Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D

Los entornos de RV no inmersivos se constituyen en la aplicación de menor interactividad en relación con las técnicas de realidad virtual, de modo que la interacción con el entorno de realidad virtual puede ocurrir de forma común en televisores 3D (TV-3D), sin que exista una inmersión total en el en...

Full description

Autores:
Rosa, Pedro J.
Luz, Filipe
Júnior, Roberto
Oliveira, Jorge
Morais, Diogo
Gamito, Pedro
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/25844
Acceso en línea:
https://hdl.handle.net/10819/25844
https://doi.org/10.21500/20112084.4670
Palabra clave:
Virtual Environment
Physiology-Driven
Emotion elicitation
Cardiac Activity
Fear of cockroaches
Katsaridaphobia
Entorno virtual
Abordaje fisiológico
Elicitación de Emociones
Actividad Cardíaca
Miedo a las cucarachas
Catsaridafobia
Rights
openAccess
License
International Journal of Psychological Research - 2020
id SANBUENAV2_931849bd7c1f0f56ed526ac42f1c28d5
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/25844
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D
dc.title.translated.spa.fl_str_mv Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D
title Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D
spellingShingle Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D
Virtual Environment
Physiology-Driven
Emotion elicitation
Cardiac Activity
Fear of cockroaches
Katsaridaphobia
Entorno virtual
Abordaje fisiológico
Elicitación de Emociones
Actividad Cardíaca
Miedo a las cucarachas
Catsaridafobia
title_short Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D
title_full Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D
title_fullStr Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D
title_full_unstemmed Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D
title_sort Entorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3D
dc.creator.fl_str_mv Rosa, Pedro J.
Luz, Filipe
Júnior, Roberto
Oliveira, Jorge
Morais, Diogo
Gamito, Pedro
dc.contributor.author.eng.fl_str_mv Rosa, Pedro J.
Luz, Filipe
Júnior, Roberto
Oliveira, Jorge
Morais, Diogo
Gamito, Pedro
dc.subject.eng.fl_str_mv Virtual Environment
Physiology-Driven
Emotion elicitation
Cardiac Activity
Fear of cockroaches
Katsaridaphobia
topic Virtual Environment
Physiology-Driven
Emotion elicitation
Cardiac Activity
Fear of cockroaches
Katsaridaphobia
Entorno virtual
Abordaje fisiológico
Elicitación de Emociones
Actividad Cardíaca
Miedo a las cucarachas
Catsaridafobia
dc.subject.spa.fl_str_mv Entorno virtual
Abordaje fisiológico
Elicitación de Emociones
Actividad Cardíaca
Miedo a las cucarachas
Catsaridafobia
description Los entornos de RV no inmersivos se constituyen en la aplicación de menor interactividad en relación con las técnicas de realidad virtual, de modo que la interacción con el entorno de realidad virtual puede ocurrir de forma común en televisores 3D (TV-3D), sin que exista una inmersión total en el entorno. Este estudio presenta cómo la exposición a la TV-3D, combinada con el registro fisiológico, puede inducir temor a las cucarachas en personas con diferentes niveles de miedo. Treinta y seis participantes, divididos en tres grupos según su nivel de miedo a las cucarachas, fueron expuestos a un entorno de realidad virtual con cucarachas, durante 4 minutos, mientras se registraba su actividad cardíaca, que fue usada como entrada para el entorno de realidad virtual. Los resultados revelaron efectos significativos en las medidas tomadas por autorreporte y en la frecuencia cardíaca de diferentes grupos temerosos a las cucarachas. Además, los participantes más temerosos son más propensos a desencadenar la aparición de cucarachas en el entorno de realidad virtual, debido a su aceleración cardíaca. Los resultados generales sugieren que nuestro entorno de RV es válido para inducir miedo a las cucarachas, con un potencial uso en el dominio terapéutico.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-20T02:38:00Z
2025-07-31T16:12:17Z
dc.date.available.none.fl_str_mv 2020-08-20T02:38:00Z
2025-07-31T16:12:17Z
dc.date.issued.none.fl_str_mv 2020-08-20
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20112084.4670
dc.identifier.eissn.none.fl_str_mv 2011-7922
dc.identifier.issn.none.fl_str_mv 2011-2084
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/25844
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20112084.4670
identifier_str_mv 10.21500/20112084.4670
2011-7922
2011-2084
url https://hdl.handle.net/10819/25844
https://doi.org/10.21500/20112084.4670
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/download/4670/3706
dc.relation.citationedition.eng.fl_str_mv Núm. 2 , Año 2020 : Volume 13(2)
dc.relation.citationendpage.none.fl_str_mv 108
dc.relation.citationissue.eng.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 99
dc.relation.citationvolume.eng.fl_str_mv 13
dc.relation.ispartofjournal.eng.fl_str_mv International Journal of Psychological Research
dc.relation.references.eng.fl_str_mv American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition. Diagnostic and Statistical Manual of Mental Disorders, (5th Edition). https://doi.org/10.1176/appi.books.9780890425596.744053. Anolli, L., Mantovani, F., Confalonieri, L., Ascolese, A., & Peveri, L. (2010). Emotions in serious games: From experience to assessment. International Journal of Emerging Technologies in Learning, 5 (SI3), 7–16. https://doi.org/10.3991/ijet.v5s3.1496. Becker, E. S., Rinck, M., Türke, V., Kause, P., Goodwin, R., Neumer, S., & Margraf, J. (2007). Epidemiology of specific phobia subtypes: Findings from the dresden mental health study. European Psychiatry, 22 (2), 69–74. https://doi.org/10.1016/j.eurpsy.2006.09.006. ´Cosi´c, K., Popovi, S., Kukolja, D., Horvat, M., & Dropulji, B. (2010). Physiology-driven adaptive virtual reality stimulation for prevention and treatment of stress related disorders. Cyberpsychology, Behavior, and Social Networking, 13 (1), 73–78. https://doi.org/10.1089/cyber.2009.0260. Cui, J., & Qian, G. (2007). Selection of Working Correlation Structure and Best Model in GEE Analyses of Longitudinal Data. Communications in Statistics - Simulation and Computation, 36 (5), 987–996. https://doi.org/10.1080/03610910701539617. Curtis, V., & Biran, A. (2001). Dirt, disgust, and disease. is hygiene in our genes? Perspectives in Biology and Medicine, 44 (1), 17–31. https://doi.org/10.1353/pbm.2001.0001. Dekker, A., & Champion, E. (2007). Please biofeed the zombies: Enhancing the gameplay and display of a horror game using biofeedback. In 3rd Digital Games Research Association International Conference: “Situated Play”, (pp. 550–558). https://doi.org/10.25917/5d1443e8af4a0. Essau, C. A., Conradt, J., & Petermann, F. (2000). Frequency, Comorbidity, and Psychosocial Impairment of Specific Phobia in Adolescents. Journal of Clinical Child and Adolescent Psychology, 29 (2), 221–231. https://doi.org/10.1207/S15374424jccp2902_8. Fredrikson, M., Annas, P., Fischer, H., & Wik, G. (1996). Gender and age differences in the prevalence of specific fears and phobias. Behaviour Research and Therapy, 34 (1), 33–39. https://doi.org/10.1016/0005-7967(95)00048-3. Gamito, P., Oliveira, J., Baptista, A., Morais, D., Lopes, P., Rosa, P., Santos, N., & Brito, R. (2014). Eliciting nicotine craving with virtual smoking cues. Cyberpsychology, Behavior and Social Networking, 17 (8), 556–561. https://doi.org/10.1089/cyber.2013.0329. Gamito, P., Oliveira, J., Morais, D., Rosa, P. J., & Saraiva, T. (2011a). NeuAR – A Review of the VR/AR Applications in the Neuroscience Domain In Andrew Yeh Ching Nee (Ed.), Augmented Reality Some Emerging Application Areas (pp. 131–154). InTech, Publishing. Gamito, P., Oliveira, J., Morais, D., Rosa, P. J., & Saraiva, T. (2011b). Serious Games for Serious problems: from Ludicus to Therapeuticus In Kim JJ. (Ed.), Virtual Reality (pp. 527–548). InTech, Publishing. Gamito, P., Oliveira, J., Rosa, P., Morais, D., Duarte, N., Oliveira, S., & Saraiva, T. (2010). PTSD elderly war veterans: A clinical controlled pilot study. Cyberpsychology, Behavior and Social Networking, 13 (1), 43–48. https://doi.org/10.1089/cyber.2009.0237. Hood, H. K., & Antony, M. M. (2012). Evidence-Based Assessment and Treatment of Specific Phobias in Adults. In L. G. Davis III, T. E., Ollendick, T.H., Öst (Ed.), Autism and child psychopathology series. Intensive one-session treatment of specific (pp. 19–42). https://doi.org/10.1007/978-1-4614-3253-1_2. Izard, C. E. (1977). Human Emotions. Springer US. https://doi.org/10.1007/978-1-4899-2209-0. Kawai, N., & He, H. (2016). Breaking snake camouflage: Humans detect snakes more accurately than other animals under less discernible visual conditions. PLoS ONE, 11 (10), e0164342. https://doi.org/10.1371/journal.pone.0164342. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of dsmiv disorders in the national comorbidity survey replication. Archives of General Psychiatry, 62 (6), 593–602. https://doi.org/10.1001/archpsyc.62.6.593. Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42 (3), 419–427. https://doi.org/10.1007/BF02344719. Larson, C. L., Schaefer, H. S., Siegle, G. J., Jackson, C. A. B., Anderle, M. J., & Davidson, R. J. (2006). Fear is fast in phobic individuals: Amygdala activation in response to fear-relevant stimuli. Biological Psychiatry, 60 (4), 410–417. https://doi.org/10.1016/j.biopsych.2006.03.079. Ledoux, J. (2003). The emotional brain , fear , and the amygdala. Celllular and Molecular Neurobioloy, 23 (4–5), 727–738. https://doi.org/10.1023/a:1025048802629. Li, Y., Elmaghraby, A. S., El-Baz, A., & Sokhadze, E. M. (2016). Using physiological signal analysis to design affective VR games. 2015 IEEE International Symposium on Signal Processing and Information Technology (pp. 57–62). ISSPIT. https://doi.org/10.1109/ISSPIT.2015.7394401. Margalhos, P., & Rosa, P. J. (2016). Eye-tracking as a research methodology in educational context: the bridging framework. In C. A. Was, F. J. Sansosti, B. J. Morris (Eds.), Eye-Tracking Technology Applications in Educational Research (pp. 1–45). IGI Global editors. Mayer, B., Muris, P., Vogel, L., Nojoredjo, I., & Merckelbach, H. (2006). Fear-relevant change detection in spider-fearful and non-fearful participants. Journal of Anxiety Disorders, 20 (4), 510–519. https://doi.org/10.1016/j.janxdis.2005.05.001. Moghimi, M., Stone, R., Rotshtein, P., & Cooke, N. (2016). Influencing human affective responses to dynamic virtual environments. Presence, 25 (2), 81–107. https://doi.org/10.1162/PRES_a_00249. Öhman, A. (1986). Face the beast and fear the face: Animal and social fears as prototypes for evolutionary analyses of emotion. Psychophysiology, 23 (2), 123–145. https://doi.org/10.1111/j.1469-8986.1986.tb00608.x. Peira, N., Fredrikson, M., & Pourtois, G. (2014). Controlling the emotional heart: Heart rate biofeedback improves cardiac control during emotional reactions. International Journal of Psychophysiology, 91 (3), 225–231. https://doi.org/10.1016/j.ijpsycho.2013.12.008. Rosa, P. J., Esteves, F., & Arriaga, P. (2014). Effects of fear-relevant stimuli on attention: integrating gaze data with subliminal exposure [Conference session]. Proceedings of IEEE International Symposium on Medical Measurements and Applications, Lisboa. https://doi.org/10.1109/MeMeA.2014.6860021. Rosa, P. J., Esteves, F., & Arriaga, P. (2015). Beyond traditional clinical measurements for screening fears and phobias. IEEE Transactions on Instrumentation and Measurement, 64 (12), 3396– 3404. https://doi.org/10.1109/TIM.2015.2450292. Rosa, P. J., Gamito, P., Oliveira, J., & Morais, D. (2011). Attentional orienting to biologically fear-relevant stimuli: Data from eye tracking using the continual alternation flicker paradigm. Journal of Eye Tracking, Emotion and Cognition, 1 (1), 22–29. Rosa, P. J., Gamito, P., Oliveira, J., Morais, D., Pavlovic, M., & Smyth, O. (2015). Show me your eyes! The combined use of eye tracking and virtual reality applications for cognitive assessment. In Fardoun, H. M., Gamito, P., Penichet, V. M. R., & Alghazzawi, D. M. (Eds.). REHAB 15: Proceedings of the 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques (pp. 135-139). ACM. http://dx.doi.org/10.1145/2838944.2838977. Rosa, P. J., Lopes, P., Oliveira, J., & Pascoal, P. (2019). Does length really matter? Effects of number of pages in the informed consent on reading behavior: An Eye-Tracking Study. In Communications in Computer and Information Science (Vol. 1002, pp. 116–125). Springer, Cham. https://doi.org/10.1007/978-3-030-16785-1_9. Rosa, P. J., Morais, D., Oliveira, J., Gamito, P., Smyth, O., & Pavlovic, M. (2017). Assessment of attentional and mnesic processes through gaze tracking analysis: inferences from comparative search tasks embedded in VR serious games. In J. Garrido (Ed), ICTs for Improving Patient Rehabilitation Research Techniques (pp. 26-34). Springer. Rosa, P. J., Oliveira, J., Alghazzawi, D., Fardoun, H., & Gamito, P. (2017). Affective and physiological correlates of perception of unimodal and bimodal emotional stimuli. Psicothema, 29 (3), 364–369. https://doi.org10.7334/psicothema2016.272. Sakurazawa, S., Yoshida, N., & Munekata, N. (2004). Entertainment Feature of a Game Using Skin Conductance Response. In Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology (pp. 181–186). Association for Computing Machinery. https://doi.org/10.1145/1067343.1067365. Scandola, M., Bastinelli, A., Spoto, A., & Vidotto, G. (2010). The Fear of Cockroaches Questionnaire (FCQ). Review of Psychology, 17 (2), 1–8. http://hrcak.srce.hr/70669. Sharpe, D. (2015). Chi-square test is statistically significant: Now what? Practical Assessment, Research, and Evaluation, 20 (8), 1–10. https://doi.org/10.7275/tbfa-x148. Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29 (2), 58–69. https://doi.org/10.1016/j.displa.2007.09.005. Slater, M. (2009). Place Illusion and Plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society of London, 364, 3549–355. https://doi.org/10.3389/frobt.2016.00074. Stinson, F. S., Dawson, D. S., Chou, S. P., Smith, S., Goldtein, R. B., Ruan, W. J., & Grant, B. F. (2007). The epidemiology of DSM-IV specific phobia in the USA: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychological Medicine, 37 (7), 1047–1059. https://doi.org/10.1017/S0033291707000086. Szymanski, J., & O’Donohue, W. (1995). Fear of Spiders Questionnaire. Journal of Behavior Therapy and Experimental Psychiatry, 26 (1), 31–34. https://doi.org/10.1016/0005-7916(94)00072-T. van Rooij, M., Lobel, A., Harris, O., Smit, N., & Granic, I. (2016). DEEP: A Biofeedback Virtual Reality Game for Children At-risk for Anxiety. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA ’16 (Vol. 07-12-May) (pp. 1989–1997). ACM Press. https://doi.org/10.1145/2851581.2892452. Wang, Q., Sourina, O., & Nguyen, M. K. (2010). EEGBased “Serious” Games Design for Medical Applications. In 2010 International Conference on Cyberworlds (pp. 270–276). IEEE. https://doi.org/10.1109/CW.2010.56. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54 (6), 1063–1070. https://doi.org/10.1037//002 2-3514.54.6.1063. Wolitzky-Taylor, K. B., Horowitz, J. D., Powers, M. B., & Telch, M. J. (2008). Psychological approaches in the treatment of specific phobias: A metaanalysis. Clinical Psychology Review, 28 (6), 1021–1037. https://doi.org/10.1016/j.cpr.2008.02.007. Ziegler, A. (2011). Generalized Estimating Equations (Vol.204). Springer New York. https://doi.org/10.1007/978-1-4614-0499-6.
dc.rights.eng.fl_str_mv International Journal of Psychological Research - 2020
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv International Journal of Psychological Research - 2020
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.eng.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/view/4670
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/bf3d55af-18d4-4435-943e-a93ef46eb3af/download
bitstream.checksum.fl_str_mv 56f5adc37b9f004b744a74932e872473
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053692261761024
spelling Rosa, Pedro J.Luz, FilipeJúnior, RobertoOliveira, JorgeMorais, DiogoGamito, Pedro2020-08-20T02:38:00Z2025-07-31T16:12:17Z2020-08-20T02:38:00Z2025-07-31T16:12:17Z2020-08-20Los entornos de RV no inmersivos se constituyen en la aplicación de menor interactividad en relación con las técnicas de realidad virtual, de modo que la interacción con el entorno de realidad virtual puede ocurrir de forma común en televisores 3D (TV-3D), sin que exista una inmersión total en el entorno. Este estudio presenta cómo la exposición a la TV-3D, combinada con el registro fisiológico, puede inducir temor a las cucarachas en personas con diferentes niveles de miedo. Treinta y seis participantes, divididos en tres grupos según su nivel de miedo a las cucarachas, fueron expuestos a un entorno de realidad virtual con cucarachas, durante 4 minutos, mientras se registraba su actividad cardíaca, que fue usada como entrada para el entorno de realidad virtual. Los resultados revelaron efectos significativos en las medidas tomadas por autorreporte y en la frecuencia cardíaca de diferentes grupos temerosos a las cucarachas. Además, los participantes más temerosos son más propensos a desencadenar la aparición de cucarachas en el entorno de realidad virtual, debido a su aceleración cardíaca. Los resultados generales sugieren que nuestro entorno de RV es válido para inducir miedo a las cucarachas, con un potencial uso en el dominio terapéutico.Non-immersive VR environments are related to the least interactive application of VR techniques, such that interaction with the VR environment can occur commonly by 3D-TV without full immersion into the environment. This study presents how 3D-TV exposure combined with physiology recording can elicit fear of cockroaches among individuals with different levels of fear. Thirty-six participants, set apart into three fear groups (low vs. moderate vs. high), were exposed to VR environment with cockroaches for 4 minutes while recording and using cardiac activity as input to the VR environment. Results revealed significant effects on self-report measures and heart rate between different fear groups. Moreover, participants with higher levels of fear were more likely to trigger cockroaches into the scenario due to their cardiac acceleration. Overall results suggest that our physiology-driven VR environment is valid for fear elicitation while having potential use in therapeutic domain.application/pdf10.21500/20112084.46702011-79222011-2084https://hdl.handle.net/10819/25844https://doi.org/10.21500/20112084.4670engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/4670/3706Núm. 2 , Año 2020 : Volume 13(2)10829913International Journal of Psychological ResearchAmerican Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition. Diagnostic and Statistical Manual of Mental Disorders, (5th Edition). https://doi.org/10.1176/appi.books.9780890425596.744053. Anolli, L., Mantovani, F., Confalonieri, L., Ascolese, A., & Peveri, L. (2010). Emotions in serious games: From experience to assessment. International Journal of Emerging Technologies in Learning, 5 (SI3), 7–16. https://doi.org/10.3991/ijet.v5s3.1496. Becker, E. S., Rinck, M., Türke, V., Kause, P., Goodwin, R., Neumer, S., & Margraf, J. (2007). Epidemiology of specific phobia subtypes: Findings from the dresden mental health study. European Psychiatry, 22 (2), 69–74. https://doi.org/10.1016/j.eurpsy.2006.09.006. ´Cosi´c, K., Popovi, S., Kukolja, D., Horvat, M., & Dropulji, B. (2010). Physiology-driven adaptive virtual reality stimulation for prevention and treatment of stress related disorders. Cyberpsychology, Behavior, and Social Networking, 13 (1), 73–78. https://doi.org/10.1089/cyber.2009.0260. Cui, J., & Qian, G. (2007). Selection of Working Correlation Structure and Best Model in GEE Analyses of Longitudinal Data. Communications in Statistics - Simulation and Computation, 36 (5), 987–996. https://doi.org/10.1080/03610910701539617. Curtis, V., & Biran, A. (2001). Dirt, disgust, and disease. is hygiene in our genes? Perspectives in Biology and Medicine, 44 (1), 17–31. https://doi.org/10.1353/pbm.2001.0001. Dekker, A., & Champion, E. (2007). Please biofeed the zombies: Enhancing the gameplay and display of a horror game using biofeedback. In 3rd Digital Games Research Association International Conference: “Situated Play”, (pp. 550–558). https://doi.org/10.25917/5d1443e8af4a0. Essau, C. A., Conradt, J., & Petermann, F. (2000). Frequency, Comorbidity, and Psychosocial Impairment of Specific Phobia in Adolescents. Journal of Clinical Child and Adolescent Psychology, 29 (2), 221–231. https://doi.org/10.1207/S15374424jccp2902_8. Fredrikson, M., Annas, P., Fischer, H., & Wik, G. (1996). Gender and age differences in the prevalence of specific fears and phobias. Behaviour Research and Therapy, 34 (1), 33–39. https://doi.org/10.1016/0005-7967(95)00048-3. Gamito, P., Oliveira, J., Baptista, A., Morais, D., Lopes, P., Rosa, P., Santos, N., & Brito, R. (2014). Eliciting nicotine craving with virtual smoking cues. Cyberpsychology, Behavior and Social Networking, 17 (8), 556–561. https://doi.org/10.1089/cyber.2013.0329. Gamito, P., Oliveira, J., Morais, D., Rosa, P. J., & Saraiva, T. (2011a). NeuAR – A Review of the VR/AR Applications in the Neuroscience Domain In Andrew Yeh Ching Nee (Ed.), Augmented Reality Some Emerging Application Areas (pp. 131–154). InTech, Publishing. Gamito, P., Oliveira, J., Morais, D., Rosa, P. J., & Saraiva, T. (2011b). Serious Games for Serious problems: from Ludicus to Therapeuticus In Kim JJ. (Ed.), Virtual Reality (pp. 527–548). InTech, Publishing. Gamito, P., Oliveira, J., Rosa, P., Morais, D., Duarte, N., Oliveira, S., & Saraiva, T. (2010). PTSD elderly war veterans: A clinical controlled pilot study. Cyberpsychology, Behavior and Social Networking, 13 (1), 43–48. https://doi.org/10.1089/cyber.2009.0237. Hood, H. K., & Antony, M. M. (2012). Evidence-Based Assessment and Treatment of Specific Phobias in Adults. In L. G. Davis III, T. E., Ollendick, T.H., Öst (Ed.), Autism and child psychopathology series. Intensive one-session treatment of specific (pp. 19–42). https://doi.org/10.1007/978-1-4614-3253-1_2. Izard, C. E. (1977). Human Emotions. Springer US. https://doi.org/10.1007/978-1-4899-2209-0. Kawai, N., & He, H. (2016). Breaking snake camouflage: Humans detect snakes more accurately than other animals under less discernible visual conditions. PLoS ONE, 11 (10), e0164342. https://doi.org/10.1371/journal.pone.0164342. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of dsmiv disorders in the national comorbidity survey replication. Archives of General Psychiatry, 62 (6), 593–602. https://doi.org/10.1001/archpsyc.62.6.593. Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42 (3), 419–427. https://doi.org/10.1007/BF02344719. Larson, C. L., Schaefer, H. S., Siegle, G. J., Jackson, C. A. B., Anderle, M. J., & Davidson, R. J. (2006). Fear is fast in phobic individuals: Amygdala activation in response to fear-relevant stimuli. Biological Psychiatry, 60 (4), 410–417. https://doi.org/10.1016/j.biopsych.2006.03.079. Ledoux, J. (2003). The emotional brain , fear , and the amygdala. Celllular and Molecular Neurobioloy, 23 (4–5), 727–738. https://doi.org/10.1023/a:1025048802629. Li, Y., Elmaghraby, A. S., El-Baz, A., & Sokhadze, E. M. (2016). Using physiological signal analysis to design affective VR games. 2015 IEEE International Symposium on Signal Processing and Information Technology (pp. 57–62). ISSPIT. https://doi.org/10.1109/ISSPIT.2015.7394401. Margalhos, P., & Rosa, P. J. (2016). Eye-tracking as a research methodology in educational context: the bridging framework. In C. A. Was, F. J. Sansosti, B. J. Morris (Eds.), Eye-Tracking Technology Applications in Educational Research (pp. 1–45). IGI Global editors. Mayer, B., Muris, P., Vogel, L., Nojoredjo, I., & Merckelbach, H. (2006). Fear-relevant change detection in spider-fearful and non-fearful participants. Journal of Anxiety Disorders, 20 (4), 510–519. https://doi.org/10.1016/j.janxdis.2005.05.001. Moghimi, M., Stone, R., Rotshtein, P., & Cooke, N. (2016). Influencing human affective responses to dynamic virtual environments. Presence, 25 (2), 81–107. https://doi.org/10.1162/PRES_a_00249. Öhman, A. (1986). Face the beast and fear the face: Animal and social fears as prototypes for evolutionary analyses of emotion. Psychophysiology, 23 (2), 123–145. https://doi.org/10.1111/j.1469-8986.1986.tb00608.x. Peira, N., Fredrikson, M., & Pourtois, G. (2014). Controlling the emotional heart: Heart rate biofeedback improves cardiac control during emotional reactions. International Journal of Psychophysiology, 91 (3), 225–231. https://doi.org/10.1016/j.ijpsycho.2013.12.008. Rosa, P. J., Esteves, F., & Arriaga, P. (2014). Effects of fear-relevant stimuli on attention: integrating gaze data with subliminal exposure [Conference session]. Proceedings of IEEE International Symposium on Medical Measurements and Applications, Lisboa. https://doi.org/10.1109/MeMeA.2014.6860021. Rosa, P. J., Esteves, F., & Arriaga, P. (2015). Beyond traditional clinical measurements for screening fears and phobias. IEEE Transactions on Instrumentation and Measurement, 64 (12), 3396– 3404. https://doi.org/10.1109/TIM.2015.2450292. Rosa, P. J., Gamito, P., Oliveira, J., & Morais, D. (2011). Attentional orienting to biologically fear-relevant stimuli: Data from eye tracking using the continual alternation flicker paradigm. Journal of Eye Tracking, Emotion and Cognition, 1 (1), 22–29. Rosa, P. J., Gamito, P., Oliveira, J., Morais, D., Pavlovic, M., & Smyth, O. (2015). Show me your eyes! The combined use of eye tracking and virtual reality applications for cognitive assessment. In Fardoun, H. M., Gamito, P., Penichet, V. M. R., & Alghazzawi, D. M. (Eds.). REHAB 15: Proceedings of the 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques (pp. 135-139). ACM. http://dx.doi.org/10.1145/2838944.2838977. Rosa, P. J., Lopes, P., Oliveira, J., & Pascoal, P. (2019). Does length really matter? Effects of number of pages in the informed consent on reading behavior: An Eye-Tracking Study. In Communications in Computer and Information Science (Vol. 1002, pp. 116–125). Springer, Cham. https://doi.org/10.1007/978-3-030-16785-1_9. Rosa, P. J., Morais, D., Oliveira, J., Gamito, P., Smyth, O., & Pavlovic, M. (2017). Assessment of attentional and mnesic processes through gaze tracking analysis: inferences from comparative search tasks embedded in VR serious games. In J. Garrido (Ed), ICTs for Improving Patient Rehabilitation Research Techniques (pp. 26-34). Springer. Rosa, P. J., Oliveira, J., Alghazzawi, D., Fardoun, H., & Gamito, P. (2017). Affective and physiological correlates of perception of unimodal and bimodal emotional stimuli. Psicothema, 29 (3), 364–369. https://doi.org10.7334/psicothema2016.272. Sakurazawa, S., Yoshida, N., & Munekata, N. (2004). Entertainment Feature of a Game Using Skin Conductance Response. In Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology (pp. 181–186). Association for Computing Machinery. https://doi.org/10.1145/1067343.1067365. Scandola, M., Bastinelli, A., Spoto, A., & Vidotto, G. (2010). The Fear of Cockroaches Questionnaire (FCQ). Review of Psychology, 17 (2), 1–8. http://hrcak.srce.hr/70669. Sharpe, D. (2015). Chi-square test is statistically significant: Now what? Practical Assessment, Research, and Evaluation, 20 (8), 1–10. https://doi.org/10.7275/tbfa-x148. Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29 (2), 58–69. https://doi.org/10.1016/j.displa.2007.09.005. Slater, M. (2009). Place Illusion and Plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society of London, 364, 3549–355. https://doi.org/10.3389/frobt.2016.00074. Stinson, F. S., Dawson, D. S., Chou, S. P., Smith, S., Goldtein, R. B., Ruan, W. J., & Grant, B. F. (2007). The epidemiology of DSM-IV specific phobia in the USA: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychological Medicine, 37 (7), 1047–1059. https://doi.org/10.1017/S0033291707000086. Szymanski, J., & O’Donohue, W. (1995). Fear of Spiders Questionnaire. Journal of Behavior Therapy and Experimental Psychiatry, 26 (1), 31–34. https://doi.org/10.1016/0005-7916(94)00072-T. van Rooij, M., Lobel, A., Harris, O., Smit, N., & Granic, I. (2016). DEEP: A Biofeedback Virtual Reality Game for Children At-risk for Anxiety. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA ’16 (Vol. 07-12-May) (pp. 1989–1997). ACM Press. https://doi.org/10.1145/2851581.2892452. Wang, Q., Sourina, O., & Nguyen, M. K. (2010). EEGBased “Serious” Games Design for Medical Applications. In 2010 International Conference on Cyberworlds (pp. 270–276). IEEE. https://doi.org/10.1109/CW.2010.56. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54 (6), 1063–1070. https://doi.org/10.1037//002 2-3514.54.6.1063. Wolitzky-Taylor, K. B., Horowitz, J. D., Powers, M. B., & Telch, M. J. (2008). Psychological approaches in the treatment of specific phobias: A metaanalysis. Clinical Psychology Review, 28 (6), 1021–1037. https://doi.org/10.1016/j.cpr.2008.02.007. Ziegler, A. (2011). Generalized Estimating Equations (Vol.204). Springer New York. https://doi.org/10.1007/978-1-4614-0499-6.International Journal of Psychological Research - 2020info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/IJPR/article/view/4670Virtual EnvironmentPhysiology-DrivenEmotion elicitationCardiac ActivityFear of cockroachesKatsaridaphobiaEntorno virtualAbordaje fisiológicoElicitación de EmocionesActividad CardíacaMiedo a las cucarachasCatsaridafobiaEntorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3DEntorno de realidad virtual no inmersivo adaptable para inducción del miedo a las cucarachas: un abordaje fisiológico combinado con exposición a la TV-3DArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2857https://bibliotecadigital.usb.edu.co/bitstreams/bf3d55af-18d4-4435-943e-a93ef46eb3af/download56f5adc37b9f004b744a74932e872473MD5110819/25844oai:bibliotecadigital.usb.edu.co:10819/258442025-07-31 11:12:17.375https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com