018 Nov 24. PMID: 30481568; PMCID: PMC6658135.
George, O., Sanders, C., Freiling, J., Grigoryan, E., Vu, S., Allen, C. D., . . . Koob, G. F. (2012). Recruitment of medial prefrontal cortex neurons during alcohol withdrawal predicts cognitive impairment and excessive alcohol drinking. Proc Natl Acad Sci U S A, 109(44), 18156-18161. doi:10.1073/pnas.1116523109
Goodwin, F. L., Bergeron, N., & Amit, Z. (2000). Differences in the consumption of ethanol and flavored solutions in three strains of rats. Pharmacol Biochem Behav, 65(3), 357-362. doi:10.1016/s0091-3057(99)00222-1
Izidio, G. S., & Ramos, A. (2007). Positive association between ethanol consumption and anxiety-related behaviors in two selected rat lines. Alcohol, 41(7), 517-524. doi:10.1016/j.alcohol.2007.07.008
Kim, A. K., & Souza-Formigoni, M. L. (2013). Alpha1-adrenergic drugs affect the development and expression of ethanol-induced behavioral sensitization. Behavioural Brain Research, 256, 646-654. doi:10.1016/j.bbr.2013.09.015
Koob, G. F. (2006). The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction, 101 Suppl 1, 23-30. doi:10.1111/j.1360-0443.2006.01586.x
Koob, G. F., & Le Moal, M. (2008). Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci, 363(1507), 3113-3123. doi:10.1098/rstb.2008.0094
Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry, 3(8), 760-773. doi:10.1016/S2215-0366(16)00104-8
Kushner MG, A. K., Borchardt C. (2000). The relationship between anxiety disorders and alcohol use disorders: a review of major perspectives and findings. Clin Psychol Rev, 20(2), 52. doi:10.1016/s0272-7358(99)00027-6
Marballi, K., Genabai, N. K., Blednov, Y. A., Harris, R. A., & Ponomarev, I. (2016). Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons. Genes Brain Behav, 15(3), 318-326. doi:10.1111/gbb.12266
McCool, B. A. (2011). Ethanol modulation of synaptic plasticity. Neuropharmacology, 61(7), 1097-1108. doi:10.1016/j.neuropharm.2010.12.028
Melis, M., Diana, M., Enrico, P., Marinelli, M., & Brodie, M. S. (2009). Ethanol and acetaldehyde action on central dopamine systems: mechanisms, modulation, and relationship to stress. Alcohol, 43(7), 531-539. doi:10.1016/j.alcohol.2009.05.004
Morales M, McGinnis MM, Robinson SL, Chappell AM, McCool BA. Chronic Intermittent Ethanol Exposure Modulation of Glutamatergic Neurotransmission in Rat Lateral/Basolateral Amygdala is Duration-, Input-, and Sex-Dependent. Neuroscience. 2018 Feb 10;371:277-287. doi: 10.1016/j.neuroscience.2017.12.005. Epub 2017 Dec 10. PMID: 29237566; PMCID: PMC5809207.
Mrejeru, A., Marti-Prats, L., Avegno, E. M., Harrison, N. L., & Sulzer, D. (2015). A subset of ventral tegmental area dopamine neurons responds to acute ethanol. Neuroscience, 290, 649-658. doi:10.1016/j.neuroscience.2014.12.081
Munier, J. J., Shen, S., Rahal, D., Hanna, A., Marty, V. N., O'Neill, P. R., . . . Spigelman, I. (2023). Chronic intermittent ethanol exposure disrupts stress-related tripartite communication to impact affect-related behavioral selection in male rats. Neurobiol Stress, 24, 100539. doi:10.1016/j.ynstr.2023.100539
Pan American Health Organization. Regional Status Report on Alcohol and Health 2020. Washington, D.C.: Pan American Health Organization; 2020.
Pautassi, R. M., Camarini, R., Quadros, I. M., Miczek, K. A., & Israel, Y. (2010). Genetic and environmental influences on ethanol consumption: perspectives from preclinical research. Alcohol Clin Exp Res, 34(6), 976-987. doi:10.1111/j.1530-0277.2010.01172.x
Peregud D, Stepanichev M, Gulyaeva N. Drinking Pattern in Intermittent Access Two-Bottle-Choice Paradigm in Male Wistar Rats Is Associated with Exon-Specific BDNF Expression in the Hippocampus During Early Abstinence. J Mol Neurosci. 2021 Feb;71(2):262-275. doi: 10.1007/s12031-020-01645-1. Epub 2020 Jun 26. PMID: 32588398.
Popovic, M., Caballero-Bleda, M., Puelles, L., & Guerri, C. (2004). Multiple binge alcohol consumption during rat adolescence increases anxiety but does not impair retention in the passive avoidance task. Neurosci Lett, 357(2), 79-82. doi:10.1016/j.neulet.2003.10.046
Rimondini, R., Sommer, W., & Heilig, M. (2003). A temporal threshold for induction of persistent alcohol preference: behavioral evidence in a rat model of intermittent intoxication. J Stud Alcohol, 64(4), 445-449. doi:10.15288/jsa.2003.64.445
Ron, D., & Barak, S. (2016). Molecular mechanisms underlying alcohol-drinking behaviours. Nat Rev Neurosci, 17(9), 576-591. doi:10.1038/nrn.2016.85
Sanchez-Catalan, M. J., Kaufling, J., Georges, F., Veinante, P., & Barrot, M. (2014). The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience, 282, 198-216. doi:10.1016/j.neuroscience.2014.09.025
Simms, J. A., Steensland, P., Medina, B., Abernathy, K. E., Chandler, L. J., Wise, R., & Bartlett, S. E. (2008). Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol Clin Exp Res, 32(10), 1816-1823. doi:10.1111/j.1530-0277.2008.00753.x
Skelly, M. J., Chappell, A. E., Carter, E., & Weiner, J. L. (2015). Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling. Neuropharmacology, 97, 149-159. doi:10.1016/j.neuropharm.2015.05.025
Skelly, M. J., & Weiner, J. L. (2014). Chronic treatment with prazosin or duloxetine lessens concurrent anxiety-like behavior and alcohol intake: evidence of disrupted noradrenergic signaling in anxiety-related alcohol use. Brain Behav, 4(4), 468-483. doi:10.1002/brb3.230
Van Skike, C. E., Diaz-Granados, J. L., & Matthews, D. B. (2015). Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats. Alcohol Clin Exp Res, 39(2), 262-271. doi:10.1111/acer.12617
Van Skike, C. E., Maggio, S. E., Reynolds, A. R., Casey, E. M., Bardo, M. T., Dwoskin, L. P., . . . Nixon, K. (2016). Critical needs in drug discovery for cessation of alcohol and nicotine polysubstance abuse. Prog Neuropsychopharmacol Biol Psychiatry, 65, 269-287. doi:10.1016/j.pnpbp.2015.11.004
Varodayan, F. P., Patel, R. R., Matzeu, A., Wolfe, S. A., Curley, D. E., Khom, S., . . . Roberto, M. (2022). The Amygdala Noradrenergic System Is Compromised With Alcohol Use Disorder. Biol Psychiatry, 91(12), 1008-1018. doi:10.1016/j.biopsych.2022.02.006
World Health Organization. Global status report on alcohol and health 2018. World Health Organization; 2018.
Wscieklica, T., Le Sueur-Maluf, L., Prearo, L., Conte, R., Viana, M. B., & Cespedes, I. C. (2019). Chronic intermittent ethanol administration differentially alters DeltaFosB immunoreactivity in cortical-limbic structures of rats with high and low alcohol preference. Am J Drug Alcohol Abuse, 45(3), 264-275. doi:10.1080/00952990.2019.1569667
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
http://creativecommons.org/licenses/by-nc-nd/4.0
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.spa.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/view/7060
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/35c3267e-6e92-4d5b-b025-64f323159841/download
bitstream.checksum.fl_str_mv eac313b8594f57ab37b8a429ff3b2428
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053501223796736
spelling T Mendoza, ElizabethVillada, MaríaVelasquez Martinez, Maria Carolina2024-05-08T00:00:00Z2025-08-22T16:59:29Z2024-05-08T00:00:00Z2025-08-22T16:59:29Z2024-05-08El consumo de alcohol se encuentra dentro de las primeras cinco sustancias con mayor riesgo asociado con enfermedades, discapacidad y muerte en el mundo. El comportamiento ansioso se ha relacionado con la conductaadictiva al alcohol. El objetivo del presente estudio fue evaluar tres cepas con conductas de ansiedad diferenciales: una cepa normal; una cepa “Reactiva”, con aumento de conductas ansiosas; y una cepa “No-Reactiva”, conmenor comportamiento ansioso, antes y después del protocolo de consumo voluntario de etanol (10%). Para evaluar la ansiedad, los animales fueron expuestos al laberinto en cruz elevado 24 h antes y después del protocolo de consumo. En el protocolo de consumo voluntario de etanol, los animales fueron expuestos a una botella de agua y a una de etanol. Se registró elpeso del líquido consumido durante 40 días. Resultados: todas las cepas aumentaron el consumo de alcohol vs agua: General: día 8; R: día 10; NR: día 31. El consumo de etanol redujo el número y el porcentaje de entradas debrazos abiertos solo en la cepa General. Conclusión: los niveles de ansiedad pueden predisponer a un aumento del consumo de etanol y mantenimiento de comportamientos relacionados con la ansiedad.Ethanol consumption is among the first five substances with higher risk associated with diseases, disability, and death in the world. Anxiety behavior has been linked to ethanol-addictive conduct. The aim of the present studywas to evaluate three strains with differential anxiety behavior: a Wild-type strain; a “Reactive” strain, with an increase in anxiety-related behaviors; and a “Non-Reactive” strain, with lower anxiety-related behaviors, before andafter the voluntary consumption of ethanol (10%) protocol. To evaluate anxiety, animals were exposed to the elevated plus-maze 24 h before and after the consumption protocol. On the voluntary consumption of ethanol protocol, the animals were exposed to a water and an ethanol bottle. Theweight of the liquid consumed daily for 40 days was registered. Results: all strains increased ethanol vs water consumption: Wild-type: day 8; R: day 10; NR: day 31. Ethanol consumption reduced the number and percentageof open arms entries only on the Wild-type strain. Conclusion: anxiety can predispose to an increase in ethanol consumption and to the maintenance ofanxiety-related behaviors.application/pdf10.21500/20112084.70602011-79222011-2084https://hdl.handle.net/10819/28987https://doi.org/10.21500/20112084.7060spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/7060/5381Núm. 1 , Año 2024 : Vol. 17 No. 1 (2024)7216317International Journal of Psychological ResearchAcevedo, M. B., Nizhnikov, M. E., Molina, J. C., & Pautassi, R. M. (2014). Relationship between ethanol-induced activity and anxiolysis in the open field, elevated plus maze, light-dark box, and ethanol intake in adolescent rats. Behavioural Brain Research, 265, 203-215. doi:10.1016/j.bbr.2014.02.032Adermark, L., Jonsson, S., Ericson, M., & Soderpalm, B. (2011). Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rats. Neuropharmacology, 61(7), 1160-1165. doi:10.1016/j.neuropharm.2011.01.014Baez, A., Ayala JA., Conde CA. (2001). Evaluacion comportamental comparativa por genero y seleccion genetica de ratas expuestas al laberinto en cruz elevado. Salud UIS, 33(3), 197-202.Bell, R. L., Hauser, S., Rodd, Z. A., Liang, T., Sari, Y., McClintick, J., . . . Engleman, E. A. (2016). A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. Int Rev Neurobiol, 126, 179-261. doi:10.1016/bs.irn.2016.02.017Briand, L. A., & Blendy, J. A. (2010). Molecular and genetic substrates linking stress and addiction. Brain Res, 1314, 219-234. doi:10.1016/j.brainres.2009.11.002Carnicella S, Ron D, Barak S. Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse. Alcohol. 2014 May;48(3):243-52. doi: 10.1016/j.alcohol.2014.01.006. Epub 2014 Mar 15. PMID: 24721195; PMCID: PMC4102254.Chappell, A. M., Carter, E., McCool, B. A., & Weiner, J. L. (2013). Adolescent rearing conditions influence the relationship between initial anxiety-like behavior and ethanol drinking in male Long Evans rats. Alcohol Clin Exp Res, 37 Suppl 1(Suppl 1), E394-403. doi:10.1111/j.1530-0277.2012.01926.xCippitelli, A., Damadzic, R., Singley, E., Thorsell, A., Ciccocioppo, R., Eskay, R. L., & Heilig, M. (2012). Pharmacological blockade of corticotropin-releasing hormone receptor 1 (CRH1R) reduces voluntary consumption of high alcohol concentrations in non-dependent Wistar rats. Pharmacol Biochem Behav, 100(3), 522-529. doi:10.1016/j.pbb.2011.10.016Conde C, T. C. (2000). PROSTCOM: Un conjunto de programas para registro y procesamiento de datos comportamentales en investigaciones de fisiologiay farmacologia. Biotemas, 13, 14.Dharavath RN, Pina-Leblanc C, Tang VM, Sloan ME, Nikolova YS, Pangarov P, Ruocco AC, Shield K, Voineskos D, Blumberger DM, Boileau I, Bozinoff N, Gerretsen P, Vieira E, Melamed OC, Sibille E, Quilty LC and Prevot TD (2023) GABAergic signaling in alcohol use disorder and withdrawal: pathological involvement and therapeutic potential. Front. Neural Circuits 17:1218737. doi: 10.3389/fncir.2023.1218737Ericson, M., Molander, A., Lof, E., Engel, J. A., & Soderpalm, B. (2003). Ethanol elevates accumbal dopamine levels via indirect activation of ventral tegmental nicotinic acetylcholine receptors. Eur J Pharmacol, 467(1-3), 85-93. doi:10.1016/s0014-2999(03)01564-4Ewin SE, Morgan JW, Niere F, McMullen NP, Barth SH, Almonte AG, Raab-Graham KF, Weiner JL. Chronic Intermittent Ethanol Exposure Selectively Increases Synaptic Excitability in the Ventral Domain of the Rat Hippocampus. Neuroscience. 2019 Feb 1;398:144-157. doi: 10.1016/j.neuroscience.2018.11.028. Epub 2018 Nov 24. PMID: 30481568; PMCID: PMC6658135.George, O., Sanders, C., Freiling, J., Grigoryan, E., Vu, S., Allen, C. D., . . . Koob, G. F. (2012). Recruitment of medial prefrontal cortex neurons during alcohol withdrawal predicts cognitive impairment and excessive alcohol drinking. Proc Natl Acad Sci U S A, 109(44), 18156-18161. doi:10.1073/pnas.1116523109Goodwin, F. L., Bergeron, N., & Amit, Z. (2000). Differences in the consumption of ethanol and flavored solutions in three strains of rats. Pharmacol Biochem Behav, 65(3), 357-362. doi:10.1016/s0091-3057(99)00222-1Izidio, G. S., & Ramos, A. (2007). Positive association between ethanol consumption and anxiety-related behaviors in two selected rat lines. Alcohol, 41(7), 517-524. doi:10.1016/j.alcohol.2007.07.008Kim, A. K., & Souza-Formigoni, M. L. (2013). Alpha1-adrenergic drugs affect the development and expression of ethanol-induced behavioral sensitization. Behavioural Brain Research, 256, 646-654. doi:10.1016/j.bbr.2013.09.015Koob, G. F. (2006). The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction, 101 Suppl 1, 23-30. doi:10.1111/j.1360-0443.2006.01586.xKoob, G. F., & Le Moal, M. (2008). Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci, 363(1507), 3113-3123. doi:10.1098/rstb.2008.0094Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry, 3(8), 760-773. doi:10.1016/S2215-0366(16)00104-8Kushner MG, A. K., Borchardt C. (2000). The relationship between anxiety disorders and alcohol use disorders: a review of major perspectives and findings. Clin Psychol Rev, 20(2), 52. doi:10.1016/s0272-7358(99)00027-6Marballi, K., Genabai, N. K., Blednov, Y. A., Harris, R. A., & Ponomarev, I. (2016). Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons. Genes Brain Behav, 15(3), 318-326. doi:10.1111/gbb.12266McCool, B. A. (2011). Ethanol modulation of synaptic plasticity. Neuropharmacology, 61(7), 1097-1108. doi:10.1016/j.neuropharm.2010.12.028Melis, M., Diana, M., Enrico, P., Marinelli, M., & Brodie, M. S. (2009). Ethanol and acetaldehyde action on central dopamine systems: mechanisms, modulation, and relationship to stress. Alcohol, 43(7), 531-539. doi:10.1016/j.alcohol.2009.05.004Morales M, McGinnis MM, Robinson SL, Chappell AM, McCool BA. Chronic Intermittent Ethanol Exposure Modulation of Glutamatergic Neurotransmission in Rat Lateral/Basolateral Amygdala is Duration-, Input-, and Sex-Dependent. Neuroscience. 2018 Feb 10;371:277-287. doi: 10.1016/j.neuroscience.2017.12.005. Epub 2017 Dec 10. PMID: 29237566; PMCID: PMC5809207.Mrejeru, A., Marti-Prats, L., Avegno, E. M., Harrison, N. L., & Sulzer, D. (2015). A subset of ventral tegmental area dopamine neurons responds to acute ethanol. Neuroscience, 290, 649-658. doi:10.1016/j.neuroscience.2014.12.081Munier, J. J., Shen, S., Rahal, D., Hanna, A., Marty, V. N., O'Neill, P. R., . . . Spigelman, I. (2023). Chronic intermittent ethanol exposure disrupts stress-related tripartite communication to impact affect-related behavioral selection in male rats. Neurobiol Stress, 24, 100539. doi:10.1016/j.ynstr.2023.100539Pan American Health Organization. Regional Status Report on Alcohol and Health 2020. Washington, D.C.: Pan American Health Organization; 2020.Pautassi, R. M., Camarini, R., Quadros, I. M., Miczek, K. A., & Israel, Y. (2010). Genetic and environmental influences on ethanol consumption: perspectives from preclinical research. Alcohol Clin Exp Res, 34(6), 976-987. doi:10.1111/j.1530-0277.2010.01172.xPeregud D, Stepanichev M, Gulyaeva N. Drinking Pattern in Intermittent Access Two-Bottle-Choice Paradigm in Male Wistar Rats Is Associated with Exon-Specific BDNF Expression in the Hippocampus During Early Abstinence. J Mol Neurosci. 2021 Feb;71(2):262-275. doi: 10.1007/s12031-020-01645-1. Epub 2020 Jun 26. PMID: 32588398.Popovic, M., Caballero-Bleda, M., Puelles, L., & Guerri, C. (2004). Multiple binge alcohol consumption during rat adolescence increases anxiety but does not impair retention in the passive avoidance task. Neurosci Lett, 357(2), 79-82. doi:10.1016/j.neulet.2003.10.046Rimondini, R., Sommer, W., & Heilig, M. (2003). A temporal threshold for induction of persistent alcohol preference: behavioral evidence in a rat model of intermittent intoxication. J Stud Alcohol, 64(4), 445-449. doi:10.15288/jsa.2003.64.445Ron, D., & Barak, S. (2016). Molecular mechanisms underlying alcohol-drinking behaviours. Nat Rev Neurosci, 17(9), 576-591. doi:10.1038/nrn.2016.85Sanchez-Catalan, M. J., Kaufling, J., Georges, F., Veinante, P., & Barrot, M. (2014). The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience, 282, 198-216. doi:10.1016/j.neuroscience.2014.09.025Simms, J. A., Steensland, P., Medina, B., Abernathy, K. E., Chandler, L. J., Wise, R., & Bartlett, S. E. (2008). Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol Clin Exp Res, 32(10), 1816-1823. doi:10.1111/j.1530-0277.2008.00753.xSkelly, M. J., Chappell, A. E., Carter, E., & Weiner, J. L. (2015). Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling. Neuropharmacology, 97, 149-159. doi:10.1016/j.neuropharm.2015.05.025Skelly, M. J., & Weiner, J. L. (2014). Chronic treatment with prazosin or duloxetine lessens concurrent anxiety-like behavior and alcohol intake: evidence of disrupted noradrenergic signaling in anxiety-related alcohol use. Brain Behav, 4(4), 468-483. doi:10.1002/brb3.230Van Skike, C. E., Diaz-Granados, J. L., & Matthews, D. B. (2015). Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats. Alcohol Clin Exp Res, 39(2), 262-271. doi:10.1111/acer.12617Van Skike, C. E., Maggio, S. E., Reynolds, A. R., Casey, E. M., Bardo, M. T., Dwoskin, L. P., . . . Nixon, K. (2016). Critical needs in drug discovery for cessation of alcohol and nicotine polysubstance abuse. Prog Neuropsychopharmacol Biol Psychiatry, 65, 269-287. doi:10.1016/j.pnpbp.2015.11.004Varodayan, F. P., Patel, R. R., Matzeu, A., Wolfe, S. A., Curley, D. E., Khom, S., . . . Roberto, M. (2022). The Amygdala Noradrenergic System Is Compromised With Alcohol Use Disorder. Biol Psychiatry, 91(12), 1008-1018. doi:10.1016/j.biopsych.2022.02.006World Health Organization. Global status report on alcohol and health 2018. World Health Organization; 2018.Wscieklica, T., Le Sueur-Maluf, L., Prearo, L., Conte, R., Viana, M. B., & Cespedes, I. C. (2019). Chronic intermittent ethanol administration differentially alters DeltaFosB immunoreactivity in cortical-limbic structures of rats with high and low alcohol preference. Am J Drug Alcohol Abuse, 45(3), 264-275. doi:10.1080/00952990.2019.1569667info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.http://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IJPR/article/view/7060AnsiedadEtanolAlcoholConsumoAnxietyEthanolAlcoholConsumptionConsumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-UisConsumo voluntario de etanol y comportamiento ansioso en Ratas Wistar-UisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2620https://bibliotecadigital.usb.edu.co/bitstreams/35c3267e-6e92-4d5b-b025-64f323159841/downloadeac313b8594f57ab37b8a429ff3b2428MD5110819/28987oai:bibliotecadigital.usb.edu.co:10819/289872025-08-22 11:59:30.048http://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com