Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos

Antecedentes: El propósito de este estudio fue determinar la relevancia de la relación entre la red cerebral y el manejo de los lazos sociales. Método: los participantes son 52 adultos mayores coreanos de 65 años o más que viven en Ganghwa-gun, Incheon. Utilizamos un índice de tríada cerrada (CTI),...

Full description

Autores:
Oh, Seolah
Kim, Aran
Kang, Eunji
Choi, Sungwon
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/25836
Acceso en línea:
https://hdl.handle.net/10819/25836
https://doi.org/10.21500/20112084.4422
Palabra clave:
Brain Network
Seniors
Triad-relationship
Social Ties
Resting State fMRI
Red cerebral
personas mayores
relación tríada
lazos sociales
fMRI en estado de reposo
Rights
openAccess
License
International Journal of Psychological Research - 2020
id SANBUENAV2_6eb4d6dab9193ca23a8f6698f331f8d4
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/25836
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos
dc.title.translated.spa.fl_str_mv Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos
title Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos
spellingShingle Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos
Brain Network
Seniors
Triad-relationship
Social Ties
Resting State fMRI
Red cerebral
personas mayores
relación tríada
lazos sociales
fMRI en estado de reposo
title_short Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos
title_full Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos
title_fullStr Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos
title_full_unstemmed Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos
title_sort Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos
dc.creator.fl_str_mv Oh, Seolah
Kim, Aran
Kang, Eunji
Choi, Sungwon
dc.contributor.author.eng.fl_str_mv Oh, Seolah
Kim, Aran
Kang, Eunji
Choi, Sungwon
dc.subject.eng.fl_str_mv Brain Network
Seniors
Triad-relationship
Social Ties
Resting State fMRI
topic Brain Network
Seniors
Triad-relationship
Social Ties
Resting State fMRI
Red cerebral
personas mayores
relación tríada
lazos sociales
fMRI en estado de reposo
dc.subject.spa.fl_str_mv Red cerebral
personas mayores
relación tríada
lazos sociales
fMRI en estado de reposo
description Antecedentes: El propósito de este estudio fue determinar la relevancia de la relación entre la red cerebral y el manejo de los lazos sociales. Método: los participantes son 52 adultos mayores coreanos de 65 años o más que viven en Ganghwa-gun, Incheon. Utilizamos un índice de tríada cerrada (CTI), que es la unidad de análisis más básica en el estudio de los fenómenos grupales. Este índice es una variable de red social que ha demostrado tener una implicación diferente dependiendo de la condición y el rol del sujeto. Después de realizar dos encuestas por cuestionario a intervalos de tres años, los participantes se clasificaron en un grupo aumentado y un grupo disminuido de acuerdo con el cambio de CTI. Se siguió el análisis de fMRI en estado de reposo para investigar la diferencia de las redes cerebrales entre los grupos.Resultados: Según el análisis del estudio, todos los participantes que habían aumentado en número de CTI tienen una mayor eficiencia local que el grupo de participantes que no tuvieron ningún efecto o disminuyeron en CTI. Conclusiones: Nuestro estudio sugiere que la relación social que está sustancialmente relacionada con la red cerebral es un factor importante en el envejecimiento exitoso. Por último, dado que existe una restricción de que el estudio no puede explicar el aspecto causal de la red cerebral y la relación tríada, existe la necesidad de una mayor investigación.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-20T02:38:00Z
2025-07-31T16:12:13Z
dc.date.available.none.fl_str_mv 2020-08-20T02:38:00Z
2025-07-31T16:12:13Z
dc.date.issued.none.fl_str_mv 2020-08-20
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20112084.4422
dc.identifier.eissn.none.fl_str_mv 2011-7922
dc.identifier.issn.none.fl_str_mv 2011-2084
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/25836
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20112084.4422
identifier_str_mv 10.21500/20112084.4422
2011-7922
2011-2084
url https://hdl.handle.net/10819/25836
https://doi.org/10.21500/20112084.4422
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/download/4422/3702
dc.relation.citationedition.eng.fl_str_mv Núm. 2 , Año 2020 : Volume 13(2)
dc.relation.citationendpage.none.fl_str_mv 67
dc.relation.citationissue.eng.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 59
dc.relation.citationvolume.eng.fl_str_mv 13
dc.relation.ispartofjournal.eng.fl_str_mv International Journal of Psychological Research
dc.relation.references.eng.fl_str_mv Bae, K. H., & Kim, Y. H. (2006). The study on the relationship between social capital and organizational commitment: Focusing on burt’s structural holes. Korean Journal of Public Administration, 44 (3), 1–32. Barrera, M., Sandler, I. N., & Ramsay, T. B. (1981). Preliminary development of a scale of social support: Studies on college students. American Journal of Community Psychology, 9 (4), 435–447. https://doi.org/10.1007/BF00918174. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral cortex, 10 (3), 295–307. https://doi.org/10.1093/cercor/10.3.295. Bherer, L., Erickson, K. I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of aging research, 2013, 657508. https://doi.org/10.1155/2013/657508. Brothers, L. (2001). Friday’s footprint: How society shapes the human mind. Oxford University Press. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neuroscience, 10 (3), 186–198. https://doi.org/10.1038/nrn2575. Burt, R. S. (1992). Structural hole. Harvard Business School Press. Cornwell, B., Laumann, E. O., & Schumm, L. P. (2008). The social connectedness of older adults: A national profile. American sociological review, 73 (2), 185–203. https://doi.org/10.1177%2F000312240807300201. Cornwell, &Waite, L. J. (2009). Social disconnectedness, perceived isolation, and health among older adults. Journal of health and social behavior, 50 (1), 31–48. https://dx.doi.org/10.1177/2F002214650905000103. Costenbaderm, E., & Valente, T. W. (2003). The stability of centrality measures when networks are sampled. Social networks, 25 (4), 283–307. Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain research, 1079 (1), 4–14. https://doi.org/10.1016/j.brainres.2005.12.115. de Vico Fallani, F., Richiardi, J., Chavez, M., & Achard, S. (2014). Graph analysis of functional brain networks: Practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 369 (1653), 20130521. https://dx.doi.org/10.1098/2Frstb.2013.0521. Dugan, E., & Kivett, V. R. (1994). The importance of emotional and social isolation to loneliness among very old rural adults. The Gerontologist, 34 (3), 340–346. https://doi.org/10.1093/geront/34.3.340. Dunkle, R. E., Roberts, B., & Haug, M. R. (2001). The oldest old in everyday life: Self perception, coping with change, and stress. Springer Publishing Company. Fiori, K. L., Antonucci, T. C., & Cortina, K. S. (2006). Social network typologies and mental health among older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 61 (1), P25–P32. https://doi.org/10.1093/geronb/61.1.p25. Fratiglioni, L., Wang, H. X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: A communitybased longitudinal study. The lancet, 355 (9212), 1315–1319. https://doi.org/10.1016/s0140-6736(00)02113-9. Frith, U., & Frith, C. (2001). The biological basis of social interaction. Current Directions in Psychological Science, 10 (5), 151–155. https://doi.org/ 10.1111/1467-8721.00137. Gargiulo, M., & Benassi, M. (2000). Trapped in your own net? network cohesion, structural holes, and the adaptation of social capital. Organization science, 11 (2), 183–196. https://doi.org/10.1287/orsc.11.2.183.12514. Green, M. F., & Horan, W. P. (2010). Social cognition in schizophrenia. Current Directions in Psychological Science, 19 (4), 243–248. https://doi.org/10.1177%2F0963721410377600. Holtzman, R. E., Rebok, G. W., Saczynski, J. S., Kouzis, A. C., WilcoxDoyle, K., & Eaton, W. W. (2004). Social network characteristics and cognition in middle-aged and older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 59 (6), P278–P284. https://doi.org/10.1177%2F0963721410377600. Huang, H., Tang, J., Wu, S., & Liu, L. (2014, April). Mining triadic closure patterns in social networks. In Proceedings of the 23rd International Conference on World Wide Web(pp. 499-504). ACM. Hynes, C. A., Baird, A. A., & Grafton, S. T. (2006). Differential role of the orbital frontal lobe in emotional versus cognitive perspective-taking. Neuropsychologia, 44 (3), 374–383. https://doi.org/10.1016/j.neuropsychologia.2005.06.011. Kennedy, D. P., Redcay, E., & Courchesne, E. (2006). Failing to deactivate: Resting functional abnormalities in autism. Proceedings of the National Academy of Sciences, 103 (21), 8275–8280. https://doi.org/10.1073/pnas.0600674103. Kim, H. Y., & Choi, J. Y. (2016). Aging and efficiency of brain functional networks : Preliminary study in korean women. Korean Journal of Cognitive and Biological Psychology, 28 (4), 675–682. Kwak, S., Joo, W., Youm, Y., & Chey, J. (2018). Social brain volume is associated with in-degree social network size among older adults. Proceedings of the Royal Society B: Biological Sciences, 285 (1871), 20172708. https://doi.org/10.1098/rspb.2017.2708. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87 (19), 198701. https://doi.org/10.1103/PhysRevLett.87.198701. Latora, V., & Marchiori, M. (2003). Economic smallworld behavior in weighted networks. The European Physical Journal B-Condensed Matter and Complex Systems, 32 (2), 249–263. https://doi.org/10.1140/epjb/e2003-00095-5. Lewis, J. D., Evans, A. C., Pruett, J. R., Botteron, K., Zwaigenbaum, L., Estes, A., Gerig, G., Collins, L., Kostopoulos, P., McKinstry, R., Dager, S., Paterson, S., Schultz, R. T., Styner, M., & Hazlett, S., H.and Dager. (2014). Network inefficiencies in autism spectrum disorder at 24 months. Translational psychiatry, 4 (5), e388–e388. https://dx.doi.org/10.1038%2Ftp.2014.24. Liu, Y., & et al. (2008). Disrupted small-world networks in schizophrenia. Brain, 131 (4), 945–961. https://doi.org/10.1093/brain/awn018. Petrella, J. R. (2011). Use of graph theory to evaluate brain networks: A clinical tool for a small world? Reviews and Commentary, 259 (2), 317–320. https://doi.org/10.1148/radiol.11110380. Pinkham, A. E., Hopfinger, J. B., Pelphrey, K. A., Piven, J., & Penn, D. L. (2008). Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophrenia research, 99 (1), 164–175. https://doi.org/10.1016/j.schres.2007.10.024. Prince, M. J., Harwood, R. H., Blizard, R. A., Thomas, A., & Mann, A. H. (1997). Social support deficits, loneliness and life events as risk factors for depression in old age. the gospel oak project vi. Psychological medicine, 27 (02), 323–332. https://doi.org/10.1017/s0033291796004485. Rolland, Y., van Kan, G. A., & Vellas, B. (2010). Healthy brain aging: Role of exercise and physical activity. Clinics in geriatric medicine, 26 (1), 75–87. https://doi.org/10.1016/j.cger.2009.11.002. Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., Villringer, K., Kurth, R., & Villringer, A. (2001). Somatotopic organization of human secondary somatosensory cortex. Cerebral Cortex, 11 (5), 463–473. https://doi.org/10.1093/cercor/11.5.463. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52 (3), 1059–1069. Rudie, J. D., & et al. (2013). Altered functional and structural brain network organization in autism. NeuroImage: clinical, 2, 79–94. https://doi.org/10.1016/j.nicl.2012.11.006. Sabbagh, M. A. (2004). Understanding orbitofrontal contributions to theory-of-mind reasoning: Implications for autism. Brain and cognition, 55 (1), 209–219. https://doi.org/10.1016/j.bandc.2003.04.002. Sala-Llonch, R., & et al. (2014). Changes in whole-brain functional networks and memory performance in aging. Neurobiology of aging, 35 (10), 2193–2202. https://doi.org/10.1016/j.neurobiolaging.2014.04.007. Scheff, S. W., Price, D. A., Schmitt, F. A., Scheff, M. A., & Mufson, E. J. (2011). Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and alzheimer’s disease. Journal of Alzheimer’s Disease, 24 (3), 547–557. https://doi.org/10.3233/jad-2011-101782. Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fmri functional connectivity. European Neuropsychopharmacology, 20 (8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008. Van Tilburg, T. (1998). Losing and gaining in old age: Changes in personal network size and social support in a four-year longitudinal study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 53 (6), S313–S323. https://doi.org/10.1093/geronb/53b.6.s313. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393 (6684), 440–442. https://doi.org/10.1038/30918. Welchew, D. E., & et al. (2005). Functional disconnectivity of the medial temporal lobe in aspergers syndrome. Biological psychiatry, 57 (9), 991– 998. https://doi.org/10.1016/j.biopsych.2005.01.028. Winningham, R. G., & Pike, N. L. (2007). A cognitive intervention to enhance institutionalized older adults social support networks and decrease loneliness. Aging & mental health, 11 (6), 716–721. https://doi.org/10.1080/1360786070136622. Ybarra, O., Burnstein, E., Winkielman, P., Keller, M. C., Manis, M., Chan, E., & Rodriguez, J. (2008). Mental exercising through simple socializing: Social interaction promotes general cognitive functioning. Personality and Social Psychology Bulletin, 34 (2), 248–259. https://doi.org/10.1177/0146167207310454. Youm, Y., Laumann, E. O., Ferraro, K. F., Waite, L. J., Kim, H. C., Park, Y., Chu, S. H., Joo, W., & Lee, J. A. (2014). Social network properties and self-rated health in later life: Comparisons from the korean social life, health, and aging project and the national social life, health and aging project. BMC geriatrics, 14, 1–15. https://doi.org/10.1186/1471-2318-14-102. Zunzunegui, M. V., Alvarado, B. E., Del Ser, T., & Otero, A. (2003). Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 2, S93–S100.
dc.rights.eng.fl_str_mv International Journal of Psychological Research - 2020
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv International Journal of Psychological Research - 2020
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.eng.fl_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/view/4422
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/901f4694-b97e-4688-a52d-bcb87f252699/download
bitstream.checksum.fl_str_mv 3406fdcda927eee2d7e33bd793a96362
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053532689465344
spelling Oh, SeolahKim, AranKang, EunjiChoi, Sungwon2020-08-20T02:38:00Z2025-07-31T16:12:13Z2020-08-20T02:38:00Z2025-07-31T16:12:13Z2020-08-20Antecedentes: El propósito de este estudio fue determinar la relevancia de la relación entre la red cerebral y el manejo de los lazos sociales. Método: los participantes son 52 adultos mayores coreanos de 65 años o más que viven en Ganghwa-gun, Incheon. Utilizamos un índice de tríada cerrada (CTI), que es la unidad de análisis más básica en el estudio de los fenómenos grupales. Este índice es una variable de red social que ha demostrado tener una implicación diferente dependiendo de la condición y el rol del sujeto. Después de realizar dos encuestas por cuestionario a intervalos de tres años, los participantes se clasificaron en un grupo aumentado y un grupo disminuido de acuerdo con el cambio de CTI. Se siguió el análisis de fMRI en estado de reposo para investigar la diferencia de las redes cerebrales entre los grupos.Resultados: Según el análisis del estudio, todos los participantes que habían aumentado en número de CTI tienen una mayor eficiencia local que el grupo de participantes que no tuvieron ningún efecto o disminuyeron en CTI. Conclusiones: Nuestro estudio sugiere que la relación social que está sustancialmente relacionada con la red cerebral es un factor importante en el envejecimiento exitoso. Por último, dado que existe una restricción de que el estudio no puede explicar el aspecto causal de la red cerebral y la relación tríada, existe la necesidad de una mayor investigación.Background: The purpose of this study is to determine the relevance of the relationship between brain network and the social ties management.Methods: Participants are based on 52 Korean seniors aged 65 and older who live in Ganghwa-gun, Incheon. We used a closed-triad index (CTI), which is the most basic unit of analysis in the study of group phenomena. This index is a social networking variable that has been shown to have a different implication depending on the subject’s condition and role. After two questionnaire surveys were conducted at three years intervals, participants were classified into an increased group and a decreased group according to the change of CTI. Resting-state fMRI analysis were followed to investigate the difference of brain networks between groups. Results: According to the analysis of the study, the whole participants who had increased in number of CTI has higher local efficiency than the group of the participants who had no effect or decreased in CTI. Conclusions: Our study suggests that social relationship, which is substantially related to brain network, is a major factor in successful aging. Lastly, since there is a restriction that the study cannot explain the causal aspect of the brain network and the triad-relationship, there is a need for further investigation.application/pdf10.21500/20112084.44222011-79222011-2084https://hdl.handle.net/10819/25836https://doi.org/10.21500/20112084.4422engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/4422/3702Núm. 2 , Año 2020 : Volume 13(2)6725913International Journal of Psychological ResearchBae, K. H., & Kim, Y. H. (2006). The study on the relationship between social capital and organizational commitment: Focusing on burt’s structural holes. Korean Journal of Public Administration, 44 (3), 1–32. Barrera, M., Sandler, I. N., & Ramsay, T. B. (1981). Preliminary development of a scale of social support: Studies on college students. American Journal of Community Psychology, 9 (4), 435–447. https://doi.org/10.1007/BF00918174. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral cortex, 10 (3), 295–307. https://doi.org/10.1093/cercor/10.3.295. Bherer, L., Erickson, K. I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of aging research, 2013, 657508. https://doi.org/10.1155/2013/657508. Brothers, L. (2001). Friday’s footprint: How society shapes the human mind. Oxford University Press. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neuroscience, 10 (3), 186–198. https://doi.org/10.1038/nrn2575. Burt, R. S. (1992). Structural hole. Harvard Business School Press. Cornwell, B., Laumann, E. O., & Schumm, L. P. (2008). The social connectedness of older adults: A national profile. American sociological review, 73 (2), 185–203. https://doi.org/10.1177%2F000312240807300201. Cornwell, &Waite, L. J. (2009). Social disconnectedness, perceived isolation, and health among older adults. Journal of health and social behavior, 50 (1), 31–48. https://dx.doi.org/10.1177/2F002214650905000103. Costenbaderm, E., & Valente, T. W. (2003). The stability of centrality measures when networks are sampled. Social networks, 25 (4), 283–307. Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain research, 1079 (1), 4–14. https://doi.org/10.1016/j.brainres.2005.12.115. de Vico Fallani, F., Richiardi, J., Chavez, M., & Achard, S. (2014). Graph analysis of functional brain networks: Practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 369 (1653), 20130521. https://dx.doi.org/10.1098/2Frstb.2013.0521. Dugan, E., & Kivett, V. R. (1994). The importance of emotional and social isolation to loneliness among very old rural adults. The Gerontologist, 34 (3), 340–346. https://doi.org/10.1093/geront/34.3.340. Dunkle, R. E., Roberts, B., & Haug, M. R. (2001). The oldest old in everyday life: Self perception, coping with change, and stress. Springer Publishing Company. Fiori, K. L., Antonucci, T. C., & Cortina, K. S. (2006). Social network typologies and mental health among older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 61 (1), P25–P32. https://doi.org/10.1093/geronb/61.1.p25. Fratiglioni, L., Wang, H. X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: A communitybased longitudinal study. The lancet, 355 (9212), 1315–1319. https://doi.org/10.1016/s0140-6736(00)02113-9. Frith, U., & Frith, C. (2001). The biological basis of social interaction. Current Directions in Psychological Science, 10 (5), 151–155. https://doi.org/ 10.1111/1467-8721.00137. Gargiulo, M., & Benassi, M. (2000). Trapped in your own net? network cohesion, structural holes, and the adaptation of social capital. Organization science, 11 (2), 183–196. https://doi.org/10.1287/orsc.11.2.183.12514. Green, M. F., & Horan, W. P. (2010). Social cognition in schizophrenia. Current Directions in Psychological Science, 19 (4), 243–248. https://doi.org/10.1177%2F0963721410377600. Holtzman, R. E., Rebok, G. W., Saczynski, J. S., Kouzis, A. C., WilcoxDoyle, K., & Eaton, W. W. (2004). Social network characteristics and cognition in middle-aged and older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 59 (6), P278–P284. https://doi.org/10.1177%2F0963721410377600. Huang, H., Tang, J., Wu, S., & Liu, L. (2014, April). Mining triadic closure patterns in social networks. In Proceedings of the 23rd International Conference on World Wide Web(pp. 499-504). ACM. Hynes, C. A., Baird, A. A., & Grafton, S. T. (2006). Differential role of the orbital frontal lobe in emotional versus cognitive perspective-taking. Neuropsychologia, 44 (3), 374–383. https://doi.org/10.1016/j.neuropsychologia.2005.06.011. Kennedy, D. P., Redcay, E., & Courchesne, E. (2006). Failing to deactivate: Resting functional abnormalities in autism. Proceedings of the National Academy of Sciences, 103 (21), 8275–8280. https://doi.org/10.1073/pnas.0600674103. Kim, H. Y., & Choi, J. Y. (2016). Aging and efficiency of brain functional networks : Preliminary study in korean women. Korean Journal of Cognitive and Biological Psychology, 28 (4), 675–682. Kwak, S., Joo, W., Youm, Y., & Chey, J. (2018). Social brain volume is associated with in-degree social network size among older adults. Proceedings of the Royal Society B: Biological Sciences, 285 (1871), 20172708. https://doi.org/10.1098/rspb.2017.2708. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87 (19), 198701. https://doi.org/10.1103/PhysRevLett.87.198701. Latora, V., & Marchiori, M. (2003). Economic smallworld behavior in weighted networks. The European Physical Journal B-Condensed Matter and Complex Systems, 32 (2), 249–263. https://doi.org/10.1140/epjb/e2003-00095-5. Lewis, J. D., Evans, A. C., Pruett, J. R., Botteron, K., Zwaigenbaum, L., Estes, A., Gerig, G., Collins, L., Kostopoulos, P., McKinstry, R., Dager, S., Paterson, S., Schultz, R. T., Styner, M., & Hazlett, S., H.and Dager. (2014). Network inefficiencies in autism spectrum disorder at 24 months. Translational psychiatry, 4 (5), e388–e388. https://dx.doi.org/10.1038%2Ftp.2014.24. Liu, Y., & et al. (2008). Disrupted small-world networks in schizophrenia. Brain, 131 (4), 945–961. https://doi.org/10.1093/brain/awn018. Petrella, J. R. (2011). Use of graph theory to evaluate brain networks: A clinical tool for a small world? Reviews and Commentary, 259 (2), 317–320. https://doi.org/10.1148/radiol.11110380. Pinkham, A. E., Hopfinger, J. B., Pelphrey, K. A., Piven, J., & Penn, D. L. (2008). Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophrenia research, 99 (1), 164–175. https://doi.org/10.1016/j.schres.2007.10.024. Prince, M. J., Harwood, R. H., Blizard, R. A., Thomas, A., & Mann, A. H. (1997). Social support deficits, loneliness and life events as risk factors for depression in old age. the gospel oak project vi. Psychological medicine, 27 (02), 323–332. https://doi.org/10.1017/s0033291796004485. Rolland, Y., van Kan, G. A., & Vellas, B. (2010). Healthy brain aging: Role of exercise and physical activity. Clinics in geriatric medicine, 26 (1), 75–87. https://doi.org/10.1016/j.cger.2009.11.002. Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., Villringer, K., Kurth, R., & Villringer, A. (2001). Somatotopic organization of human secondary somatosensory cortex. Cerebral Cortex, 11 (5), 463–473. https://doi.org/10.1093/cercor/11.5.463. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52 (3), 1059–1069. Rudie, J. D., & et al. (2013). Altered functional and structural brain network organization in autism. NeuroImage: clinical, 2, 79–94. https://doi.org/10.1016/j.nicl.2012.11.006. Sabbagh, M. A. (2004). Understanding orbitofrontal contributions to theory-of-mind reasoning: Implications for autism. Brain and cognition, 55 (1), 209–219. https://doi.org/10.1016/j.bandc.2003.04.002. Sala-Llonch, R., & et al. (2014). Changes in whole-brain functional networks and memory performance in aging. Neurobiology of aging, 35 (10), 2193–2202. https://doi.org/10.1016/j.neurobiolaging.2014.04.007. Scheff, S. W., Price, D. A., Schmitt, F. A., Scheff, M. A., & Mufson, E. J. (2011). Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and alzheimer’s disease. Journal of Alzheimer’s Disease, 24 (3), 547–557. https://doi.org/10.3233/jad-2011-101782. Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fmri functional connectivity. European Neuropsychopharmacology, 20 (8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008. Van Tilburg, T. (1998). Losing and gaining in old age: Changes in personal network size and social support in a four-year longitudinal study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 53 (6), S313–S323. https://doi.org/10.1093/geronb/53b.6.s313. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393 (6684), 440–442. https://doi.org/10.1038/30918. Welchew, D. E., & et al. (2005). Functional disconnectivity of the medial temporal lobe in aspergers syndrome. Biological psychiatry, 57 (9), 991– 998. https://doi.org/10.1016/j.biopsych.2005.01.028. Winningham, R. G., & Pike, N. L. (2007). A cognitive intervention to enhance institutionalized older adults social support networks and decrease loneliness. Aging & mental health, 11 (6), 716–721. https://doi.org/10.1080/1360786070136622. Ybarra, O., Burnstein, E., Winkielman, P., Keller, M. C., Manis, M., Chan, E., & Rodriguez, J. (2008). Mental exercising through simple socializing: Social interaction promotes general cognitive functioning. Personality and Social Psychology Bulletin, 34 (2), 248–259. https://doi.org/10.1177/0146167207310454. Youm, Y., Laumann, E. O., Ferraro, K. F., Waite, L. J., Kim, H. C., Park, Y., Chu, S. H., Joo, W., & Lee, J. A. (2014). Social network properties and self-rated health in later life: Comparisons from the korean social life, health, and aging project and the national social life, health and aging project. BMC geriatrics, 14, 1–15. https://doi.org/10.1186/1471-2318-14-102. Zunzunegui, M. V., Alvarado, B. E., Del Ser, T., & Otero, A. (2003). Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 2, S93–S100.International Journal of Psychological Research - 2020info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/IJPR/article/view/4422Brain NetworkSeniorsTriad-relationshipSocial TiesResting State fMRIRed cerebralpersonas mayoresrelación tríadalazos socialesfMRI en estado de reposoRed cerebral funcional en estado de reposo y la formación de lazos sociales en ancianosRed cerebral funcional en estado de reposo y la formación de lazos sociales en ancianosArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2648https://bibliotecadigital.usb.edu.co/bitstreams/901f4694-b97e-4688-a52d-bcb87f252699/download3406fdcda927eee2d7e33bd793a96362MD5110819/25836oai:bibliotecadigital.usb.edu.co:10819/258362025-07-31 11:12:13.742https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com