Radio Definida por Software: Una mirada a las tendencias y aplicaciones

El concepto de radio definida por software ha tomado relevancia en los últimos años dada su funcionalidad para el control de funciones principalmente en dispositivos de comunicaciones y sensores tipo radar. Su rápida expansión se debe a la facilidad de implementación tanto a nivel amateur, a nivel p...

Full description

Autores:
Niño Rondón, Carlos Vicente
Puerto López, Karla Cecilia
Guevara Ibarra, Dinael
Contreras Gómez, Wilfred Andrey
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/29024
Acceso en línea:
https://doi.org/10.21500/20275846.6048
Palabra clave:
Software Defined Radio
Open-Source
Licensed software
Engineering Education
Communications
Radio Definido por Software
Código Abierto
Software licenciado
Educación en Ingeniería
Sistemas de Comunicaciones
Rights
openAccess
License
Ingenierías USBMed - 2023
id SANBUENAV2_5acfbe7a4daaf6e7bb2e71d0dbe03266
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/29024
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Radio Definida por Software: Una mirada a las tendencias y aplicaciones
dc.title.translated.eng.fl_str_mv Software-Defined Radio: A look at trends and applications
title Radio Definida por Software: Una mirada a las tendencias y aplicaciones
spellingShingle Radio Definida por Software: Una mirada a las tendencias y aplicaciones
Software Defined Radio
Open-Source
Licensed software
Engineering Education
Communications
Radio Definido por Software
Código Abierto
Software licenciado
Educación en Ingeniería
Sistemas de Comunicaciones
title_short Radio Definida por Software: Una mirada a las tendencias y aplicaciones
title_full Radio Definida por Software: Una mirada a las tendencias y aplicaciones
title_fullStr Radio Definida por Software: Una mirada a las tendencias y aplicaciones
title_full_unstemmed Radio Definida por Software: Una mirada a las tendencias y aplicaciones
title_sort Radio Definida por Software: Una mirada a las tendencias y aplicaciones
dc.creator.fl_str_mv Niño Rondón, Carlos Vicente
Puerto López, Karla Cecilia
Guevara Ibarra, Dinael
Contreras Gómez, Wilfred Andrey
dc.contributor.author.spa.fl_str_mv Niño Rondón, Carlos Vicente
Puerto López, Karla Cecilia
Guevara Ibarra, Dinael
Contreras Gómez, Wilfred Andrey
dc.subject.eng.fl_str_mv Software Defined Radio
Open-Source
Licensed software
Engineering Education
Communications
topic Software Defined Radio
Open-Source
Licensed software
Engineering Education
Communications
Radio Definido por Software
Código Abierto
Software licenciado
Educación en Ingeniería
Sistemas de Comunicaciones
dc.subject.spa.fl_str_mv Radio Definido por Software
Código Abierto
Software licenciado
Educación en Ingeniería
Sistemas de Comunicaciones
description El concepto de radio definida por software ha tomado relevancia en los últimos años dada su funcionalidad para el control de funciones principalmente en dispositivos de comunicaciones y sensores tipo radar. Su rápida expansión se debe a la facilidad de implementación tanto a nivel amateur, a nivel profesiones como a nivel didáctico para la enseñanza. En este documento se presenta un análisis de tendencias de la radio definida por software con clasificación por continentes, donde la información de datos bibliográficas de alto impacto, se somete a tres filtros de palabras, y se incluyen documentos comprendidos en la ventana de 2015 a 2022. El análisis de las tendencias y aplicaciones de la radio definida por software en los continentes muestra el uso de esta tecnología en procesos de enseñanza, aplicaciones biomédicas y de sensórica, empleando herramientas tanto de software licenciado como herramientas de código abierto, y con énfasis en hacia el uso de técnicas de aprendizaje computacional.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-20T02:50:47Z
dc.date.available.none.fl_str_mv 2023-05-20T02:50:47Z
dc.date.issued.none.fl_str_mv 2023-05-20
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20275846.6048
dc.identifier.eissn.none.fl_str_mv 2027-5846
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20275846.6048
identifier_str_mv 10.21500/20275846.6048
2027-5846
url https://doi.org/10.21500/20275846.6048
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6048/5064
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2023 : Ingenierías USBMed
dc.relation.citationendpage.none.fl_str_mv 69
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 58
dc.relation.citationvolume.spa.fl_str_mv 14
dc.relation.ispartofjournal.spa.fl_str_mv Ingenierías USBMed
dc.relation.references.spa.fl_str_mv R. G. Machado and A. M. Wyglinski, “Software-defined radio: Bridging the analog-digital divide,” Proc. IEEE, vol. 103, no. 3, pp. 409–423, Mar. 2015. [2] J. Jagannath et al., “Artificial neural network based automatic modulation classification over a software defined radio testbed,” in IEEE International Conference on Communications, 2018, vol. 2018- May, pp. 1–6. [3] G. Kakkavas, K. Tsitseklis, V. Karyotis, and S. Papavassiliou, “A Software Defined Radio Cross-Layer Resource Allocation Approach for Cognitive Radio Networks: From Theory to Practice,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 2, pp. 740–755, 2020. [4] G. Gonzáles Martinez, “Diseño de un sistema de acceso al medio y modulación en banda base utilizando radio definido por software para comunicación de largo alcance entre boyas,” Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, 2016. [5] K. Bhusal, “Implementation and Performance Analysis of Long Term Evolution Using Software Defined Radio,” University of Texas at Tyler, 2017. [6] J. Hernández and S. Castro, “Implementación de un transmisor de ISDB-T abierto bajo el paradigma de radio definida por software,” Universidad de La República, 2018. [7] K. Navarro, F. Canto, and H. Poveda, “Software Defined Radio as an Educational Learning Tool in Wireless Communications,” in 16th LACCEI Internation Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and Inclusion,” 2018, no. July 2018, p. 11. [8] M. W. O’Brien, J. S. Harris, O. Popescu, and Di. C. Popescu, “An Experimental Study of the Transmit Power for a USRP Software Defined Radio,” in 2018 12th International Conference on Communications, COMM 2018 - Proceedings, 2018, pp. 377–380. [9] R. Akeela and B. Dezfouli, “Software-defined Radios: Architecture, state-of-the-art, and challenges,” Comput. Commun., vol. 128, no. July, pp. 106–125, 2018. [10] [10] E. Schmidt, D. Inupakutika, R. Mundlamuri, and D. Akopian, “SDR-Fi: Deep-Learning-Based Indoor Positioning via Software Defined Radio,” IEEE Access, vol. 7, pp. 145784–145797, 2019. [11] O. López Cabrebra, “Diseño de una Radio Definida por Software,” Universidad Nacional Río Negro, 2019. [12] J. C. Cruz Sandoval, “Modelo de capa física WLAN utilizando Radio Definido por Software,” Universidad Central Marta Abreu de Las Villas, 2019. [13] J. M. Navarro Magaldi, “Implementación y verificación de un sistema receptor de comunicaciones basado en software definido por radio,” Universidad Autónoma de Madrid, 2019. [14] A. F. Vega León and A. Guamo, “Comunicación Basada en Radio Cognitiva sobre Radio Definido por Software,” Rev. Tecnológica - ESPOL, vol. 32, no. 2, pp. 43–50, 2020. [15] M. D. Carchi Sañay, “Implementación de prácticas de laboratorio para la materia de comunicación digital utilizando Radio Definida por Software y GNU Radio,” Escuela Politécnica Nacional, 2020. [16] L. Hong, “Experience of IoT transceiver with affordable software defined radio platform,” in ASEE Annual Conference and Exposition, Conference Proceedings, 2020, vol. 2020-June, no. August 2003. [17] R. Seal and J. Urbina, “GnuRadar: An Open-Source Software Defined Radio Receiver Platform for Radar Applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 35, no. 2, pp. 30–36, 2020. [18] M. A. Silva Yánez and J. J. Cartegena Izquierdo, “Diseño e implementación de un prototipo de radar de objetivos móviles con radio definido por software y gnuradio,” Universidad Politécnica Salesiana - Sede Guayaquil, 2021. [19] J. de J. Rugeles Uribe, E. P. Guillen, and L. S. Cardoso, “A technical review of wireless security for the internet of things: Software defined radio perspective,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 7, pp. 4122–4134, 2021. [20] D. M. Molla, H. Badis, L. George, and M. Berbineau, “Coverage Extension of Software Defined Radio Platforms for 3GPP 4G/5G Radio Access Networks,” in Proceedings of the 13th IFIP Wireless and Mobile Networking Conference, WMNC 2021, 2021, pp. 55–62. [21] S. Aghabeiki, C. Hallet, N. E. R. Noutehou, N. Rassem, I. Adjali, and M. Ben Mabrouk, “Machine-learning-based spectrum sensing enhancement for software-defined radio applications,” in 2021 IEEE Cognitive Communications for Aerospace Applications Workshop, CCAAW 2021, 2021, no. June. [22] D. F. Sandoval Romero and J. A. Zamora, “Estudio de la Tecnología Radio Definido por Software,” Fundación Universitaria Agustiniana, 2017. [23] Á. I. Monteros Túqerres, “Diseño y Elaboración de Prácticas de Laboratorio para la Materia de Fundamentos de Comunicaciones usando Radio Definida Por Software,” Escuela Politécnica Nacional, 2019. [24] J. camilo Sanchez Huertas and S. Romero Avedaño, “Algoritmo de volcado del tráfico de datos para redes inalámbricas sobre una red definida por software,” Universidad Distrital Francisco José de Caldas, 2019. [25] G. A. Chica pedraza, D. N. Angulo esguerra, Á. F. Díaz Sánchez, and M. Espinosa Buitrago, “Implementación de estación base GSM recepción de señales LTE aplicando radio definido por software,” Rev. ITECKNE, vol. 17, no. 1, pp. 19–30, 2020. [26] H. A. Gomez Pérez and N. Porras Garzón, “Desarrollo De Un Sistema De Comunicación Basado En Radio Definido Por Software Para Un Robot Modular,” Universidad Distrital Francisco José de Caldas, 2020. [27] A. J. Ospino Polanco and C. A. Díaz Villadiego, “Implementación de una herramienta de radio definido por software que emule una red de telefonía celular móvil para ser usada en la enseñanza dentro del programa de ingeniería electrónica,” Universidad de La Costa, 2022. [28] D. Carralero Alonso, “Radio Definida Por Software En Dispositivos De Bajo Coste,” Universidad de La Laguna, 2016. [29] D. Ball, N. Naik, and P. Jenkins, “Spectrum Alerting System Based on Software Defined Radio and Raspberry Pi,” 2017 Sens. Signal Process. Def. Conf. SSPD 2017, vol. 2017-Janua, pp. 1–5, 2017. [30] R. Utrilla, A. Rozas, J. Blesa, and A. Araujo, “A hybrid approach to enhance cognitive wireless sensor networks with energy-efficient software-defined radio capabilities,” in International Conference on Embedded Wireless Systems and Networks, 2017, no. September 2019, pp. 294–299. [31] G. Piccinni, G. Avitabile, G. Coviello, and C. Talarico, “Modeling of a re-configurable indoor positioning system based on software defined radio architecture,” in 2018 New Generation of CAS, NGCAS 2018, 2018, pp. 174–177. [32] Á. Rojo Ortego, “Inhibición de señales GSM en Software Defined Radio,” Universidad Carlos III de Madrid, 2018. [33] A. Cassagne, “Optimization and parallelization methods for software defined radio,” Univeristé de Bordeaux, 2021. [34] J. S. Phull, N. S. Grewal, S. P. Singh, and A. Rani, “Implementation and Performance Analysis of Cognitive Radio with Frequency Updating Algorithm on Software-defined Radio Platform,” Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents Electr. Electron. Eng., vol. 14, no. 3, pp. 268–275, Dec. 2020. [35] Á. Gutiérrez Rivera, “Implementación de Software Defined Radio en sistemas de comunicaciones actuales,” Universidad de Sevilla, 2017. [36] I. Georgescu, N. Angelescu, D. C. Puchianu, G. Predusca, and L. D. Circiumarescu, “Software defined radio applications - Receiving and decoding images transmitted by weather satellites,” Proc. 13th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2021, Jul. 2021. [37] D. J. Deng, S. Y. Lien, C. C. Lin, S. C. Hung, and W. B. Chen, “Latency Control in Software-Defined Mobile-Edge Vehicular Networking,” IEEE Commun. Mag., vol. 55, no. 8, pp. 87–93, 2017. [38] Y. Ma, Y. Zeng, and S. Sun, “A software defined radio based multifunction radar for IoT applications,” in 2018 24th Asia-Pacific Conference on Communications, APCC 2018, 2019, vol. 2, pp. 239–244. [39] B. Siva Kumar Reddy, Experimental validation of spectrum sensing techniques using software-defined radio, vol. 511. Springer Singapore, 2019. [40] I. Martoyo, A. Coandi, D. Pratignyo, H. Y. Kanalebe, H. P. Uranus, and M. Pardede, “Software defined radio applications for mini GSM BTS and spectrum analyzer with bladeRF,” in Proceedings - 2018 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2018, 2018, pp. 108–111. [41] S. Xu, X. W. Wang, and M. Huang, “Software-Defined Next Generation Satellite Networks: Architecture, Challenges, and Solutions,” IEEE Access, vol. 6, no. c, pp. 4027–4041, 2018. [42] T. Hussain et al., “A high performance software defined radio system architecture and development environment for a wide range of applications,” 2018 Int. Conf. Comput. Math. Eng. Technol. Inven. Innov. Integr. Socioecon. Dev. iCoMET 2018 - Proc., vol. 2018- Janua, pp. 1–5, 2018. [43] A. Sulimov, A. Galiev, A. Karpov, and V. Markelov, “Verification of Wireless Key Generation Using Software Defined Radio,” in 2019 International Siberian Conference on Control and Communications, 2019, pp. 1–6. [44] T. T. T. Quynh, T. V. Khoa, L. Van Nguyen, and N. Linh-Trung, “Network coding with multimedia transmission: A software-definedradio based implementation,” in Proceedings - 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications and Computing, SigTelCom 2019, 2019, no. ii, pp. 109–113. [45] S. A. Alawsh, O. O. Al Basheer, A. O. Sirag, and A. H. Muqaibel, “Range and angle measurements based on software defined radio platform,” in 2019 IEEE 10th GCC Conference and Exhibition, GCC 2019, 2019, pp. 1–5. [46] [S. Kumar, “Architecture for Simultaneous Multi-Standard Software Defined Radio Receiver,” Sorbonne Universite, 2019. [47] D. E. Shumakher, G. V. Nikonova, and L. V. Shchapova, “Radiosignal Identification System for the Software-Defined Radio,” in 2019 International Seminar on Electron Devices Design and Production, SED 2019 - Proceedings, 2019, pp. 1–5. [48] F. A. M. Bargarai, A. M. Abdulazeez, V. M. Tiryaki, and D. Q. Zeebaree, “Management of wireless communication systems using artificial intelligence-based software defined radio,” Int. J. Interact. Mob. Technol., vol. 14, no. 13, pp. 107–133, 2020. [49] D. Bykhovsky, “Teaching wireless channel modeling with software defined radio,” Comput. Appl. Eng. Educ., vol. 28, no. 2, pp. 314–323, 2020. [50] N. Ayir and T. Riihonen, “Impact of software-defined radio transmitter on the efficiency of RF wireless power transfer,” in 2020 IEEE Wireless Power Transfer Conference, WPTC 2020, 2020, pp. 83–86. [51] B. S. K. Reddy, K. Mannem, and K. Jamal, “Software Defined Radio Based Non-orthogonal Multiple Access (NOMA) Systems,” Wirel. Pers. Commun., vol. 119, no. 2, pp. 1251–1273, 2021. [52] J. Liang, H. Chen, and S. C. Liew, “Design and Implementation of Time-Sensitive Wireless IoT Networks on Software-Defined Radio,” IEEE Internet Things J., vol. 9, no. 3, pp. 2361–2374, 2022. [53] A. E. Stancombe, K. S. Bialkowski, and A. M. Abbosh, “Portable microwave head imaging system using software-defined radio and switching network,” IEEE J. Electromagn. RF Microwaves Med. Biol., vol. 3, no. 4, pp. 284–291, 2019. [54] A. E. Stancombe and K. S. Bialkowski, “Portable biomedical microwave imaging using software-defined radio,” in Asia-Pacific Microwave Conference Proceedings, APMC, 2019, vol. 2018- Novem, pp. 572–574. [55] J. Marimuthu, K. S. Bialkowski, and A. M. Abbosh, “Software defined radar for medical imaging,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 2, pp. 643–652, 2016. [56] [R. Y.-M. Huang, V. C. Leung, C.-F. Lai, S. Mukhopadhyay, and R. Lai, “Reconfigurable Software Defined Radio in 5G Mobile Communication System,” IEEE Wirel. Commun., vol. 25, no. December, pp. 12–14, 2015. [57] A. Sadek, H. Mostafa, A. Nassar, and Y. Ismail, “Towards the implementation of Multi-band Multi-standard Software-Defined Radio using Dynamic Partial Reconfiguration,” Int. J. Commun. Syst., vol. 30, no. 17, pp. 1–12, 2017. [58] A. Sadek, H. Mostafa, and A. Nassar, “On the use of dynamic partial reconfiguration for multi-band/multi-standard software defined radio,” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems, 2016, vol. 2016-March, pp. 498– 499. [59] D. Rouffet and W. König, “Dynamic channel coding reconfiguration in Software Defined Radio,” in 2015 27th International Conference on Microelectronics (ICM), Casablanca, Morocco, 2015, pp. 13–16. [60] S. O. Ugwuanyi and M. A. Ahaneku, “Radio frequency and channel investigation using software defined radio in MATLAB And simulink environment,” Niger. J. Technol., vol. 37, no. 4, p. 1049, 2018. [61] T. Kokumo Yesufu, “Weak Amplitude Modulated (AM) Signal Detection Algorithm for Software-Defined Radio Receivers,” Int. J. Intell. Inf. Syst., vol. 4, no. 4, p. 79, 2015. [62] T. Kokumo, J. Otolorin, and A. Olawole, “An Algorithm for a SubNyquist Rate AM and FM Software-Defined Radio Based on the Market Paradigm,” Sci. J. Circuits, Syst. Signal Process., vol. 4, no. 3, p. 18, 2015. [63] S. Ajala, E. Adetiba, M. B. Akanle, O. O. Obiyemi, S. Thakur, and J. Abolarinwa, “Experimentations on the Transmit Power of a Universal Software Radio Peripheral Using GNU Radio Framework and a Handheld RF Explorer,” IOP Conf. Ser. Earth Environ. Sci., vol. 655, no. 1, pp. 1–7, 2021
dc.rights.spa.fl_str_mv Ingenierías USBMed - 2023
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
rights_invalid_str_mv Ingenierías USBMed - 2023
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.spa.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6048
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/96f87650-e191-48d1-b136-8e09416b8b49/download
bitstream.checksum.fl_str_mv 2da8d10bd240a385846c1d1871e6d0ab
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053660337864704
spelling Niño Rondón, Carlos VicentePuerto López, Karla CeciliaGuevara Ibarra, DinaelContreras Gómez, Wilfred Andrey2023-05-20T02:50:47Z2023-05-20T02:50:47Z2023-05-20El concepto de radio definida por software ha tomado relevancia en los últimos años dada su funcionalidad para el control de funciones principalmente en dispositivos de comunicaciones y sensores tipo radar. Su rápida expansión se debe a la facilidad de implementación tanto a nivel amateur, a nivel profesiones como a nivel didáctico para la enseñanza. En este documento se presenta un análisis de tendencias de la radio definida por software con clasificación por continentes, donde la información de datos bibliográficas de alto impacto, se somete a tres filtros de palabras, y se incluyen documentos comprendidos en la ventana de 2015 a 2022. El análisis de las tendencias y aplicaciones de la radio definida por software en los continentes muestra el uso de esta tecnología en procesos de enseñanza, aplicaciones biomédicas y de sensórica, empleando herramientas tanto de software licenciado como herramientas de código abierto, y con énfasis en hacia el uso de técnicas de aprendizaje computacional.The concept of software defined radio has gained relevance in recent years due to its functionality for the control of functions mainly in communication devices and radar type sensors. Its rapid expansion is due to the ease of implementation at the amateur level, at the professional level and at the didactic level for teaching. This paper presents a trend analysis of software defined radio with classification by continents, where high impact bibliographic data information is subjected to three-word filters, and includes documents within the window from 2015 to 2022. The analysis of trends and applications of software-defined radio in the continents shows the use of this technology in teaching processes, biomedical and sensor applications, using both licensed software tools and open-source tools, and with emphasis on the use of computational learning techniques.application/pdf10.21500/20275846.60482027-5846https://doi.org/10.21500/20275846.6048spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6048/5064Núm. 1 , Año 2023 : Ingenierías USBMed6915814Ingenierías USBMedR. G. Machado and A. M. Wyglinski, “Software-defined radio: Bridging the analog-digital divide,” Proc. IEEE, vol. 103, no. 3, pp. 409–423, Mar. 2015. [2] J. Jagannath et al., “Artificial neural network based automatic modulation classification over a software defined radio testbed,” in IEEE International Conference on Communications, 2018, vol. 2018- May, pp. 1–6. [3] G. Kakkavas, K. Tsitseklis, V. Karyotis, and S. Papavassiliou, “A Software Defined Radio Cross-Layer Resource Allocation Approach for Cognitive Radio Networks: From Theory to Practice,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 2, pp. 740–755, 2020. [4] G. Gonzáles Martinez, “Diseño de un sistema de acceso al medio y modulación en banda base utilizando radio definido por software para comunicación de largo alcance entre boyas,” Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, 2016. [5] K. Bhusal, “Implementation and Performance Analysis of Long Term Evolution Using Software Defined Radio,” University of Texas at Tyler, 2017. [6] J. Hernández and S. Castro, “Implementación de un transmisor de ISDB-T abierto bajo el paradigma de radio definida por software,” Universidad de La República, 2018. [7] K. Navarro, F. Canto, and H. Poveda, “Software Defined Radio as an Educational Learning Tool in Wireless Communications,” in 16th LACCEI Internation Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and Inclusion,” 2018, no. July 2018, p. 11. [8] M. W. O’Brien, J. S. Harris, O. Popescu, and Di. C. Popescu, “An Experimental Study of the Transmit Power for a USRP Software Defined Radio,” in 2018 12th International Conference on Communications, COMM 2018 - Proceedings, 2018, pp. 377–380. [9] R. Akeela and B. Dezfouli, “Software-defined Radios: Architecture, state-of-the-art, and challenges,” Comput. Commun., vol. 128, no. July, pp. 106–125, 2018. [10] [10] E. Schmidt, D. Inupakutika, R. Mundlamuri, and D. Akopian, “SDR-Fi: Deep-Learning-Based Indoor Positioning via Software Defined Radio,” IEEE Access, vol. 7, pp. 145784–145797, 2019. [11] O. López Cabrebra, “Diseño de una Radio Definida por Software,” Universidad Nacional Río Negro, 2019. [12] J. C. Cruz Sandoval, “Modelo de capa física WLAN utilizando Radio Definido por Software,” Universidad Central Marta Abreu de Las Villas, 2019. [13] J. M. Navarro Magaldi, “Implementación y verificación de un sistema receptor de comunicaciones basado en software definido por radio,” Universidad Autónoma de Madrid, 2019. [14] A. F. Vega León and A. Guamo, “Comunicación Basada en Radio Cognitiva sobre Radio Definido por Software,” Rev. Tecnológica - ESPOL, vol. 32, no. 2, pp. 43–50, 2020. [15] M. D. Carchi Sañay, “Implementación de prácticas de laboratorio para la materia de comunicación digital utilizando Radio Definida por Software y GNU Radio,” Escuela Politécnica Nacional, 2020. [16] L. Hong, “Experience of IoT transceiver with affordable software defined radio platform,” in ASEE Annual Conference and Exposition, Conference Proceedings, 2020, vol. 2020-June, no. August 2003. [17] R. Seal and J. Urbina, “GnuRadar: An Open-Source Software Defined Radio Receiver Platform for Radar Applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 35, no. 2, pp. 30–36, 2020. [18] M. A. Silva Yánez and J. J. Cartegena Izquierdo, “Diseño e implementación de un prototipo de radar de objetivos móviles con radio definido por software y gnuradio,” Universidad Politécnica Salesiana - Sede Guayaquil, 2021. [19] J. de J. Rugeles Uribe, E. P. Guillen, and L. S. Cardoso, “A technical review of wireless security for the internet of things: Software defined radio perspective,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 7, pp. 4122–4134, 2021. [20] D. M. Molla, H. Badis, L. George, and M. Berbineau, “Coverage Extension of Software Defined Radio Platforms for 3GPP 4G/5G Radio Access Networks,” in Proceedings of the 13th IFIP Wireless and Mobile Networking Conference, WMNC 2021, 2021, pp. 55–62. [21] S. Aghabeiki, C. Hallet, N. E. R. Noutehou, N. Rassem, I. Adjali, and M. Ben Mabrouk, “Machine-learning-based spectrum sensing enhancement for software-defined radio applications,” in 2021 IEEE Cognitive Communications for Aerospace Applications Workshop, CCAAW 2021, 2021, no. June. [22] D. F. Sandoval Romero and J. A. Zamora, “Estudio de la Tecnología Radio Definido por Software,” Fundación Universitaria Agustiniana, 2017. [23] Á. I. Monteros Túqerres, “Diseño y Elaboración de Prácticas de Laboratorio para la Materia de Fundamentos de Comunicaciones usando Radio Definida Por Software,” Escuela Politécnica Nacional, 2019. [24] J. camilo Sanchez Huertas and S. Romero Avedaño, “Algoritmo de volcado del tráfico de datos para redes inalámbricas sobre una red definida por software,” Universidad Distrital Francisco José de Caldas, 2019. [25] G. A. Chica pedraza, D. N. Angulo esguerra, Á. F. Díaz Sánchez, and M. Espinosa Buitrago, “Implementación de estación base GSM recepción de señales LTE aplicando radio definido por software,” Rev. ITECKNE, vol. 17, no. 1, pp. 19–30, 2020. [26] H. A. Gomez Pérez and N. Porras Garzón, “Desarrollo De Un Sistema De Comunicación Basado En Radio Definido Por Software Para Un Robot Modular,” Universidad Distrital Francisco José de Caldas, 2020. [27] A. J. Ospino Polanco and C. A. Díaz Villadiego, “Implementación de una herramienta de radio definido por software que emule una red de telefonía celular móvil para ser usada en la enseñanza dentro del programa de ingeniería electrónica,” Universidad de La Costa, 2022. [28] D. Carralero Alonso, “Radio Definida Por Software En Dispositivos De Bajo Coste,” Universidad de La Laguna, 2016. [29] D. Ball, N. Naik, and P. Jenkins, “Spectrum Alerting System Based on Software Defined Radio and Raspberry Pi,” 2017 Sens. Signal Process. Def. Conf. SSPD 2017, vol. 2017-Janua, pp. 1–5, 2017. [30] R. Utrilla, A. Rozas, J. Blesa, and A. Araujo, “A hybrid approach to enhance cognitive wireless sensor networks with energy-efficient software-defined radio capabilities,” in International Conference on Embedded Wireless Systems and Networks, 2017, no. September 2019, pp. 294–299. [31] G. Piccinni, G. Avitabile, G. Coviello, and C. Talarico, “Modeling of a re-configurable indoor positioning system based on software defined radio architecture,” in 2018 New Generation of CAS, NGCAS 2018, 2018, pp. 174–177. [32] Á. Rojo Ortego, “Inhibición de señales GSM en Software Defined Radio,” Universidad Carlos III de Madrid, 2018. [33] A. Cassagne, “Optimization and parallelization methods for software defined radio,” Univeristé de Bordeaux, 2021. [34] J. S. Phull, N. S. Grewal, S. P. Singh, and A. Rani, “Implementation and Performance Analysis of Cognitive Radio with Frequency Updating Algorithm on Software-defined Radio Platform,” Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents Electr. Electron. Eng., vol. 14, no. 3, pp. 268–275, Dec. 2020. [35] Á. Gutiérrez Rivera, “Implementación de Software Defined Radio en sistemas de comunicaciones actuales,” Universidad de Sevilla, 2017. [36] I. Georgescu, N. Angelescu, D. C. Puchianu, G. Predusca, and L. D. Circiumarescu, “Software defined radio applications - Receiving and decoding images transmitted by weather satellites,” Proc. 13th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2021, Jul. 2021. [37] D. J. Deng, S. Y. Lien, C. C. Lin, S. C. Hung, and W. B. Chen, “Latency Control in Software-Defined Mobile-Edge Vehicular Networking,” IEEE Commun. Mag., vol. 55, no. 8, pp. 87–93, 2017. [38] Y. Ma, Y. Zeng, and S. Sun, “A software defined radio based multifunction radar for IoT applications,” in 2018 24th Asia-Pacific Conference on Communications, APCC 2018, 2019, vol. 2, pp. 239–244. [39] B. Siva Kumar Reddy, Experimental validation of spectrum sensing techniques using software-defined radio, vol. 511. Springer Singapore, 2019. [40] I. Martoyo, A. Coandi, D. Pratignyo, H. Y. Kanalebe, H. P. Uranus, and M. Pardede, “Software defined radio applications for mini GSM BTS and spectrum analyzer with bladeRF,” in Proceedings - 2018 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2018, 2018, pp. 108–111. [41] S. Xu, X. W. Wang, and M. Huang, “Software-Defined Next Generation Satellite Networks: Architecture, Challenges, and Solutions,” IEEE Access, vol. 6, no. c, pp. 4027–4041, 2018. [42] T. Hussain et al., “A high performance software defined radio system architecture and development environment for a wide range of applications,” 2018 Int. Conf. Comput. Math. Eng. Technol. Inven. Innov. Integr. Socioecon. Dev. iCoMET 2018 - Proc., vol. 2018- Janua, pp. 1–5, 2018. [43] A. Sulimov, A. Galiev, A. Karpov, and V. Markelov, “Verification of Wireless Key Generation Using Software Defined Radio,” in 2019 International Siberian Conference on Control and Communications, 2019, pp. 1–6. [44] T. T. T. Quynh, T. V. Khoa, L. Van Nguyen, and N. Linh-Trung, “Network coding with multimedia transmission: A software-definedradio based implementation,” in Proceedings - 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications and Computing, SigTelCom 2019, 2019, no. ii, pp. 109–113. [45] S. A. Alawsh, O. O. Al Basheer, A. O. Sirag, and A. H. Muqaibel, “Range and angle measurements based on software defined radio platform,” in 2019 IEEE 10th GCC Conference and Exhibition, GCC 2019, 2019, pp. 1–5. [46] [S. Kumar, “Architecture for Simultaneous Multi-Standard Software Defined Radio Receiver,” Sorbonne Universite, 2019. [47] D. E. Shumakher, G. V. Nikonova, and L. V. Shchapova, “Radiosignal Identification System for the Software-Defined Radio,” in 2019 International Seminar on Electron Devices Design and Production, SED 2019 - Proceedings, 2019, pp. 1–5. [48] F. A. M. Bargarai, A. M. Abdulazeez, V. M. Tiryaki, and D. Q. Zeebaree, “Management of wireless communication systems using artificial intelligence-based software defined radio,” Int. J. Interact. Mob. Technol., vol. 14, no. 13, pp. 107–133, 2020. [49] D. Bykhovsky, “Teaching wireless channel modeling with software defined radio,” Comput. Appl. Eng. Educ., vol. 28, no. 2, pp. 314–323, 2020. [50] N. Ayir and T. Riihonen, “Impact of software-defined radio transmitter on the efficiency of RF wireless power transfer,” in 2020 IEEE Wireless Power Transfer Conference, WPTC 2020, 2020, pp. 83–86. [51] B. S. K. Reddy, K. Mannem, and K. Jamal, “Software Defined Radio Based Non-orthogonal Multiple Access (NOMA) Systems,” Wirel. Pers. Commun., vol. 119, no. 2, pp. 1251–1273, 2021. [52] J. Liang, H. Chen, and S. C. Liew, “Design and Implementation of Time-Sensitive Wireless IoT Networks on Software-Defined Radio,” IEEE Internet Things J., vol. 9, no. 3, pp. 2361–2374, 2022. [53] A. E. Stancombe, K. S. Bialkowski, and A. M. Abbosh, “Portable microwave head imaging system using software-defined radio and switching network,” IEEE J. Electromagn. RF Microwaves Med. Biol., vol. 3, no. 4, pp. 284–291, 2019. [54] A. E. Stancombe and K. S. Bialkowski, “Portable biomedical microwave imaging using software-defined radio,” in Asia-Pacific Microwave Conference Proceedings, APMC, 2019, vol. 2018- Novem, pp. 572–574. [55] J. Marimuthu, K. S. Bialkowski, and A. M. Abbosh, “Software defined radar for medical imaging,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 2, pp. 643–652, 2016. [56] [R. Y.-M. Huang, V. C. Leung, C.-F. Lai, S. Mukhopadhyay, and R. Lai, “Reconfigurable Software Defined Radio in 5G Mobile Communication System,” IEEE Wirel. Commun., vol. 25, no. December, pp. 12–14, 2015. [57] A. Sadek, H. Mostafa, A. Nassar, and Y. Ismail, “Towards the implementation of Multi-band Multi-standard Software-Defined Radio using Dynamic Partial Reconfiguration,” Int. J. Commun. Syst., vol. 30, no. 17, pp. 1–12, 2017. [58] A. Sadek, H. Mostafa, and A. Nassar, “On the use of dynamic partial reconfiguration for multi-band/multi-standard software defined radio,” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems, 2016, vol. 2016-March, pp. 498– 499. [59] D. Rouffet and W. König, “Dynamic channel coding reconfiguration in Software Defined Radio,” in 2015 27th International Conference on Microelectronics (ICM), Casablanca, Morocco, 2015, pp. 13–16. [60] S. O. Ugwuanyi and M. A. Ahaneku, “Radio frequency and channel investigation using software defined radio in MATLAB And simulink environment,” Niger. J. Technol., vol. 37, no. 4, p. 1049, 2018. [61] T. Kokumo Yesufu, “Weak Amplitude Modulated (AM) Signal Detection Algorithm for Software-Defined Radio Receivers,” Int. J. Intell. Inf. Syst., vol. 4, no. 4, p. 79, 2015. [62] T. Kokumo, J. Otolorin, and A. Olawole, “An Algorithm for a SubNyquist Rate AM and FM Software-Defined Radio Based on the Market Paradigm,” Sci. J. Circuits, Syst. Signal Process., vol. 4, no. 3, p. 18, 2015. [63] S. Ajala, E. Adetiba, M. B. Akanle, O. O. Obiyemi, S. Thakur, and J. Abolarinwa, “Experimentations on the Transmit Power of a Universal Software Radio Peripheral Using GNU Radio Framework and a Handheld RF Explorer,” IOP Conf. Ser. Earth Environ. Sci., vol. 655, no. 1, pp. 1–7, 2021Ingenierías USBMed - 2023info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6048Software Defined RadioOpen-SourceLicensed softwareEngineering EducationCommunicationsRadio Definido por SoftwareCódigo AbiertoSoftware licenciadoEducación en IngenieríaSistemas de ComunicacionesRadio Definida por Software: Una mirada a las tendencias y aplicacionesSoftware-Defined Radio: A look at trends and applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2704https://bibliotecadigital.usb.edu.co/bitstreams/96f87650-e191-48d1-b136-8e09416b8b49/download2da8d10bd240a385846c1d1871e6d0abMD5110819/29024oai:bibliotecadigital.usb.edu.co:10819/290242025-08-26 10:19:01.625https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com