IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoT

El desarrollo de productos software en general cuenta con procesos y prácticas reconocidas por la industria de software, teniendo como fases críticas el análisis de los requerimientos, donde se determinan las funcionalidades, las propiedades y los atributos de calidad que debe tener un producto soft...

Full description

Autores:
Lopez Erazo, Oscar Santiago
Hurtado Alegría, Julio Ariel
Hurtado Banguero, Andrés Felipe
Peñeñory Beltrán, Victor Manuel
Tipo de recurso:
Article of journal
Fecha de publicación:
2025
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/29034
Acceso en línea:
https://hdl.handle.net/10819/29034
https://doi.org/10.21500/20275846.6301
Palabra clave:
Software Quality, Quality Model, Quality Assurance, Non Functional Requirement, Software Architecture, Internet of things.
Calidad de software, Modelo de calidad, Aseguramiento de calidad, Requerimiento no funcional, Arquitectura de software, Internet de las cosas.
Rights
openAccess
License
Ingenierías USBMed - 2025
id SANBUENAV2_9f33b61acce3fc2d8776bce69c3e917a
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/29034
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoT
dc.title.translated.eng.fl_str_mv Architecture design practices and their quality requirements in the context of IoT-based software development
title IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoT
spellingShingle IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoT
Software Quality, Quality Model, Quality Assurance, Non Functional Requirement, Software Architecture, Internet of things.
Calidad de software, Modelo de calidad, Aseguramiento de calidad, Requerimiento no funcional, Arquitectura de software, Internet de las cosas.
title_short IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoT
title_full IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoT
title_fullStr IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoT
title_full_unstemmed IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoT
title_sort IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoT
dc.creator.fl_str_mv Lopez Erazo, Oscar Santiago
Hurtado Alegría, Julio Ariel
Hurtado Banguero, Andrés Felipe
Peñeñory Beltrán, Victor Manuel
dc.contributor.author.spa.fl_str_mv Lopez Erazo, Oscar Santiago
Hurtado Alegría, Julio Ariel
Hurtado Banguero, Andrés Felipe
Peñeñory Beltrán, Victor Manuel
dc.subject.eng.fl_str_mv Software Quality, Quality Model, Quality Assurance, Non Functional Requirement, Software Architecture, Internet of things.
topic Software Quality, Quality Model, Quality Assurance, Non Functional Requirement, Software Architecture, Internet of things.
Calidad de software, Modelo de calidad, Aseguramiento de calidad, Requerimiento no funcional, Arquitectura de software, Internet de las cosas.
dc.subject.spa.fl_str_mv Calidad de software, Modelo de calidad, Aseguramiento de calidad, Requerimiento no funcional, Arquitectura de software, Internet de las cosas.
description El desarrollo de productos software en general cuenta con procesos y prácticas reconocidas por la industria de software, teniendo como fases críticas el análisis de los requerimientos, donde se determinan las funcionalidades, las propiedades y los atributos de calidad que debe tener un producto software. En resumen, el principio de la arquitectura de software junto con buenas practicas pueden aportar en la evolución, modelado, desarrollo y ejecución de productos software complejos basados en IoT, fortaleciendo la calidad y funcionalidad requeridas. Teniendo en cuenta lo anterior, es evidente que hay una gran necesidad por cubrir desde la ingeniería de software en lo que respecta a la construcción de soluciones software basadas en la IoT. Por otra parte, se presentan resultados de investigación como atributos de calidad y prácticas para software basado en IoT.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-10T11:55:06Z
2025-08-22T17:04:29Z
dc.date.available.none.fl_str_mv 2025-07-10T11:55:06Z
2025-08-22T17:04:29Z
dc.date.issued.none.fl_str_mv 2025-07-10
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20275846.6301
dc.identifier.eissn.none.fl_str_mv 2027-5846
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/29034
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20275846.6301
identifier_str_mv 10.21500/20275846.6301
2027-5846
url https://hdl.handle.net/10819/29034
https://doi.org/10.21500/20275846.6301
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6301/5681
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2025 : Ingenierías USBMed
dc.relation.citationendpage.none.fl_str_mv 83
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 68
dc.relation.citationvolume.spa.fl_str_mv 16
dc.relation.ispartofjournal.spa.fl_str_mv Ingenierías USBMed
dc.relation.references.spa.fl_str_mv L. Petrović, I. Jezdović, D. Stojanović, Z. Bogdanović, and M. Despotović-Zrakić, “Development of an educational game based on IoT,” Ijeec - Int. J. Electr. Eng. Comput., vol. 1, no. 1, 2017, doi: 10.7251/ijeec1701036p. [2] J. Kiruthika and S. Khaddaj, “Software quality issues and challenges of internet of things,” Proc. - 14th Int. Symp. Distrib. Comput. Appl. Business, Eng. Sci. DCABES 2015, pp. 176–179, 2016, doi: 10.1109/DCABES.2015.51. [3] J. J. C. Tambotoh, S. M. Isa, F. L. Gaol, B. Soewito, and H. L. H. S. Warnars, “Software quality model for Internet of Things governance,” Proc. 2016 Int. Conf. Data Softw. Eng. ICoDSE 2016, 2017, doi: 10.1109/ICODSE.2016.7936138. [4] T. R and B. A, “Quality assurance of iot based home automation application using modified ISO/IEC 25010,” Int. J. Eng. Trends Technol., 2021. [5] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja, “Software Engineering for the Internet of Things House Advertisement,” IEEE Softw., vol. 33, no. 2, pp. c3–c3, 2016, doi: 10.1109/ms.2016.50. [6] K. Ojo-Gonzalez and B. Bonilla-Morales, “Requerimientos no funcionales para sistemas basados en el Internet de las cosas (IoT): Una revisión,” I+D Tecnológico, vol. 17, no. 2, 2021, doi: 10.33412/idt.v17.2.3303. [7] iso25000, “ISO 25000,” 2021. iso25000.com. [8] M. Kim, “A Quality Model for Evaluating IoT Applications,” Int. J. Comput. Electr. Eng., vol. 8, no. 1, pp. 66–76, 2016, doi: 10.17706/ijcee.2016.8.1.66-76. [9] M. Sirshar, M. Khan, K. Naeem, and T. Akbar, “Software Quality Assurance testing methodologies in IoT,” no. December 2019, 2019, [Online]. Available: www.preprints.org. [10] M. Bures, T. Cerny, and B. S. Ahmed, “Internet of things: Current challenges in the quality assurance and testing methods,” Lect. Notes Electr. Eng., vol. 514, pp. 625–634, 2019, doi: 10.1007/978-981-13-1056-0_61. [11] R. Arakaki, V. T. Hayashi, and W. V. Ruggiero, “Available and Fault Tolerant IoT System: Applying Quality Engineering Method,” 2nd Int. Conf. Electr. Commun. Comput. Eng. ICECCE 2020, no. June, pp. 12–13, 2020, doi: 10.1109/ICECCE49384.2020.9179341. [12] B. S. Ahmed, M. Bures, K. Frajtak, and T. Cerny, “Aspects of Quality in Internet of Things (IoT) Solutions: A Systematic Mapping Study,” IEEE Access, vol. 7, no. c, pp. 13758–13780, 2019, doi: 10.1109/ACCESS.2019.2893493. [13] M. Marwah, Q. Mateen, and M. Sirshar, “Software Quality Assurance in Internet of Things,” Int. J. Comput. Appl., vol. 109, no. 9, pp. 16–24, 2015, doi: 10.5120/19217-0964. [14] I. A. Baños, “Metodologia para Evaluar la Calidad de un Producto Software de una Implementacion de Internet de las Cosas,” 2017. [15] H. Foidl and M. Felderer, “Data science challenges to improve quality assurance of internet of things applications,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9953 LNCS, pp. 707–726, 2016, doi: 10.1007/978-3-319-47169-3_54. [16] M. Abdallah, T. Jaber, N. Alabwaini, and A. A. Alnabi, “A Proposed Quality Model for the Internet of Things Systems,” 2019 IEEE Jordan Int. Jt. Conf. Electr. Eng. Inf. Technol. JEEIT 2019 - Proc., pp. 23–27, 2019, doi: 10.1109/JEEIT.2019.8717516. [17] P. Patel and D. Cassou, “Enabling high-level application development for the Internet of Things,” J. Syst. Softw., vol. 103, pp. 62–84, 2015, doi: 10.1016/j.jss.2015.01.027. [18] H. Washizaki, S. Ogata, A. Hazeyama, T. Okubo, E. B. Fernandez, and N. Yoshioka, “Landscape of Architecture and Design Patterns for IoT Systems,” IEEE Internet Things J., vol. 7, no. 10, pp. 10091–10101, 2020, doi: 10.1109/JIOT.2020.3003528. [19] A. Alreshidi and A. Ahmad, “Architecting software for the Internet of Thing based systems,” Futur. Internet, vol. 11, no. 7, 2019, doi: 10.3390/fi11070153. [20] B. Y. P. Fremantle, “Wso2_Whitepaper_a-Reference-Architecture-for-the-Internet-of-Things,” vol. 0, 2015. [21] E. Cavalcante, M. P. Alves, T. Batista, F. C. Delicato, and P. F. Pires, “An analysis of reference architectures for the internet of things,” CobRA 2015 - Proc. 1st Int. Work. Explor. Component-Based Tech. Constr. Ref. Archit. Part CompArch 2015, pp. 13–16, 2015, doi: 10.1145/2755567.2755569. [22] Z. Li, P. Liang, and P. Avgeriou, Architectural Debt Management in Value-Oriented Architecting. Elsevier Inc., 2014. [23] S. Moaven and J. Habibi, “A fuzzy-AHP-based approach to select software architecture based on quality attributes (FASSA),” Knowl. Inf. Syst., vol. 62, no. 12, pp. 4569–4597, 2020, doi: 10.1007/s10115-020-01496-7. [24] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,” IEEE Softw., vol. 33, no. 1, pp. 112–116, 2016, doi: 10.1109/MS.2016.20. [25] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of IoT: Applications, challenges, and opportunities with China Perspective,” IEEE Internet Things J., vol. 1, no. 4, pp. 349–359, 2014, doi: 10.1109/JIOT.2014.2337336. [26] J. Del Rio et al., “A Sensor Web Architecture for Integrating Smart Oceanographic Sensors into the Semantic Sensor Web,” pp. 1–13, 2017. [27] Z. Stojanov and D. Dobrilovic, “Software architecture quality attributes of a layered sensor-based IoT system,” CEUR Workshop Proc., vol. 2984, pp. 66–74, 2021. [28] P. M. Jacob and P. Mani, “Software architecture pattern selection model for internet of things based systems,” IET Softw., vol. 12, no. 5, pp. 390–396, 2018, doi: 10.1049/iet-sen.2017.0206. [29] J. Wan et al., “Software-Defined Industrial Internet of Things in the Context of Industry 4.0,” IEEE Sens. J., vol. 16, no. 20, pp. 7373–7380, 2016, doi: 10.1109/JSEN.2016.2565621. [30] F. A. Fontana and I. Pigazzini, “Evaluating the Architectural Debt of IoT Projects,” Proc. - 2021 IEEE/ACM 3rd Int. Work. Softw. Eng. Res. Pract. IoT, SERP4IoT 2021, pp. 27–31, 2021, doi: 10.1109/SERP4IoT52556.2021.00011. [31] T. Ninikrishna et al., “Software defined IoT: Issues and challenges,” Proc. Int. Conf. Comput. Methodol. Commun. ICCMC 2017, vol. 2018-January, no. Iccmc, pp. 723–726, 2018, doi: 10.1109/ICCMC.2017.8282560. [32] H. P. Breivold and K. Sandstrom, “Internet of Things for Industrial Automation-Challenges and Technical Solutions,” Proc. - 2015 IEEE Int. Conf. Data Sci. Data Intensive Syst. 8th IEEE Int. Conf. Cyber, Phys. Soc. Comput. 11th IEEE Int. Conf. Green Comput. Commun. 8th IEEE Int. Conf. Internet Things, DSDIS/CPSCom/GreenCom/iThings 2015, pp. 532–539, 2015, doi: 10.1109/DSDIS.2015.11. [33] L. Patra and U. P. Rao, “Internet of Things-Architecture, applications, security and other major challenges,” Proc. 10th INDIACom; 2016 3rd Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2016, no. October, pp. 1201–1206, 2016. [34] G. Campeanu, “A mapping study on microservice architectures of Internet of Things and cloud computing solutions,” 2018 7th Mediterr. Conf. Embed. Comput. MECO 2018 - Incl. ECYPS 2018, Proc., no. June, pp. 1–4, 2018, doi: 10.1109/MECO.2018.8406008. [35] W. Rafique, X. Zhao, S. Yu, I. Yaqoob, M. Imran, and W. Dou, “An Application Development Framework for Internet-of-Things Service Orchestration,” IEEE Internet Things J., vol. 7, no. 5, pp. 4543–4556, 2020, doi: 10.1109/JIOT.2020.2971013. [36] C. Verdouw, H. Sundmaeker, B. Tekinerdogan, D. Conzon, and T. Montanaro, “Architecture framework of IoT-based food and farm systems: A multiple case study,” Comput. Electron. Agric., vol. 165, no. April, p. 104939, 2019, doi: 10.1016/j.compag.2019.104939. [37] W. Aman and E. Snekkenes, “Managing security trade-offs in the Internet of Things using adaptive security,” 2015 10th Int. Conf. Internet Technol. Secur. Trans. ICITST 2015, pp. 362–368, 2016, doi: 10.1109/ICITST.2015.7412122. [38] V. K. Quy et al., “IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges,” Appl. Sci., vol. 12, no. 7, 2022, doi: 10.3390/app12073396. [39] P. P. Ray, “Internet of things for smart agriculture: Technologies, practices and future direction,” J. Ambient Intell. Smart Environ., vol. 9, no. 4, pp. 395–420, 2017, doi: 10.3233/AIS-170440. [40] A. Sinha, G. Shrivastava, and P. Kumar, “Architecting user-centric internet of things for smart agriculture,” Sustain. Comput. Informatics Syst., vol. 23, pp. 88–102, 2019, doi: 10.1016/j.suscom.2019.07.001. [41] J. C. Guillermo, A. García-Cedeño, D. Rivas-Lalaleo, M. Huerta, and R. Clotet, “IoT Architecture Based on Wireless Sensor Network Applied to Agricultural Monitoring: A Case of Study of Cacao Crops in Ecuador,” Adv. Intell. Syst. Comput., vol. 893, pp. 42–57, 2019, doi: 10.1007/978-3-030-04447-3_3. [42] S. Verma, R. Gala, S. Madhavan, S. Burkule, S. Chauhan, and C. Prakash, “An Internet of Things (IoT) Architecture for Smart Agriculture,” Proc. - 2018 4th Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2018, pp. 1–4, 2018, doi: 10.1109/ICCUBEA.2018.8697707. [43] A. Razzaq, A Systematic Review on Software Architectures for IoT Systems and Future Direction to the Adoption of Microservices Architecture, vol. 1, no. 6. Springer Singapore, 2020. [44] B. Kitchenham, “Procedures for Performing Systematic Reviews,” 2004. [45] L. K. Kai Petersen, Sairam Vakkalanka, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Inf. Softw. Technol., 2015, doi: http://dx.doi.org/10.1016/j.infsof.2015.03.007. [46] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements engineering paper classification and evaluation criteria: a proposal and a discussion,” Requir. Eng., doi: https://doi.org/10.1007/s00766-005-0021-6. [47] M. Zarour, A. Abran, J.-M. Desharnais, and A. Abdulrahman, “An investigation into the best practices for the successful design and implementation of lightweight software process assessment methods: A systematic literature review,” J. Syst. Softw., 2014, doi: https://doi.org/10.1016/j.jss.2014.11.041. [48] S. Taherizadeh, V. Stankovski, and M. Grobelnik, “A capillary computing architecture for dynamic internet of things: Orchestration of microservices from edge devices to fog and cloud providers,” Sensors (Switzerland), vol. 18, no. 9, 2018, doi: 10.3390/s18092938. [49] H. Muccini and M. T. Moghaddam, IoT architectural styles: A systematic mapping study, vol. 11048 LNCS. Springer International Publishing, 2018. [50] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years of software architecture knowledge management: Practice and future,” J. Syst. Softw., vol. 116, pp. 191–205, 2016, doi: 10.1016/j.jss.2015.08.054. [51] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–32, 2014, doi: 10.1109/JIOT.2014.2306328.
dc.rights.spa.fl_str_mv Ingenierías USBMed - 2025
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
rights_invalid_str_mv Ingenierías USBMed - 2025
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.spa.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6301
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/d43ff8d4-2166-4df7-8e75-c822a74e724f/download
bitstream.checksum.fl_str_mv 14adb75198f5b599e7e3a1ad369ae15c
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053584380067840
spelling Lopez Erazo, Oscar SantiagoHurtado Alegría, Julio ArielHurtado Banguero, Andrés FelipePeñeñory Beltrán, Victor Manuel2025-07-10T11:55:06Z2025-08-22T17:04:29Z2025-07-10T11:55:06Z2025-08-22T17:04:29Z2025-07-10El desarrollo de productos software en general cuenta con procesos y prácticas reconocidas por la industria de software, teniendo como fases críticas el análisis de los requerimientos, donde se determinan las funcionalidades, las propiedades y los atributos de calidad que debe tener un producto software. En resumen, el principio de la arquitectura de software junto con buenas practicas pueden aportar en la evolución, modelado, desarrollo y ejecución de productos software complejos basados en IoT, fortaleciendo la calidad y funcionalidad requeridas. Teniendo en cuenta lo anterior, es evidente que hay una gran necesidad por cubrir desde la ingeniería de software en lo que respecta a la construcción de soluciones software basadas en la IoT. Por otra parte, se presentan resultados de investigación como atributos de calidad y prácticas para software basado en IoT.The development of software products in general has processes and practices recognized by the software industry, having as critical phases the analysis of the requirements, where the functionalities, properties and quality attributes that a software product must have are determined. In summary, the principle of software architecture together with good practices can contribute to the evolution, modeling, development and execution of complex IoT-based software products, strengthening the required quality and functionality. Taking into account the above, it is evident that there is a great need to cover from software engineering in regards to the construction of software solutions based on the IoT. On the other hand, research results are presented as quality attributes and practices for IoT-based products.application/pdf10.21500/20275846.63012027-5846https://hdl.handle.net/10819/29034https://doi.org/10.21500/20275846.6301spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6301/5681Núm. 1 , Año 2025 : Ingenierías USBMed8316816Ingenierías USBMedL. Petrović, I. Jezdović, D. Stojanović, Z. Bogdanović, and M. Despotović-Zrakić, “Development of an educational game based on IoT,” Ijeec - Int. J. Electr. Eng. Comput., vol. 1, no. 1, 2017, doi: 10.7251/ijeec1701036p. [2] J. Kiruthika and S. Khaddaj, “Software quality issues and challenges of internet of things,” Proc. - 14th Int. Symp. Distrib. Comput. Appl. Business, Eng. Sci. DCABES 2015, pp. 176–179, 2016, doi: 10.1109/DCABES.2015.51. [3] J. J. C. Tambotoh, S. M. Isa, F. L. Gaol, B. Soewito, and H. L. H. S. Warnars, “Software quality model for Internet of Things governance,” Proc. 2016 Int. Conf. Data Softw. Eng. ICoDSE 2016, 2017, doi: 10.1109/ICODSE.2016.7936138. [4] T. R and B. A, “Quality assurance of iot based home automation application using modified ISO/IEC 25010,” Int. J. Eng. Trends Technol., 2021. [5] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja, “Software Engineering for the Internet of Things House Advertisement,” IEEE Softw., vol. 33, no. 2, pp. c3–c3, 2016, doi: 10.1109/ms.2016.50. [6] K. Ojo-Gonzalez and B. Bonilla-Morales, “Requerimientos no funcionales para sistemas basados en el Internet de las cosas (IoT): Una revisión,” I+D Tecnológico, vol. 17, no. 2, 2021, doi: 10.33412/idt.v17.2.3303. [7] iso25000, “ISO 25000,” 2021. iso25000.com. [8] M. Kim, “A Quality Model for Evaluating IoT Applications,” Int. J. Comput. Electr. Eng., vol. 8, no. 1, pp. 66–76, 2016, doi: 10.17706/ijcee.2016.8.1.66-76. [9] M. Sirshar, M. Khan, K. Naeem, and T. Akbar, “Software Quality Assurance testing methodologies in IoT,” no. December 2019, 2019, [Online]. Available: www.preprints.org. [10] M. Bures, T. Cerny, and B. S. Ahmed, “Internet of things: Current challenges in the quality assurance and testing methods,” Lect. Notes Electr. Eng., vol. 514, pp. 625–634, 2019, doi: 10.1007/978-981-13-1056-0_61. [11] R. Arakaki, V. T. Hayashi, and W. V. Ruggiero, “Available and Fault Tolerant IoT System: Applying Quality Engineering Method,” 2nd Int. Conf. Electr. Commun. Comput. Eng. ICECCE 2020, no. June, pp. 12–13, 2020, doi: 10.1109/ICECCE49384.2020.9179341. [12] B. S. Ahmed, M. Bures, K. Frajtak, and T. Cerny, “Aspects of Quality in Internet of Things (IoT) Solutions: A Systematic Mapping Study,” IEEE Access, vol. 7, no. c, pp. 13758–13780, 2019, doi: 10.1109/ACCESS.2019.2893493. [13] M. Marwah, Q. Mateen, and M. Sirshar, “Software Quality Assurance in Internet of Things,” Int. J. Comput. Appl., vol. 109, no. 9, pp. 16–24, 2015, doi: 10.5120/19217-0964. [14] I. A. Baños, “Metodologia para Evaluar la Calidad de un Producto Software de una Implementacion de Internet de las Cosas,” 2017. [15] H. Foidl and M. Felderer, “Data science challenges to improve quality assurance of internet of things applications,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9953 LNCS, pp. 707–726, 2016, doi: 10.1007/978-3-319-47169-3_54. [16] M. Abdallah, T. Jaber, N. Alabwaini, and A. A. Alnabi, “A Proposed Quality Model for the Internet of Things Systems,” 2019 IEEE Jordan Int. Jt. Conf. Electr. Eng. Inf. Technol. JEEIT 2019 - Proc., pp. 23–27, 2019, doi: 10.1109/JEEIT.2019.8717516. [17] P. Patel and D. Cassou, “Enabling high-level application development for the Internet of Things,” J. Syst. Softw., vol. 103, pp. 62–84, 2015, doi: 10.1016/j.jss.2015.01.027. [18] H. Washizaki, S. Ogata, A. Hazeyama, T. Okubo, E. B. Fernandez, and N. Yoshioka, “Landscape of Architecture and Design Patterns for IoT Systems,” IEEE Internet Things J., vol. 7, no. 10, pp. 10091–10101, 2020, doi: 10.1109/JIOT.2020.3003528. [19] A. Alreshidi and A. Ahmad, “Architecting software for the Internet of Thing based systems,” Futur. Internet, vol. 11, no. 7, 2019, doi: 10.3390/fi11070153. [20] B. Y. P. Fremantle, “Wso2_Whitepaper_a-Reference-Architecture-for-the-Internet-of-Things,” vol. 0, 2015. [21] E. Cavalcante, M. P. Alves, T. Batista, F. C. Delicato, and P. F. Pires, “An analysis of reference architectures for the internet of things,” CobRA 2015 - Proc. 1st Int. Work. Explor. Component-Based Tech. Constr. Ref. Archit. Part CompArch 2015, pp. 13–16, 2015, doi: 10.1145/2755567.2755569. [22] Z. Li, P. Liang, and P. Avgeriou, Architectural Debt Management in Value-Oriented Architecting. Elsevier Inc., 2014. [23] S. Moaven and J. Habibi, “A fuzzy-AHP-based approach to select software architecture based on quality attributes (FASSA),” Knowl. Inf. Syst., vol. 62, no. 12, pp. 4569–4597, 2020, doi: 10.1007/s10115-020-01496-7. [24] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,” IEEE Softw., vol. 33, no. 1, pp. 112–116, 2016, doi: 10.1109/MS.2016.20. [25] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of IoT: Applications, challenges, and opportunities with China Perspective,” IEEE Internet Things J., vol. 1, no. 4, pp. 349–359, 2014, doi: 10.1109/JIOT.2014.2337336. [26] J. Del Rio et al., “A Sensor Web Architecture for Integrating Smart Oceanographic Sensors into the Semantic Sensor Web,” pp. 1–13, 2017. [27] Z. Stojanov and D. Dobrilovic, “Software architecture quality attributes of a layered sensor-based IoT system,” CEUR Workshop Proc., vol. 2984, pp. 66–74, 2021. [28] P. M. Jacob and P. Mani, “Software architecture pattern selection model for internet of things based systems,” IET Softw., vol. 12, no. 5, pp. 390–396, 2018, doi: 10.1049/iet-sen.2017.0206. [29] J. Wan et al., “Software-Defined Industrial Internet of Things in the Context of Industry 4.0,” IEEE Sens. J., vol. 16, no. 20, pp. 7373–7380, 2016, doi: 10.1109/JSEN.2016.2565621. [30] F. A. Fontana and I. Pigazzini, “Evaluating the Architectural Debt of IoT Projects,” Proc. - 2021 IEEE/ACM 3rd Int. Work. Softw. Eng. Res. Pract. IoT, SERP4IoT 2021, pp. 27–31, 2021, doi: 10.1109/SERP4IoT52556.2021.00011. [31] T. Ninikrishna et al., “Software defined IoT: Issues and challenges,” Proc. Int. Conf. Comput. Methodol. Commun. ICCMC 2017, vol. 2018-January, no. Iccmc, pp. 723–726, 2018, doi: 10.1109/ICCMC.2017.8282560. [32] H. P. Breivold and K. Sandstrom, “Internet of Things for Industrial Automation-Challenges and Technical Solutions,” Proc. - 2015 IEEE Int. Conf. Data Sci. Data Intensive Syst. 8th IEEE Int. Conf. Cyber, Phys. Soc. Comput. 11th IEEE Int. Conf. Green Comput. Commun. 8th IEEE Int. Conf. Internet Things, DSDIS/CPSCom/GreenCom/iThings 2015, pp. 532–539, 2015, doi: 10.1109/DSDIS.2015.11. [33] L. Patra and U. P. Rao, “Internet of Things-Architecture, applications, security and other major challenges,” Proc. 10th INDIACom; 2016 3rd Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2016, no. October, pp. 1201–1206, 2016. [34] G. Campeanu, “A mapping study on microservice architectures of Internet of Things and cloud computing solutions,” 2018 7th Mediterr. Conf. Embed. Comput. MECO 2018 - Incl. ECYPS 2018, Proc., no. June, pp. 1–4, 2018, doi: 10.1109/MECO.2018.8406008. [35] W. Rafique, X. Zhao, S. Yu, I. Yaqoob, M. Imran, and W. Dou, “An Application Development Framework for Internet-of-Things Service Orchestration,” IEEE Internet Things J., vol. 7, no. 5, pp. 4543–4556, 2020, doi: 10.1109/JIOT.2020.2971013. [36] C. Verdouw, H. Sundmaeker, B. Tekinerdogan, D. Conzon, and T. Montanaro, “Architecture framework of IoT-based food and farm systems: A multiple case study,” Comput. Electron. Agric., vol. 165, no. April, p. 104939, 2019, doi: 10.1016/j.compag.2019.104939. [37] W. Aman and E. Snekkenes, “Managing security trade-offs in the Internet of Things using adaptive security,” 2015 10th Int. Conf. Internet Technol. Secur. Trans. ICITST 2015, pp. 362–368, 2016, doi: 10.1109/ICITST.2015.7412122. [38] V. K. Quy et al., “IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges,” Appl. Sci., vol. 12, no. 7, 2022, doi: 10.3390/app12073396. [39] P. P. Ray, “Internet of things for smart agriculture: Technologies, practices and future direction,” J. Ambient Intell. Smart Environ., vol. 9, no. 4, pp. 395–420, 2017, doi: 10.3233/AIS-170440. [40] A. Sinha, G. Shrivastava, and P. Kumar, “Architecting user-centric internet of things for smart agriculture,” Sustain. Comput. Informatics Syst., vol. 23, pp. 88–102, 2019, doi: 10.1016/j.suscom.2019.07.001. [41] J. C. Guillermo, A. García-Cedeño, D. Rivas-Lalaleo, M. Huerta, and R. Clotet, “IoT Architecture Based on Wireless Sensor Network Applied to Agricultural Monitoring: A Case of Study of Cacao Crops in Ecuador,” Adv. Intell. Syst. Comput., vol. 893, pp. 42–57, 2019, doi: 10.1007/978-3-030-04447-3_3. [42] S. Verma, R. Gala, S. Madhavan, S. Burkule, S. Chauhan, and C. Prakash, “An Internet of Things (IoT) Architecture for Smart Agriculture,” Proc. - 2018 4th Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2018, pp. 1–4, 2018, doi: 10.1109/ICCUBEA.2018.8697707. [43] A. Razzaq, A Systematic Review on Software Architectures for IoT Systems and Future Direction to the Adoption of Microservices Architecture, vol. 1, no. 6. Springer Singapore, 2020. [44] B. Kitchenham, “Procedures for Performing Systematic Reviews,” 2004. [45] L. K. Kai Petersen, Sairam Vakkalanka, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Inf. Softw. Technol., 2015, doi: http://dx.doi.org/10.1016/j.infsof.2015.03.007. [46] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements engineering paper classification and evaluation criteria: a proposal and a discussion,” Requir. Eng., doi: https://doi.org/10.1007/s00766-005-0021-6. [47] M. Zarour, A. Abran, J.-M. Desharnais, and A. Abdulrahman, “An investigation into the best practices for the successful design and implementation of lightweight software process assessment methods: A systematic literature review,” J. Syst. Softw., 2014, doi: https://doi.org/10.1016/j.jss.2014.11.041. [48] S. Taherizadeh, V. Stankovski, and M. Grobelnik, “A capillary computing architecture for dynamic internet of things: Orchestration of microservices from edge devices to fog and cloud providers,” Sensors (Switzerland), vol. 18, no. 9, 2018, doi: 10.3390/s18092938. [49] H. Muccini and M. T. Moghaddam, IoT architectural styles: A systematic mapping study, vol. 11048 LNCS. Springer International Publishing, 2018. [50] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years of software architecture knowledge management: Practice and future,” J. Syst. Softw., vol. 116, pp. 191–205, 2016, doi: 10.1016/j.jss.2015.08.054. [51] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–32, 2014, doi: 10.1109/JIOT.2014.2306328.Ingenierías USBMed - 2025info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6301Software Quality, Quality Model, Quality Assurance, Non Functional Requirement, Software Architecture, Internet of things.Calidad de software, Modelo de calidad, Aseguramiento de calidad, Requerimiento no funcional, Arquitectura de software, Internet de las cosas.IoTAP Prácticas de diseño de la arquitectura y sus requisitos de calidad en el contexto de desarrollo de software basado en IoTArchitecture design practices and their quality requirements in the context of IoT-based software developmentArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2830https://bibliotecadigital.usb.edu.co/bitstreams/d43ff8d4-2166-4df7-8e75-c822a74e724f/download14adb75198f5b599e7e3a1ad369ae15cMD5110819/29034oai:bibliotecadigital.usb.edu.co:10819/290342025-08-22 12:04:29.334https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com