Experimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seed

The study of nature, to mimic it, motivates this project to investigate the Petrea Volubilis rotatory flying seed. Primarily, the study of its operational and dimensional characteristics was conducted within a confined space, using a high-speed camera, capturing videos at 1000 frames per second. Add...

Full description

Autores:
Bastidas Ahumada, Brayan Fabian
Porras Sánchez, Raúl Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/13407
Acceso en línea:
https://hdl.handle.net/10819/13407
Palabra clave:
620 - Ingeniería y operaciones afines
Petrea Volubilis
Seed
Rotatory
Cameras
Videos
Rate of Decent
Analysis
Frames
Angles
Illumination
Software
Tracker
Operatives
Dimensions
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id SANBUENAV2_6d863b7a42d8b3eb066484ce041cad50
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/13407
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.eng.fl_str_mv Experimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seed
title Experimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seed
spellingShingle Experimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seed
620 - Ingeniería y operaciones afines
Petrea Volubilis
Seed
Rotatory
Cameras
Videos
Rate of Decent
Analysis
Frames
Angles
Illumination
Software
Tracker
Operatives
Dimensions
title_short Experimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seed
title_full Experimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seed
title_fullStr Experimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seed
title_full_unstemmed Experimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seed
title_sort Experimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seed
dc.creator.fl_str_mv Bastidas Ahumada, Brayan Fabian
Porras Sánchez, Raúl Santiago
dc.contributor.advisor.none.fl_str_mv Gaitán Aroca, Jorge Eliécer
dc.contributor.author.none.fl_str_mv Bastidas Ahumada, Brayan Fabian
Porras Sánchez, Raúl Santiago
dc.contributor.jury.none.fl_str_mv Sierra Daza, Carlos Arturo
Zuluaga Hernández, Eliana Catalina
dc.subject.ddc.none.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Petrea Volubilis
Seed
Rotatory
Cameras
Videos
Rate of Decent
Analysis
Frames
Angles
Illumination
Software
Tracker
Operatives
Dimensions
dc.subject.proposal.eng.fl_str_mv Petrea Volubilis
Seed
Rotatory
Cameras
Videos
Rate of Decent
Analysis
Frames
Angles
Illumination
Software
Tracker
Operatives
Dimensions
description The study of nature, to mimic it, motivates this project to investigate the Petrea Volubilis rotatory flying seed. Primarily, the study of its operational and dimensional characteristics was conducted within a confined space, using a high-speed camera, capturing videos at 1000 frames per second. Additionally, lighting, staging, and camera positioning knowledge were applied to obtain the best recording method for the Petrea Volubilis seed. To accurately observe the rotational and falling movements of the seed, frame-by-frame video analysis was carried out using the software tracker. In this way, values were obtained, which would be tabulated, graphed, and compared with data from other seeds. Furthermore, through the analysis of the results and their comparison, it would be determined whether the seed possesses unique characteristics suitable for mimicking. That would be valuable for the subsequent development of wind blades or similar products in future studies.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-10T20:58:37Z
dc.date.available.none.fl_str_mv 2024-04-10T20:58:37Z
dc.date.issued.none.fl_str_mv 2024
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/13407
url https://hdl.handle.net/10819/13407
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Reviews of Geophysics, vol. 48, no. 4, Dec. 2010
B. D. Santer et al., “Tropospheric Warming over the Past Two Decades,” Sci Rep, vol. 7, no. 1, Dec. 2017
S. Levitus et al., “World ocean heat content and thermosteric sea level change (0-2000m), 1955-2010,” Geophys Res Lett, vol. 39, no. 10, May 2012
Masson-Delmotte V. et al., “Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty,” 2018
“El Acuerdo de París | CMNUCC.” Accessed: Sep. 28, 2023. [Online]. Available: https://unfccc.int/es/acerca-de-las-ndc/el-acuerdo-de-paris
J. Mohtasham, “Review Article-Renewable Energies,” in Energy Procedia, Elsevier Ltd, 2015, pp. 1289–1297
Diana Ivanova et al, “Quantifying the potential for climate change mitigation of consumption options,” Environ. Res Lett, vol. 15, no. 093001, 2020
F. Creutzig, J. Hilaire, G. Nemet, F. Müller-Hansen, and J. C. Minx, “Technological innovation enables low cost climate change mitigation,” Energy Res Soc Sci, vol. 105, p. 103276, Nov. 2023
T. Zhang, “Chinese offshore turbine sets record for electricity generated in 1 day, aided by Typhoon Haikui’s strong winds | South China Morning Post.” Accessed: Oct. 04, 2023. [Online]. Available: https://www.scmp.com/news/china/science/article/3233434/chinese-offshore-turbine-sets-record-electricity-generated-one-day-aided-typhoon-haikuis-strong?module=more_top_stories_int&pgtype=homepage
Nova Innovation, “Creating ‘water of life’ from the power of the sea — | World Leading Marine Energy | Tidal Energy - Floating Solar - Marine Renewables - Green - Eco - Sustainable | Edinburgh - Scotland - UK.” Accessed: Oct. 03, 2023. [Online]. Available: https://novainnovation.com/news/creating-water-of-life-from-the-power-of-the-sea
Boskalis Subsea, “Advance the energy transition.” Accessed: Oct. 03, 2023. [Online]. Available: https://boskalis.com/sustainability/contributing-to-society/advance-the-energy-transition
B. Gaurier, C. Carlier, G. Germain, G. Pinon, and E. Rivoalen, “Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance,” Renew Energy, vol. 148, pp. 1150–1164, Apr. 2020
A. Lakhtakia et al., “ENGINEERED BIOMIMICRY,” 2013. [Online]. Available: http://elsevier.com/
Vikram Shyam, Marjan Eggermont, and Aloysius F. Hepp, Biomimicry for Aerospace Technologies and Applications. Elsevier, 2022
A. Kuriqi, A. N. Pinheiro, A. Sordo-Ward, M. D. Bejarano, and L. Garrote, “Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition,” Renewable and Sustainable Energy Reviews, vol. 142. Elsevier Ltd, May 01, 2021
S. N. Akour, M. Al-Heymari, T. Ahmed, and K. A. Khalil, “Experimental and theoretical investigation of micro wind turbine for low wind speed regions,” Renew Energy, vol. 116, pp. 215–223, Feb. 2018
W. Yossri, S. Ben Ayed, and A. Abdelkefi, “Evaluation of the efficiency of bioinspired blade designs for low-speed small-scale wind turbines with the presence of inflow turbulence effects,” Energy, vol. 273, p. 127210, 2023
A. Azuma~ and K. Yasuda~, “Flight Performance of Rotary Seeds,” 1989.
F. Momeni, S. Sabzpoushan, R. Valizadeh, M. R. Morad, X. Liu, and J. Ni, “Plant leaf-mimetic smart wind turbine blades by 4D printing,” Renew Energy, vol. 130, pp. 329–351, Jan. 2019
M. Maizi, M. H. Mohamed, R. Dizene, and M. C. Mihoubi, “Noise reduction of a horizontal wind turbine using different blade shapes,” Renew Energy, vol. 117, pp. 242–256, Mar. 2018
F. Bajac, C. Mendez, and J. Kurita, “Numerical simulation of Petrea Volubilis falling seed,” 2022
J. Gaitan-Aroca, F. Sierra, and J. U. C. Contreras, “Bio-inspired rotor design characterization of a horizontal axis wind turbine,” Energies (Basel), vol. 13, no. 14, Jul. 2020
Y. J. Chu and W. T. Chong, “A biomimetic wind turbine inspired by Dryobalanops aromatica seed: Numerical prediction of rigid rotor blade performance with OpenFOAM®,” Comput Fluids, vol. 159, pp. 295–315, Dec. 2017
D. A. Castañeda, F. E. Sierra, and C. A. Guerrero, “Estimation of the performance characteristics to a biometric wind-rotor for pumping applications,” 2011.
M. A. Rahmatian, P. Hashemi Tari, S. Majidi, and M. Mojaddam, “Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient,” Energy, vol. 284, p. 128664, Dec. 2023
R. N. Silva, M. M. Nunes, R. C. F. Mendes, A. C. P. Brasil, and T. F. Oliveira, “A novel mechanism of turbulent kinetic energy harvesting by horizontal-axis wind and hydrokinetic turbines,” Energy, vol. 283, p. 128985, Nov. 2023
T. Ikeda, H. Tanaka, R. Yoshimura, R. Noda, T. Fujii, and H. Liu, “A robust biomimetic blade design for micro wind turbines,” Renew Energy, vol. 125, pp. 155–165, Sep. 2018
R. H. Barnes, E. V. Morozov, and K. Shankar, “Improved methodology for design of low wind speed specific wind turbine blades,” Compos Struct, vol. 119, pp. 677–684, Jan. 2015
C. Herrera et al., “Structural design and manufacturing process of a low scale bio-inspired wind turbine blades,” Compos Struct, vol. 208, pp. 1–12, Jan. 2019
X. Shen, E. Avital, G. Paul, M. A. Rezaienia, P. Wen, and T. Korakianitis, “Experimental study of surface curvature effects on aerodynamic performance of a low Reynolds number airfoil for use in small wind turbines,” Journal of Renewable and Sustainable Energy, vol. 8, no. 5, Sep. 2016
W. Yossri, S. Ben Ayed, and A. Abdelkefi, “Airfoil type and blade size effects on the aerodynamic performance of small-scale wind turbines: Computational fluid dynamics investigation,” Energy, vol. 229, p. 120739, Aug. 2021
I. Lee and H. Choi, “Flight of a falling maple seed,” Phys Rev Fluids, vol. 2, no. 9, Sep. 2017
Y. Castillo, M. Castrillón Gutiérrez, M. Vanegas-Chamorro, G. Valencia, and E. Villicaña, “Rol de las Fuentes No Convencionales de Energía en el sector eléctrico colombiano,” Prospectiva, vol. 13, no. 1, p. 39, Jun. 2015
S. L. (Sydney L. Dixon and C. A. (Cesare A. ) Hall, Fluid mechanics and thermodynamics of turbomachinery, 7th ed. 2014.
D. C. Montgomery, Design and analysis of experiments, EIGHTH. 2013.
A. R. Ankit, “WebPlotDigitizer - Copyright 2010.” Accessed: Oct. 01, 2023. [Online]. Available: https://apps.automeris.io/wpd/
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, “Reynolds Number.” Accessed: Oct. 19, 2023. [Online]. Available: https://www.grc.nasa.gov/www/k-12/airplane/reynolds.html
Çengel Yunus A. and Boles Michael A., THERMODYNAMICS An Engineering Approach, vol. Eighth edition. McGraw-Hill Education, 2015.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.extent.none.fl_str_mv 88 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.branch.none.fl_str_mv Bogotá
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Bogotá
dc.publisher.program.none.fl_str_mv Ingeniería Aeronáutica
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/943fd9b4-46b3-4a8e-8227-c545d4b763dc/download
https://bibliotecadigital.usb.edu.co/bitstreams/041fdfab-af81-453a-9a7a-79c6a28288ef/download
https://bibliotecadigital.usb.edu.co/bitstreams/de3d6539-76e5-468f-8b47-ae622e407580/download
https://bibliotecadigital.usb.edu.co/bitstreams/4f5fd119-99b2-4f51-8338-9a9c454e012f/download
https://bibliotecadigital.usb.edu.co/bitstreams/cbff623f-e6ca-4371-8ecb-26f6d01767fc/download
https://bibliotecadigital.usb.edu.co/bitstreams/ea941c92-8a1f-4abd-aba6-e1fdac37bc19/download
https://bibliotecadigital.usb.edu.co/bitstreams/c7c50188-4e95-4dc5-8dcb-8d11055a6891/download
https://bibliotecadigital.usb.edu.co/bitstreams/d86576ca-ce05-42d2-8657-b18080d5af0d/download
bitstream.checksum.fl_str_mv ee6074b7aa248407f00b479fb73639c9
b46bb198447564220277063dd0db6939
5643bfd9bcf29d560eeec56d584edaa9
ce8fd7f912f132cbeb263b9ddc893467
c42e6e730d1e85603bfd1bdbaa062957
3ff70bc5152a48ae349998522236f6fc
a84ce432efb2bb67d60b4145153ed2bd
ee3cf9fe91221171ff9cb0c1b34da615
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1837099302018613248
spelling Gaitán Aroca, Jorge Eliécerc3afc7cb-b4bd-448e-bca3-b11efc6a665a600Bastidas Ahumada, Brayan Fabiana3c46aff-7d47-4f4d-ad63-7ea69267f835-1Porras Sánchez, Raúl Santiago64218a1c-fc78-456b-9aa5-45b0027a5461-1Sierra Daza, Carlos Arturo358d5ec1-42dd-422c-9402-527114884965-1Zuluaga Hernández, Eliana Catalina69aec2aa-cdb6-45a9-a569-3852243a02a9-12024-04-10T20:58:37Z2024-04-10T20:58:37Z2024The study of nature, to mimic it, motivates this project to investigate the Petrea Volubilis rotatory flying seed. Primarily, the study of its operational and dimensional characteristics was conducted within a confined space, using a high-speed camera, capturing videos at 1000 frames per second. Additionally, lighting, staging, and camera positioning knowledge were applied to obtain the best recording method for the Petrea Volubilis seed. To accurately observe the rotational and falling movements of the seed, frame-by-frame video analysis was carried out using the software tracker. In this way, values were obtained, which would be tabulated, graphed, and compared with data from other seeds. Furthermore, through the analysis of the results and their comparison, it would be determined whether the seed possesses unique characteristics suitable for mimicking. That would be valuable for the subsequent development of wind blades or similar products in future studies.El estudio de la naturaleza, con el objetivo de mimetizarla, motiva este proyecto al estudio de la semilla voladora rotatoria Petrea Volubilis. Principalmente el estudio de sus características operativas y dimensionales, por medio de un espacio cerrado y con la ayuda una cámara lenta que toma videos de 1000 fotogramas por segundo, además de aplicar conocimientos de luces, puestas en escena y posicionamiento de cámaras, con la intención de obtener el mejor método de grabación de la semilla Petrea Volubilis. Para observar con precisión los movimientos de rotación y caída de la semilla, donde por medio del sofware tracker se realiza el proceso de análisis del video, fotograma a fotograma. De esta manera se obtienen valores que se tabularán, graficarán y compararán con los datos de otras semillas. Asimismo, se determinará, a través del análisis de los resultados y la comparación de estos, si la semilla tiene características propias para el desarrollo de la mimetización. Esto es importante para el posterior desarrollo de álabes eólicas u otros productos similares en próximos estudios.PregradoIngeniero Aeronáutica88 páginasapplication/pdfhttps://hdl.handle.net/10819/13407engBogotáFacultad de IngenieríaBogotáIngeniería AeronáuticaJ. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Reviews of Geophysics, vol. 48, no. 4, Dec. 2010B. D. Santer et al., “Tropospheric Warming over the Past Two Decades,” Sci Rep, vol. 7, no. 1, Dec. 2017S. Levitus et al., “World ocean heat content and thermosteric sea level change (0-2000m), 1955-2010,” Geophys Res Lett, vol. 39, no. 10, May 2012Masson-Delmotte V. et al., “Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty,” 2018“El Acuerdo de París | CMNUCC.” Accessed: Sep. 28, 2023. [Online]. Available: https://unfccc.int/es/acerca-de-las-ndc/el-acuerdo-de-parisJ. Mohtasham, “Review Article-Renewable Energies,” in Energy Procedia, Elsevier Ltd, 2015, pp. 1289–1297Diana Ivanova et al, “Quantifying the potential for climate change mitigation of consumption options,” Environ. Res Lett, vol. 15, no. 093001, 2020F. Creutzig, J. Hilaire, G. Nemet, F. Müller-Hansen, and J. C. Minx, “Technological innovation enables low cost climate change mitigation,” Energy Res Soc Sci, vol. 105, p. 103276, Nov. 2023T. Zhang, “Chinese offshore turbine sets record for electricity generated in 1 day, aided by Typhoon Haikui’s strong winds | South China Morning Post.” Accessed: Oct. 04, 2023. [Online]. Available: https://www.scmp.com/news/china/science/article/3233434/chinese-offshore-turbine-sets-record-electricity-generated-one-day-aided-typhoon-haikuis-strong?module=more_top_stories_int&pgtype=homepageNova Innovation, “Creating ‘water of life’ from the power of the sea — | World Leading Marine Energy | Tidal Energy - Floating Solar - Marine Renewables - Green - Eco - Sustainable | Edinburgh - Scotland - UK.” Accessed: Oct. 03, 2023. [Online]. Available: https://novainnovation.com/news/creating-water-of-life-from-the-power-of-the-seaBoskalis Subsea, “Advance the energy transition.” Accessed: Oct. 03, 2023. [Online]. Available: https://boskalis.com/sustainability/contributing-to-society/advance-the-energy-transitionB. Gaurier, C. Carlier, G. Germain, G. Pinon, and E. Rivoalen, “Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance,” Renew Energy, vol. 148, pp. 1150–1164, Apr. 2020A. Lakhtakia et al., “ENGINEERED BIOMIMICRY,” 2013. [Online]. Available: http://elsevier.com/Vikram Shyam, Marjan Eggermont, and Aloysius F. Hepp, Biomimicry for Aerospace Technologies and Applications. Elsevier, 2022A. Kuriqi, A. N. Pinheiro, A. Sordo-Ward, M. D. Bejarano, and L. Garrote, “Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition,” Renewable and Sustainable Energy Reviews, vol. 142. Elsevier Ltd, May 01, 2021S. N. Akour, M. Al-Heymari, T. Ahmed, and K. A. Khalil, “Experimental and theoretical investigation of micro wind turbine for low wind speed regions,” Renew Energy, vol. 116, pp. 215–223, Feb. 2018W. Yossri, S. Ben Ayed, and A. Abdelkefi, “Evaluation of the efficiency of bioinspired blade designs for low-speed small-scale wind turbines with the presence of inflow turbulence effects,” Energy, vol. 273, p. 127210, 2023A. Azuma~ and K. Yasuda~, “Flight Performance of Rotary Seeds,” 1989.F. Momeni, S. Sabzpoushan, R. Valizadeh, M. R. Morad, X. Liu, and J. Ni, “Plant leaf-mimetic smart wind turbine blades by 4D printing,” Renew Energy, vol. 130, pp. 329–351, Jan. 2019M. Maizi, M. H. Mohamed, R. Dizene, and M. C. Mihoubi, “Noise reduction of a horizontal wind turbine using different blade shapes,” Renew Energy, vol. 117, pp. 242–256, Mar. 2018F. Bajac, C. Mendez, and J. Kurita, “Numerical simulation of Petrea Volubilis falling seed,” 2022J. Gaitan-Aroca, F. Sierra, and J. U. C. Contreras, “Bio-inspired rotor design characterization of a horizontal axis wind turbine,” Energies (Basel), vol. 13, no. 14, Jul. 2020Y. J. Chu and W. T. Chong, “A biomimetic wind turbine inspired by Dryobalanops aromatica seed: Numerical prediction of rigid rotor blade performance with OpenFOAM®,” Comput Fluids, vol. 159, pp. 295–315, Dec. 2017D. A. Castañeda, F. E. Sierra, and C. A. Guerrero, “Estimation of the performance characteristics to a biometric wind-rotor for pumping applications,” 2011.M. A. Rahmatian, P. Hashemi Tari, S. Majidi, and M. Mojaddam, “Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient,” Energy, vol. 284, p. 128664, Dec. 2023R. N. Silva, M. M. Nunes, R. C. F. Mendes, A. C. P. Brasil, and T. F. Oliveira, “A novel mechanism of turbulent kinetic energy harvesting by horizontal-axis wind and hydrokinetic turbines,” Energy, vol. 283, p. 128985, Nov. 2023T. Ikeda, H. Tanaka, R. Yoshimura, R. Noda, T. Fujii, and H. Liu, “A robust biomimetic blade design for micro wind turbines,” Renew Energy, vol. 125, pp. 155–165, Sep. 2018R. H. Barnes, E. V. Morozov, and K. Shankar, “Improved methodology for design of low wind speed specific wind turbine blades,” Compos Struct, vol. 119, pp. 677–684, Jan. 2015C. Herrera et al., “Structural design and manufacturing process of a low scale bio-inspired wind turbine blades,” Compos Struct, vol. 208, pp. 1–12, Jan. 2019X. Shen, E. Avital, G. Paul, M. A. Rezaienia, P. Wen, and T. Korakianitis, “Experimental study of surface curvature effects on aerodynamic performance of a low Reynolds number airfoil for use in small wind turbines,” Journal of Renewable and Sustainable Energy, vol. 8, no. 5, Sep. 2016W. Yossri, S. Ben Ayed, and A. Abdelkefi, “Airfoil type and blade size effects on the aerodynamic performance of small-scale wind turbines: Computational fluid dynamics investigation,” Energy, vol. 229, p. 120739, Aug. 2021I. Lee and H. Choi, “Flight of a falling maple seed,” Phys Rev Fluids, vol. 2, no. 9, Sep. 2017Y. Castillo, M. Castrillón Gutiérrez, M. Vanegas-Chamorro, G. Valencia, and E. Villicaña, “Rol de las Fuentes No Convencionales de Energía en el sector eléctrico colombiano,” Prospectiva, vol. 13, no. 1, p. 39, Jun. 2015S. L. (Sydney L. Dixon and C. A. (Cesare A. ) Hall, Fluid mechanics and thermodynamics of turbomachinery, 7th ed. 2014.D. C. Montgomery, Design and analysis of experiments, EIGHTH. 2013.A. R. Ankit, “WebPlotDigitizer - Copyright 2010.” Accessed: Oct. 01, 2023. [Online]. Available: https://apps.automeris.io/wpd/NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, “Reynolds Number.” Accessed: Oct. 19, 2023. [Online]. Available: https://www.grc.nasa.gov/www/k-12/airplane/reynolds.htmlÇengel Yunus A. and Boles Michael A., THERMODYNAMICS An Engineering Approach, vol. Eighth edition. McGraw-Hill Education, 2015.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/620 - Ingeniería y operaciones afinesPetrea VolubilisSeedRotatoryCamerasVideosRate of DecentAnalysisFramesAnglesIlluminationSoftwareTrackerOperativesDimensionsExperimental analysis for dimensional and operative features on Petrea Volubilis rotary flying seedTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionComunidad Científica y AcadémicaPublicationORIGINALExperimental_Analysis_Dimensional_Bastidas_2024.pdfExperimental_Analysis_Dimensional_Bastidas_2024.pdfapplication/pdf2512598https://bibliotecadigital.usb.edu.co/bitstreams/943fd9b4-46b3-4a8e-8227-c545d4b763dc/downloadee6074b7aa248407f00b479fb73639c9MD51Formato_Autorizacion_Publicacion_Repositorio_USBCol jg.pdfFormato_Autorizacion_Publicacion_Repositorio_USBCol jg.pdfapplication/pdf389204https://bibliotecadigital.usb.edu.co/bitstreams/041fdfab-af81-453a-9a7a-79c6a28288ef/downloadb46bb198447564220277063dd0db6939MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.usb.edu.co/bitstreams/de3d6539-76e5-468f-8b47-ae622e407580/download5643bfd9bcf29d560eeec56d584edaa9MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82079https://bibliotecadigital.usb.edu.co/bitstreams/4f5fd119-99b2-4f51-8338-9a9c454e012f/downloadce8fd7f912f132cbeb263b9ddc893467MD54TEXTExperimental_Analysis_Dimensional_Bastidas_2024.pdf.txtExperimental_Analysis_Dimensional_Bastidas_2024.pdf.txtExtracted texttext/plain101103https://bibliotecadigital.usb.edu.co/bitstreams/cbff623f-e6ca-4371-8ecb-26f6d01767fc/downloadc42e6e730d1e85603bfd1bdbaa062957MD55Formato_Autorizacion_Publicacion_Repositorio_USBCol jg.pdf.txtFormato_Autorizacion_Publicacion_Repositorio_USBCol jg.pdf.txtExtracted texttext/plain6925https://bibliotecadigital.usb.edu.co/bitstreams/ea941c92-8a1f-4abd-aba6-e1fdac37bc19/download3ff70bc5152a48ae349998522236f6fcMD57THUMBNAILExperimental_Analysis_Dimensional_Bastidas_2024.pdf.jpgExperimental_Analysis_Dimensional_Bastidas_2024.pdf.jpgGenerated Thumbnailimage/jpeg6435https://bibliotecadigital.usb.edu.co/bitstreams/c7c50188-4e95-4dc5-8dcb-8d11055a6891/downloada84ce432efb2bb67d60b4145153ed2bdMD56Formato_Autorizacion_Publicacion_Repositorio_USBCol jg.pdf.jpgFormato_Autorizacion_Publicacion_Repositorio_USBCol jg.pdf.jpgGenerated Thumbnailimage/jpeg15721https://bibliotecadigital.usb.edu.co/bitstreams/d86576ca-ce05-42d2-8657-b18080d5af0d/downloadee3cf9fe91221171ff9cb0c1b34da615MD5810819/13407oai:bibliotecadigital.usb.edu.co:10819/134072024-04-11 08:12:24.097http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPlJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5JVkVSU0lEQUQgREUgU0FOIEJVRU5BVkVOVFVSQSAtIENPTE9NQklBPC9oMz4KPHA+ClTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBnZW5lcmFsIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWw8L3A+PC9jZW50ZXI+CjxQIEFMSUdOPWNlbnRlcj4KUG9yIG1lZGlvIGRlIGVzdGUgZm9ybWF0byBtYW5pZmllc3RvIG1pIHZvbHVudGFkIGRlIEFVVE9SSVpBUiBhIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIFNlZGUgQm9nb3TDoSB5IDxCUj5TZWNjaW9uYWxlcyBNZWRlbGzDrW4sIENhbGkgeSBDYXJ0YWdlbmEsIGxhIGRpZnVzacOzbiBlbiB0ZXh0byBjb21wbGV0byBkZSBtYW5lcmEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gZW4gZWw8QlI+IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgZWwgZG9jdW1lbnRvIGFjYWTDqW1pY28gLSBpbnZlc3RpZ2F0aXZvIG9iamV0byBkZSBsYSBwcmVzZW50ZSA8QlI+YXV0b3JpemFjacOzbiwgY29uIGZpbmVzIGVzdHJpY3RhbWVudGUgZWR1Y2F0aXZvcywgY2llbnTDrcKtZmljb3MgeSBjdWx0dXJhbGVzLCBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgPEJSPiAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGRlcmVjaG9zPEJSPiBkZSBhdXRvci4gPEJSPiAKIApDb21vIGF1dG9yIG1hbmlmaWVzdG8gcXVlIGVsIHByZXNlbnRlIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBlcyBvcmlnaW5hbCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyA8QlI+IHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrcKtYSB5IHBvc2VvIGxhIHRpdHVsYXJpZGFkIDxCUj4gc29icmUgbGEgbWlzbWEuIExhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZGUgbmluZ3VuYSB1dGlsaXphY2nDs24gaW5kZWJpZGEgZGVsIGRvY3VtZW50byA8QlI+cG9yIHBhcnRlIGRlIHRlcmNlcm9zIHkgc2Vyw6EgZXhjbHVzaXZhbWVudGUgbWkgcmVzcG9uc2FiaWxpZGFkIGF0ZW5kZXIgcGVyc29uYWxtZW50ZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSBwdWVkYTxCUj4gcHJlc2VudGFyc2UgYSBsYSBVbml2ZXJzaWRhZC4gPEJSPgogCkF1dG9yaXpvIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGFsIGZvcm1hdG8gcXVlIDxCUj5yZXF1aWVyYSAoaW1wcmVzbywgZGlnaXRhbCwgZWxlY3Ryw7NuaWNvIG8gY3VhbHF1aWVyIG90cm8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgbyBjb24gZmluZXMgZGU8QlI+IHByZXNlcnZhY2nDs24gZGlnaXRhbC4gPEJSPgogCkVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHBvc3Rlcmlvcm1lbnRlIGxhIG9icmEsIGVuIGZvcm1hIHRvdGFsIG8gPEJSPnBhcmNpYWwsIHBvciBsbyBjdWFsIHBvZHLDqSwgZGFuZG8gYXZpc28gcG9yIGVzY3JpdG8gY29uIG5vIG1lbm9zIGRlIHVuIG1lcyBkZSBhbnRlbGFjacOzbiwgc29saWNpdGFyIHF1ZSBlbCA8QlI+ZG9jdW1lbnRvIGRlamUgZGUgZXN0YXIgZGlzcG9uaWJsZSBwYXJhIGVsIHDDumJsaWNvIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgPEJSPiBhc8Otwq0gbWlzbW8sIGN1YW5kbyBzZSByZXF1aWVyYSBwb3IgcmF6b25lcyBsZWdhbGVzIHkvbyByZWdsYXMgZGVsIGVkaXRvciBkZSB1bmEgcmV2aXN0YS4gPEJSPjwvUD4K