Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos

En esta revisión narrativa, se investigó la capacidad de diversos microorganismos para la biorremediación de metales pesados, centrándose en plomo, cromo, cadmio, mercurio y arsénico. A través de la revisión y análisis de 47 artículos científicos seleccionados de las bases de datos Pubmed, Scielo, L...

Full description

Autores:
García Cárdenas, Daniela
Rodríguez Arroyo, Shery
Marrugo Parra, María José
Tipo de recurso:
Review article
Fecha de publicación:
2023
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/13625
Acceso en línea:
https://hdl.handle.net/10819/13625
Palabra clave:
610 - Medicina y salud::616 - Enfermedades
Tesis - bacteriologìa
Biorremediaciòn
Microorganismos
Sedimentos
Agua
Metales pesados
Biorremediación
Microorganismos
Agua
Sedimentos
Metales pesados
Bioremediation
Heavy metals
Microorganisms
Water
Sediment
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id SANBUENAV2_55f6b60864fab29ec195013b9a706571
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/13625
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos
title Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos
spellingShingle Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos
610 - Medicina y salud::616 - Enfermedades
Tesis - bacteriologìa
Biorremediaciòn
Microorganismos
Sedimentos
Agua
Metales pesados
Biorremediación
Microorganismos
Agua
Sedimentos
Metales pesados
Bioremediation
Heavy metals
Microorganisms
Water
Sediment
title_short Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos
title_full Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos
title_fullStr Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos
title_full_unstemmed Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos
title_sort Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos
dc.creator.fl_str_mv García Cárdenas, Daniela
Rodríguez Arroyo, Shery
Marrugo Parra, María José
dc.contributor.advisor.none.fl_str_mv Ríos Montes, Karina
Galvis Ballesteros, Javier David
Rios Montes, Karina Andrea
dc.contributor.author.none.fl_str_mv García Cárdenas, Daniela
Rodríguez Arroyo, Shery
Marrugo Parra, María José
dc.contributor.jury.none.fl_str_mv Romero Murillo, Patricia
Maldonado Rojas, Wilson
dc.contributor.researchgroup.none.fl_str_mv Grupo de Investigación Microbiología y Ambiente (GIMA) (Cartagena)
dc.subject.ddc.none.fl_str_mv 610 - Medicina y salud::616 - Enfermedades
topic 610 - Medicina y salud::616 - Enfermedades
Tesis - bacteriologìa
Biorremediaciòn
Microorganismos
Sedimentos
Agua
Metales pesados
Biorremediación
Microorganismos
Agua
Sedimentos
Metales pesados
Bioremediation
Heavy metals
Microorganisms
Water
Sediment
dc.subject.other.none.fl_str_mv Tesis - bacteriologìa
Biorremediaciòn
Microorganismos
Sedimentos
Agua
Metales pesados
dc.subject.proposal.spa.fl_str_mv Biorremediación
Microorganismos
Agua
Sedimentos
Metales pesados
dc.subject.proposal.eng.fl_str_mv Bioremediation
Heavy metals
Microorganisms
Water
Sediment
description En esta revisión narrativa, se investigó la capacidad de diversos microorganismos para la biorremediación de metales pesados, centrándose en plomo, cromo, cadmio, mercurio y arsénico. A través de la revisión y análisis de 47 artículos científicos seleccionados de las bases de datos Pubmed, Scielo, LILACS y ScienceDirect, que se incluyeron teniendo en cuenta los años de publicación (2018 y 2022) y que abordaban la utilización de microorganismos para la biorremediación de metales pesados, se describieron las características para algunos de estos, de los cuales se destacaron en el grupo de bacterias: Pseudomonas sp., Bacillus sp., Serratia marcescens, Acidithiobacillus ferrooxidans, Escherichia coli y Staphylococcus hominis; entre las levaduras Kluyveromyces marxianus, y entre las microalgas el género Chlorella. Lo anterior con el propósito de identificar el potencial biorremediador de los microorganismos mencionados. Los resultados demostraron que estos poseen un alto potencial para tolerar altas concentraciones de metales pesados, incluso poder reducir su concentración en los ambientes contaminados como aguas residuales y sedimentos. Se identificaron diferentes mecanismos asociados a la resistencia y tolerancia de los microorganismos, como la acumulación, adsorción, biotransformación y precipitación biológica de los metales. Son estrategias claves de los microorganismos para transformar metales pesados y mitigar sus efectos tóxicos. En conclusión, la literatura revisada resalta el potencial de los microorganismos para la biorremediación de la contaminación por metales pesados, lo que podría tener aplicaciones prácticas en la descontaminación ambiental y el tratamiento de aguas residuales industriales contaminadas. Sin embargo, se enfatiza en la importancia de considerar las condiciones particulares de cada matriz de estudio y adaptar los resultados a situaciones y entornos particulares antes de su implementación práctica. Además, se recomienda continuar investigando en este campo para abordar los desafíos restantes y mejorar las estrategias de biorremediación.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-05-28T21:57:15Z
dc.date.available.none.fl_str_mv 2024-05-28T21:57:15Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_dcae04bc
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/other
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_dcae04bc
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv García Cárdenas, D., Marrugo Parra, M. J. & Rodríguez Arroyo, Ch. F. (2023). Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos. [Trabajo de grado de Bacteriología]. Universidad de San Buenaventura, Cartagena.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/13625
identifier_str_mv García Cárdenas, D., Marrugo Parra, M. J. & Rodríguez Arroyo, Ch. F. (2023). Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos. [Trabajo de grado de Bacteriología]. Universidad de San Buenaventura, Cartagena.
url https://hdl.handle.net/10819/13625
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Goswami RK, Agrawal K, Shah MP, Verma P. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in applied microbiology. 2022;75(4): 701–717. https://doi.org/10.1111/lam.13564.
Kapahi M, Sachdeva S. Bioremediation options for heavy metal pollution. Journal of health & pollution. 2019;9(24): 191203. https://doi.org/10.5696/2156-9614-9.24.191203.
World Health Organization. Lead Poisoning and Health [Internet]. Who.int. World Health Organization: WHO; 2022. https://www.who.int/es/news-room/fact-sheets/detail/lead-poisoning-and-health
US EPA. National Primary Drinking Water Regulations | US EPA [Internet]. US EPA. 2018. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#:~:text=The%20National%20Primary%20Drinking%20Water,of%20contaminants%20in%20drinking%20water.
González-Reguero D, Robas-Mora M, Probanza Lobo A, Jiménez Gómez PA. Bioremediation of environments contaminated with mercury. Present and perspectives. World Journal of Microbiology and Biotechnology. 2023;39(9). https://doi.org/10.1007/s11274-023-03686-1.
Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh U, SahuA, et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteriaof fundamental processes. Sustainability. 2015;7(2): 2189–2212. https://doi.org/10.3390/su7022189.
Zhou B, Zhang T, Wang F. Microbial-based heavy metal bioremediation: Toxicity and Eco-friendly approaches to heavy metal decontamination. Applied sciences (Basel, Switzerland). 2023;13(14): 8439. https://doi.org/10.3390/app13148439.
Sarker A, Masud MAA, Deepo DM, Das K, Nandi R, Ansary MWR, et al. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere. 2023;332(138861): 138861. https://doi.org/10.1016/j.chemosphere.2023.138861
Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
Choudhury S, Chatterjee A. Microbial application in remediation of heavy metals: an overview. Archives of microbiology. 2022;204(5). https://doi.org/10.1007/s00203-022-02874-1
Duwiejuah AB, Abubakari AH, Quainoo AK, Amadu Y. Review of biochar properties and remediation of metal pollution of water and soil. Journal of health & pollution. 2020;10(27). https://doi.org/10.5696/2156-9614-10.27.200902
Xu Q, Wu B, Chai X. In situ remediation technology for heavy metal contaminated sediment: A review. International journal of environmental research and public health. 2022;19(24): 16767. https://doi.org/10.3390/ijerph192416767
González Henao S, Ghneim-Herrera T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in environmental science. 2021;9. https://doi.org/10.3389/fenvs.2021.604216
Wang Y, Li H, Lin S. Advances in the study of heavy metal adsorption from water and soil by modified biochar. Water. 2022;14(23): 3894. https://doi.org/10.3390/w14233894
Uhrynowski W, Debiec K, Sklodowska A, Drewniak L. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. The Science of the total environment. 2017;598: 680-689. https://doi.org/10.1016/j.scitotenv.2017.04.137
Sandil S. Recent trends in bioremediation of heavy metals. En: Metagenomics to Bioremediation. Elsevier; 2023. p. 23-53. https://doi.org/10.1016/B978-0-323-96113-4.00027-5
Xu Q y Wu B. Recent progress on ex situ remediation technology and resource utilization for heavy metal contaminated sediment. Toxics. 2023;11(3): 207. https://doi.org/10.3390/toxics11030207.
Kumar, V., Saxena, Gy Shah, M. Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and GreenerSociety. 2020; https://www.researchgate.net/publication/340363236_Bioremediation_for_Environmental_Sustainability_Approaches_to_Tackle_Pollution_for_Cleaner_and_Greener_Society
Njoku KL, Akinyede OR, Obidi OF. Microbial Remediation of Heavy Metals Contaminated Media by Bacillus megaterium and Rhizopus stolonifer. Scientific African. 2020;10(e00545): e00545. https://doi.org/10.1016/j.sciaf.2020.e00545
Ayilara MS, Babalola OO. Bioremediation of environmental wastes: the role of microorganisms. Frontiers in agronomy. 2023;5. https://doi.org/10.3389/fagro.2023.1183691
Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK. Bioremediation of heavy metals by rhizobacteria. Applied biochemistry and biotechnology. 2023;195(8): 4689-4711. https://doi.org/10.1007/s12010-022-04177-z
Sayqal A, Ahmed OB. Advances in heavy metal bioremediation: An overview. Applied bionics and biomechanics. 2021;2021: 1-8. https://doi.org/10.1155/2021/1609149
Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 1-13. https://doi.org/10.4061/2011/941810
Paul T, Saha NC. Bioremediation of heavy metals. Biotechnology for Zero Waste. 2022. p. 67-81. https://doi.org/10.1002/9783527832064.ch5
Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3), 609-643. https://doi.org/10.1099/mic.0.037143-0
Raklami A, Meddich A, Oufdou K, Baslam M. Plants-microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International journal of molecular sciences. 2022;23(9): 5031. https://doi.org/10.3390/ijms23095031
Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. Journal of Hazardous Materials, 152(1), 407-414. https://doi.org/10.1016/j.jhazmat.2007.07.028
Saha L, Tiwari J, Bauddh K, Ma Y. Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils. Frontiers in microbiology. 2021;12. https://doi.org/10.3389/fmicb.2021.731723
Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M. Trends in bioremediation of heavy metal contaminations. Environmental Engineering Research. 2022;28(4): 220631-220630. https://doi.org/10.4491/eer.2021.631 30. Pande V, Pandey SC, Sati D, Bhatt P, Samant M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Frontiers in microbiology. 2022;13. https://doi.org/10.3389/fmicb.2022.824084
Cota Ruiz K, Nuñez Gastelúm JA, Delgado Rios M, Martinez Martinez A. Biorremediación: actualidad de conceptos y aplicaciones. BIOTECNIA [Internet]. 23 de diciembre de 2018; 21(1):37-44. Disponible en: https://biotecnia.unison.mx/index.php/biotecnia/article/view/811
Abdel-razek, A. G., El-Sheekh, M. M., & El-Naggar, A. H. (2021). Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in Applied Microbiology, 72(1), 165-196. https://doi.org/10.1111/lam.13564
Prachi, & Gautam, Pranay & Madathil, D. & Nalinakumari, Brijesh Nair. (2013). Nanotechnology in waste water treatment: A review. International Journal of ChemTech Research.5.2303-2308. https://www.sphinxsai.com/2013/JulySept13/4CHEMTECHJULY-SEPT13.htm
John R, Rajan AP. Pseudomonas putida APRRJVITS11 as a potent tool in chromium (VI) removal from effluent wastewater. Preparative biochemistry & biotechnology. 2022;52(2): 163–170. https://doi.org/10.1080/10826068.2021.1922918.
Princy S. Reduction of Cr(VI) by Bacillus species isolated from tannery effluent contaminated sites of Tamil Nadu, India [Internet]; Materials Today: Proceedings, vol. 48, no. 2, May 2020. Disponible en: https://doi.org/10.1016/j.matpr.2020.04.850
Yu Q, Mishra B, Fein JB. Role of bacterial cell surface sulfhydryl sites in cadmium detoxification by Pseudomonas putida. Journal of hazardous materials. 2020;391(122209): 122209. https://doi.org/10.1016/j.jhazmat.2020.122209.
Zhang J, Zeng Y, Liu B, Deng X. MerP/MerT-mediated mechanism: A different approach to mercury resistance and bioaccumulation by marine bacteria. Journal of hazardous materials. 2020;388(122062): 122062. https://doi.org/10.1016/j.jhazmat.2020.122062.
Sathvika T, Balaji S, Chandra M, Soni A, Rajesh V, Rajesh N. A co-operative endeavor by nitrifying bacteria Nitrosomonas and Zirconium based metal organic framework to remove hexavalent chromium. Chemical engineering journal (Lausanne, Switzerland: 1996). 2019;360: 879–889. https://doi.org/10.1016/j.cej.2018.12.015.
Zhang K, Li N, Liao P, Jin Y, Li Q, Gan M, Chen Y, He P, Chen F, Peng M, Zhu J. Conductive property of secondary minerals triggered Cr (VI) bioreduction by dissimilatory iron reducing bacteria. Environmental pollution (Barking, Essex: 1987). 2021;286(117227): 117227. https://doi.org/10.1016/j.envpol.2021.117227.
Zhang X, Tang S, Wang M, Sun W, Xie Y, Peng H, Zhong A, Liu H, Zhang X, Yu H, Giesy P, Hecker M. “Acid Mine Drainage Affects the Diversity and Metal Resistance Gene Profile of Sediment Bacterial Community along a River.” Chemosphere, vol. 217, Feb. 2019, pp. 790–799, https://doi.org/10.1016/j.chemosphere.2018.10.210
Paganin P, Alisi C, Dore E, Fancello D, Marras A, Medas D, Montereali M, Naitza S, Rigonat N, Sprocati A, Tasso F, Vacca S, De Giudici G. “Microbial Diversity of Bacteria Involved in Biomineralization Processes in Mine-Impacted Freshwaters.” Frontiers in Microbiology, vol. 12, 2021, p. 778199, pubmed.ncbi.nlm.nih.gov/34880845/. https://doi.org/10.3389/fmicb.2021.778199
Pabón SE, Benítez R, Sarria Villa RA, Gallo JA. Water contamination by heavy metals, analysis methods and removal technologies. A review. 2020. Org.co. http://www.scielo.org.co/pdf/ecei/v14n27/1909-8367-ecei-14-27-9.pdf
Paredes Páliz KI, Santillán Quiroga LM, Viteri Uscátegui MR. Capacidad degradadora de pseudomonas aeruginosa frente a metales pesados presentes en muestras de sedimentos del río Chibunga. Polo del Conocimiento: Revista científico - profesional, ISSN-e 2550-682X, Vol. 6, No. 5, 2021, págs. 496-519. https://dialnet.unirioja.es/servlet/articulo?codigo=8016910#:~:text=La%20bacteria%20Pseudomonas%20aeruginosa%20mostr%C3%B3,el%20Al%2C%20Zn%20y%20Cu.
Choque Guevara RE. DETECCIÓN DE GENES merA Y merB EN Pseudomonas spp. RESISTENTES A MERCURIO AISLADAS DE AMBIENTES ACUÁTICOS. Edu.pe. 2019 https://repositorio.unica.edu.pe/bitstream/handle/20.500.13028/3158/Detecci%C3%B3n%20de%20genes%20mera%20y%20merb%20en%20pseudomonas%20spp.%20resistentes%20a%20mercurio%20aisladas%20de%20ambientes%20acu%C3%A1ticos.pdf?sequence=1&isAllowed=y
Cedeño Moreira AV, Canchignia Martínez HF. Empleo de bacterias como alternativa de biorremediación en suelos contaminados con mercurio (Hg), Zinc (Zn), aluminio (Al) y cobre (Cu) con empleo de bacterias. Quevedo : UTEQ 2022; 2022. https://repositorio.uteq.edu.ec/handle/43000/6757
Ran Z, Bi W, Tao CQ, Xia LIX, Min LIU, Dong HU, et al. Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China. Biomedical and environmental sciences: BES. 2016;29(2): 127–136. https://doi.org/10.3967/bes2016.014.
Su YQ, Zhao YJ, Zhang WJ, Chen GC, Qin H, Qiao DR, et al. Removal of mercury(II), lead(II) and cadmium(II) from aqueous solutions using Rhodobacter sphaeroides SC01. Chemosphere. 2020;243(125166): 125166. https://doi.org/10.1016/j.chemosphere.2019.125166.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.none.fl_str_mv 28 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de San Buenaventura - Cartagena
dc.publisher.branch.none.fl_str_mv Cartagena
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias de la Salud
dc.publisher.place.none.fl_str_mv Cartagena
dc.publisher.program.none.fl_str_mv Bacteriología
publisher.none.fl_str_mv Universidad de San Buenaventura - Cartagena
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/bd5cb815-0658-490a-96fa-8b9fdf699f2c/download
https://bibliotecadigital.usb.edu.co/bitstreams/aeeb11ca-63b2-44a9-a025-cf251bd84bab/download
https://bibliotecadigital.usb.edu.co/bitstreams/b73a81c9-9498-46e1-8d22-ad858c2b064b/download
https://bibliotecadigital.usb.edu.co/bitstreams/89c70b42-c384-4221-aeb3-55139dcb9a56/download
https://bibliotecadigital.usb.edu.co/bitstreams/f172310a-ec64-498c-ae45-d8f4b5e5700f/download
https://bibliotecadigital.usb.edu.co/bitstreams/cb795da5-7bd7-492c-9354-36a4add4cd10/download
https://bibliotecadigital.usb.edu.co/bitstreams/80b33b58-bd12-4831-8585-ac2f5d8c4808/download
https://bibliotecadigital.usb.edu.co/bitstreams/d04183f0-4b71-4eb9-9dd7-7ee6776b9a1f/download
bitstream.checksum.fl_str_mv ce8fd7f912f132cbeb263b9ddc893467
0edd1151cc2d90c9d9c77b9ff69acfc1
0534f65d3fcee90a87bbf91eb0480d4e
3b6ce8e9e36c89875e8cf39962fe8920
35219e007d54750e6b70d30806ef1bc8
38bb6b4e6291ba98666480d94b3ef190
8b234b9cadce11188575553b2cb08663
45e28b57f8b4148311870d2bc65f6102
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1837099228059402240
spelling Ríos Montes, Karina6de82ee9-56bd-4c79-9265-65dc86ec8045-1Galvis Ballesteros, Javier Davidf373e3b7-05cd-46c3-93c1-09abcff7e26f-1Rios Montes, Karina Andreavirtual::3378-1García Cárdenas, Danielaa4a6c37c-b41b-4854-80a2-262b04d8369e-1Rodríguez Arroyo, Shery0456da89-ae38-4ae3-8cfc-ce078c2b3d4f-1Marrugo Parra, María Joséd5c62924-6c7e-46fe-8d10-c92d47b5153a-1Romero Murillo, Patricia7a9fb63f-5614-4ee1-b281-c2287c0bcb0d-1Maldonado Rojas, Wilson5e9c6e48-a99b-4fe7-8636-00ee8224e0f0-1Grupo de Investigación Microbiología y Ambiente (GIMA) (Cartagena)2024-05-28T21:57:15Z2024-05-28T21:57:15Z2023En esta revisión narrativa, se investigó la capacidad de diversos microorganismos para la biorremediación de metales pesados, centrándose en plomo, cromo, cadmio, mercurio y arsénico. A través de la revisión y análisis de 47 artículos científicos seleccionados de las bases de datos Pubmed, Scielo, LILACS y ScienceDirect, que se incluyeron teniendo en cuenta los años de publicación (2018 y 2022) y que abordaban la utilización de microorganismos para la biorremediación de metales pesados, se describieron las características para algunos de estos, de los cuales se destacaron en el grupo de bacterias: Pseudomonas sp., Bacillus sp., Serratia marcescens, Acidithiobacillus ferrooxidans, Escherichia coli y Staphylococcus hominis; entre las levaduras Kluyveromyces marxianus, y entre las microalgas el género Chlorella. Lo anterior con el propósito de identificar el potencial biorremediador de los microorganismos mencionados. Los resultados demostraron que estos poseen un alto potencial para tolerar altas concentraciones de metales pesados, incluso poder reducir su concentración en los ambientes contaminados como aguas residuales y sedimentos. Se identificaron diferentes mecanismos asociados a la resistencia y tolerancia de los microorganismos, como la acumulación, adsorción, biotransformación y precipitación biológica de los metales. Son estrategias claves de los microorganismos para transformar metales pesados y mitigar sus efectos tóxicos. En conclusión, la literatura revisada resalta el potencial de los microorganismos para la biorremediación de la contaminación por metales pesados, lo que podría tener aplicaciones prácticas en la descontaminación ambiental y el tratamiento de aguas residuales industriales contaminadas. Sin embargo, se enfatiza en la importancia de considerar las condiciones particulares de cada matriz de estudio y adaptar los resultados a situaciones y entornos particulares antes de su implementación práctica. Además, se recomienda continuar investigando en este campo para abordar los desafíos restantes y mejorar las estrategias de biorremediación.In this narrative review, the ability of various microorganisms for the bioremediation of heavy metals was investigated, focusing on lead, chromium, cadmium, mercury and arsenic. Through the review and analysis of 42 scientific articles selected from Pubmed, Scielo, LILACS and ScienceDirect databases, which were included taking into account the years of publication (2018 and 2022) and which addressed the use of microorganisms for the bioremediation of heavy metals, the characteristics for some of these were described, stood out in the group of bacteria: Pseudomonas sp, Bacillus sp., Serratia marcescens, Acidithiobacillus ferrooxidans, Escherichia coli and Staphylococcus hominis; Kluyveromyces marxianus among yeasts, and the genus Chlorella among microalgae. The above with the purpose of identifying the bioremediation potential of the mentioned microorganisms. The results showed that these microorganisms have a high potential to tolerate high concentrations of heavy metals, even being able to reduce their concentration in contaminated environments such as wastewater and sediments. Different mechanisms associated with the resistance and tolerance of microorganisms were identified, such as accumulation, adsorption, biotransformation and biological precipitation of metals. These mechanisms represent key strategies used by microorganisms to transform heavy metals and mitigate their toxic effects. In conclusion, the literature reviewed highlights the potential of microorganisms for bioremediation of heavy metal pollution, which could have practical applications in environmental decontamination and treatment of contaminated industrial wastewater. However, the importance of considering the specific conditions of each study and adapting the results to particular situations and environments before their practical implementation is emphasized. Furthermore, further research in this field is recommended to address remaining challenges and improve bioremediation strategiesPregradoBacteriólogoIndicadores y calidad ambiental28 páginasapplication/pdfGarcía Cárdenas, D., Marrugo Parra, M. J. & Rodríguez Arroyo, Ch. F. (2023). Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos. [Trabajo de grado de Bacteriología]. Universidad de San Buenaventura, Cartagena.https://hdl.handle.net/10819/13625spaUniversidad de San Buenaventura - CartagenaCartagenaFacultad de Ciencias de la SaludCartagenaBacteriologíaGoswami RK, Agrawal K, Shah MP, Verma P. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in applied microbiology. 2022;75(4): 701–717. https://doi.org/10.1111/lam.13564.Kapahi M, Sachdeva S. Bioremediation options for heavy metal pollution. Journal of health & pollution. 2019;9(24): 191203. https://doi.org/10.5696/2156-9614-9.24.191203.World Health Organization. Lead Poisoning and Health [Internet]. Who.int. World Health Organization: WHO; 2022. https://www.who.int/es/news-room/fact-sheets/detail/lead-poisoning-and-healthUS EPA. National Primary Drinking Water Regulations | US EPA [Internet]. US EPA. 2018. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#:~:text=The%20National%20Primary%20Drinking%20Water,of%20contaminants%20in%20drinking%20water.González-Reguero D, Robas-Mora M, Probanza Lobo A, Jiménez Gómez PA. Bioremediation of environments contaminated with mercury. Present and perspectives. World Journal of Microbiology and Biotechnology. 2023;39(9). https://doi.org/10.1007/s11274-023-03686-1.Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh U, SahuA, et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteriaof fundamental processes. Sustainability. 2015;7(2): 2189–2212. https://doi.org/10.3390/su7022189.Zhou B, Zhang T, Wang F. Microbial-based heavy metal bioremediation: Toxicity and Eco-friendly approaches to heavy metal decontamination. Applied sciences (Basel, Switzerland). 2023;13(14): 8439. https://doi.org/10.3390/app13148439.Sarker A, Masud MAA, Deepo DM, Das K, Nandi R, Ansary MWR, et al. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere. 2023;332(138861): 138861. https://doi.org/10.1016/j.chemosphere.2023.138861Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001Choudhury S, Chatterjee A. Microbial application in remediation of heavy metals: an overview. Archives of microbiology. 2022;204(5). https://doi.org/10.1007/s00203-022-02874-1Duwiejuah AB, Abubakari AH, Quainoo AK, Amadu Y. Review of biochar properties and remediation of metal pollution of water and soil. Journal of health & pollution. 2020;10(27). https://doi.org/10.5696/2156-9614-10.27.200902Xu Q, Wu B, Chai X. In situ remediation technology for heavy metal contaminated sediment: A review. International journal of environmental research and public health. 2022;19(24): 16767. https://doi.org/10.3390/ijerph192416767González Henao S, Ghneim-Herrera T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in environmental science. 2021;9. https://doi.org/10.3389/fenvs.2021.604216Wang Y, Li H, Lin S. Advances in the study of heavy metal adsorption from water and soil by modified biochar. Water. 2022;14(23): 3894. https://doi.org/10.3390/w14233894Uhrynowski W, Debiec K, Sklodowska A, Drewniak L. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. The Science of the total environment. 2017;598: 680-689. https://doi.org/10.1016/j.scitotenv.2017.04.137Sandil S. Recent trends in bioremediation of heavy metals. En: Metagenomics to Bioremediation. Elsevier; 2023. p. 23-53. https://doi.org/10.1016/B978-0-323-96113-4.00027-5Xu Q y Wu B. Recent progress on ex situ remediation technology and resource utilization for heavy metal contaminated sediment. Toxics. 2023;11(3): 207. https://doi.org/10.3390/toxics11030207.Kumar, V., Saxena, Gy Shah, M. Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and GreenerSociety. 2020; https://www.researchgate.net/publication/340363236_Bioremediation_for_Environmental_Sustainability_Approaches_to_Tackle_Pollution_for_Cleaner_and_Greener_SocietyNjoku KL, Akinyede OR, Obidi OF. Microbial Remediation of Heavy Metals Contaminated Media by Bacillus megaterium and Rhizopus stolonifer. Scientific African. 2020;10(e00545): e00545. https://doi.org/10.1016/j.sciaf.2020.e00545Ayilara MS, Babalola OO. Bioremediation of environmental wastes: the role of microorganisms. Frontiers in agronomy. 2023;5. https://doi.org/10.3389/fagro.2023.1183691Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK. Bioremediation of heavy metals by rhizobacteria. Applied biochemistry and biotechnology. 2023;195(8): 4689-4711. https://doi.org/10.1007/s12010-022-04177-zSayqal A, Ahmed OB. Advances in heavy metal bioremediation: An overview. Applied bionics and biomechanics. 2021;2021: 1-8. https://doi.org/10.1155/2021/1609149Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 1-13. https://doi.org/10.4061/2011/941810Paul T, Saha NC. Bioremediation of heavy metals. Biotechnology for Zero Waste. 2022. p. 67-81. https://doi.org/10.1002/9783527832064.ch5Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3), 609-643. https://doi.org/10.1099/mic.0.037143-0Raklami A, Meddich A, Oufdou K, Baslam M. Plants-microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International journal of molecular sciences. 2022;23(9): 5031. https://doi.org/10.3390/ijms23095031Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. Journal of Hazardous Materials, 152(1), 407-414. https://doi.org/10.1016/j.jhazmat.2007.07.028Saha L, Tiwari J, Bauddh K, Ma Y. Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils. Frontiers in microbiology. 2021;12. https://doi.org/10.3389/fmicb.2021.731723Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M. Trends in bioremediation of heavy metal contaminations. Environmental Engineering Research. 2022;28(4): 220631-220630. https://doi.org/10.4491/eer.2021.631 30. Pande V, Pandey SC, Sati D, Bhatt P, Samant M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Frontiers in microbiology. 2022;13. https://doi.org/10.3389/fmicb.2022.824084Cota Ruiz K, Nuñez Gastelúm JA, Delgado Rios M, Martinez Martinez A. Biorremediación: actualidad de conceptos y aplicaciones. BIOTECNIA [Internet]. 23 de diciembre de 2018; 21(1):37-44. Disponible en: https://biotecnia.unison.mx/index.php/biotecnia/article/view/811Abdel-razek, A. G., El-Sheekh, M. M., & El-Naggar, A. H. (2021). Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in Applied Microbiology, 72(1), 165-196. https://doi.org/10.1111/lam.13564Prachi, & Gautam, Pranay & Madathil, D. & Nalinakumari, Brijesh Nair. (2013). Nanotechnology in waste water treatment: A review. International Journal of ChemTech Research.5.2303-2308. https://www.sphinxsai.com/2013/JulySept13/4CHEMTECHJULY-SEPT13.htmJohn R, Rajan AP. Pseudomonas putida APRRJVITS11 as a potent tool in chromium (VI) removal from effluent wastewater. Preparative biochemistry & biotechnology. 2022;52(2): 163–170. https://doi.org/10.1080/10826068.2021.1922918.Princy S. Reduction of Cr(VI) by Bacillus species isolated from tannery effluent contaminated sites of Tamil Nadu, India [Internet]; Materials Today: Proceedings, vol. 48, no. 2, May 2020. Disponible en: https://doi.org/10.1016/j.matpr.2020.04.850Yu Q, Mishra B, Fein JB. Role of bacterial cell surface sulfhydryl sites in cadmium detoxification by Pseudomonas putida. Journal of hazardous materials. 2020;391(122209): 122209. https://doi.org/10.1016/j.jhazmat.2020.122209.Zhang J, Zeng Y, Liu B, Deng X. MerP/MerT-mediated mechanism: A different approach to mercury resistance and bioaccumulation by marine bacteria. Journal of hazardous materials. 2020;388(122062): 122062. https://doi.org/10.1016/j.jhazmat.2020.122062.Sathvika T, Balaji S, Chandra M, Soni A, Rajesh V, Rajesh N. A co-operative endeavor by nitrifying bacteria Nitrosomonas and Zirconium based metal organic framework to remove hexavalent chromium. Chemical engineering journal (Lausanne, Switzerland: 1996). 2019;360: 879–889. https://doi.org/10.1016/j.cej.2018.12.015.Zhang K, Li N, Liao P, Jin Y, Li Q, Gan M, Chen Y, He P, Chen F, Peng M, Zhu J. Conductive property of secondary minerals triggered Cr (VI) bioreduction by dissimilatory iron reducing bacteria. Environmental pollution (Barking, Essex: 1987). 2021;286(117227): 117227. https://doi.org/10.1016/j.envpol.2021.117227.Zhang X, Tang S, Wang M, Sun W, Xie Y, Peng H, Zhong A, Liu H, Zhang X, Yu H, Giesy P, Hecker M. “Acid Mine Drainage Affects the Diversity and Metal Resistance Gene Profile of Sediment Bacterial Community along a River.” Chemosphere, vol. 217, Feb. 2019, pp. 790–799, https://doi.org/10.1016/j.chemosphere.2018.10.210Paganin P, Alisi C, Dore E, Fancello D, Marras A, Medas D, Montereali M, Naitza S, Rigonat N, Sprocati A, Tasso F, Vacca S, De Giudici G. “Microbial Diversity of Bacteria Involved in Biomineralization Processes in Mine-Impacted Freshwaters.” Frontiers in Microbiology, vol. 12, 2021, p. 778199, pubmed.ncbi.nlm.nih.gov/34880845/. https://doi.org/10.3389/fmicb.2021.778199Pabón SE, Benítez R, Sarria Villa RA, Gallo JA. Water contamination by heavy metals, analysis methods and removal technologies. A review. 2020. Org.co. http://www.scielo.org.co/pdf/ecei/v14n27/1909-8367-ecei-14-27-9.pdfParedes Páliz KI, Santillán Quiroga LM, Viteri Uscátegui MR. Capacidad degradadora de pseudomonas aeruginosa frente a metales pesados presentes en muestras de sedimentos del río Chibunga. Polo del Conocimiento: Revista científico - profesional, ISSN-e 2550-682X, Vol. 6, No. 5, 2021, págs. 496-519. https://dialnet.unirioja.es/servlet/articulo?codigo=8016910#:~:text=La%20bacteria%20Pseudomonas%20aeruginosa%20mostr%C3%B3,el%20Al%2C%20Zn%20y%20Cu.Choque Guevara RE. DETECCIÓN DE GENES merA Y merB EN Pseudomonas spp. RESISTENTES A MERCURIO AISLADAS DE AMBIENTES ACUÁTICOS. Edu.pe. 2019 https://repositorio.unica.edu.pe/bitstream/handle/20.500.13028/3158/Detecci%C3%B3n%20de%20genes%20mera%20y%20merb%20en%20pseudomonas%20spp.%20resistentes%20a%20mercurio%20aisladas%20de%20ambientes%20acu%C3%A1ticos.pdf?sequence=1&isAllowed=yCedeño Moreira AV, Canchignia Martínez HF. Empleo de bacterias como alternativa de biorremediación en suelos contaminados con mercurio (Hg), Zinc (Zn), aluminio (Al) y cobre (Cu) con empleo de bacterias. Quevedo : UTEQ 2022; 2022. https://repositorio.uteq.edu.ec/handle/43000/6757Ran Z, Bi W, Tao CQ, Xia LIX, Min LIU, Dong HU, et al. Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China. Biomedical and environmental sciences: BES. 2016;29(2): 127–136. https://doi.org/10.3967/bes2016.014.Su YQ, Zhao YJ, Zhang WJ, Chen GC, Qin H, Qiao DR, et al. Removal of mercury(II), lead(II) and cadmium(II) from aqueous solutions using Rhodobacter sphaeroides SC01. Chemosphere. 2020;243(125166): 125166. https://doi.org/10.1016/j.chemosphere.2019.125166.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/610 - Medicina y salud::616 - EnfermedadesTesis - bacteriologìaBiorremediaciònMicroorganismosSedimentosAguaMetales pesadosBiorremediaciónMicroorganismosAguaSedimentosMetales pesadosBioremediationHeavy metalsMicroorganismsWaterSedimentBiorremediación microbiana para la transformación de metales pesados en aguas y sedimentosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_dcae04bcTextinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/acceptedVersionComunidad científica y académicaPublicationhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000713724virtual::3378-1https://scholar.google.com/citations?user=QG6wyAoAAAAJ&hl=esvirtual::3378-10000-0003-1692-1907virtual::3378-104fe8e38-1752-4cb2-95a9-c563f7af543dvirtual::3378-104fe8e38-1752-4cb2-95a9-c563f7af543dvirtual::3378-1LICENSElicense.txtlicense.txttext/plain; charset=utf-82079https://bibliotecadigital.usb.edu.co/bitstreams/bd5cb815-0658-490a-96fa-8b9fdf699f2c/downloadce8fd7f912f132cbeb263b9ddc893467MD53ORIGINALBiorremediación microbiana para la transformación_Daniela García C_2023.pdfBiorremediación microbiana para la transformación_Daniela García C_2023.pdfapplication/pdf506448https://bibliotecadigital.usb.edu.co/bitstreams/aeeb11ca-63b2-44a9-a025-cf251bd84bab/download0edd1151cc2d90c9d9c77b9ff69acfc1MD56Formato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdfapplication/pdf579609https://bibliotecadigital.usb.edu.co/bitstreams/b73a81c9-9498-46e1-8d22-ad858c2b064b/download0534f65d3fcee90a87bbf91eb0480d4eMD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bibliotecadigital.usb.edu.co/bitstreams/89c70b42-c384-4221-aeb3-55139dcb9a56/download3b6ce8e9e36c89875e8cf39962fe8920MD57TEXTBiorremediación microbiana para la transformación_Daniela García C_2023.pdf.txtBiorremediación microbiana para la transformación_Daniela García C_2023.pdf.txtExtracted texttext/plain57640https://bibliotecadigital.usb.edu.co/bitstreams/f172310a-ec64-498c-ae45-d8f4b5e5700f/download35219e007d54750e6b70d30806ef1bc8MD59Formato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdf.txtFormato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdf.txtExtracted texttext/plain7426https://bibliotecadigital.usb.edu.co/bitstreams/cb795da5-7bd7-492c-9354-36a4add4cd10/download38bb6b4e6291ba98666480d94b3ef190MD511THUMBNAILBiorremediación microbiana para la transformación_Daniela García C_2023.pdf.jpgBiorremediación microbiana para la transformación_Daniela García C_2023.pdf.jpgGenerated Thumbnailimage/jpeg7029https://bibliotecadigital.usb.edu.co/bitstreams/80b33b58-bd12-4831-8585-ac2f5d8c4808/download8b234b9cadce11188575553b2cb08663MD510Formato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdf.jpgFormato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdf.jpgGenerated Thumbnailimage/jpeg16072https://bibliotecadigital.usb.edu.co/bitstreams/d04183f0-4b71-4eb9-9dd7-7ee6776b9a1f/download45e28b57f8b4148311870d2bc65f6102MD51210819/13625oai:bibliotecadigital.usb.edu.co:10819/136252025-03-20 09:37:52.974http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPlJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5JVkVSU0lEQUQgREUgU0FOIEJVRU5BVkVOVFVSQSAtIENPTE9NQklBPC9oMz4KPHA+ClTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBnZW5lcmFsIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWw8L3A+PC9jZW50ZXI+CjxQIEFMSUdOPWNlbnRlcj4KUG9yIG1lZGlvIGRlIGVzdGUgZm9ybWF0byBtYW5pZmllc3RvIG1pIHZvbHVudGFkIGRlIEFVVE9SSVpBUiBhIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIFNlZGUgQm9nb3TDoSB5IDxCUj5TZWNjaW9uYWxlcyBNZWRlbGzDrW4sIENhbGkgeSBDYXJ0YWdlbmEsIGxhIGRpZnVzacOzbiBlbiB0ZXh0byBjb21wbGV0byBkZSBtYW5lcmEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gZW4gZWw8QlI+IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgZWwgZG9jdW1lbnRvIGFjYWTDqW1pY28gLSBpbnZlc3RpZ2F0aXZvIG9iamV0byBkZSBsYSBwcmVzZW50ZSA8QlI+YXV0b3JpemFjacOzbiwgY29uIGZpbmVzIGVzdHJpY3RhbWVudGUgZWR1Y2F0aXZvcywgY2llbnTDrcKtZmljb3MgeSBjdWx0dXJhbGVzLCBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgPEJSPiAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGRlcmVjaG9zPEJSPiBkZSBhdXRvci4gPEJSPiAKIApDb21vIGF1dG9yIG1hbmlmaWVzdG8gcXVlIGVsIHByZXNlbnRlIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBlcyBvcmlnaW5hbCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyA8QlI+IHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrcKtYSB5IHBvc2VvIGxhIHRpdHVsYXJpZGFkIDxCUj4gc29icmUgbGEgbWlzbWEuIExhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZGUgbmluZ3VuYSB1dGlsaXphY2nDs24gaW5kZWJpZGEgZGVsIGRvY3VtZW50byA8QlI+cG9yIHBhcnRlIGRlIHRlcmNlcm9zIHkgc2Vyw6EgZXhjbHVzaXZhbWVudGUgbWkgcmVzcG9uc2FiaWxpZGFkIGF0ZW5kZXIgcGVyc29uYWxtZW50ZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSBwdWVkYTxCUj4gcHJlc2VudGFyc2UgYSBsYSBVbml2ZXJzaWRhZC4gPEJSPgogCkF1dG9yaXpvIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGFsIGZvcm1hdG8gcXVlIDxCUj5yZXF1aWVyYSAoaW1wcmVzbywgZGlnaXRhbCwgZWxlY3Ryw7NuaWNvIG8gY3VhbHF1aWVyIG90cm8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgbyBjb24gZmluZXMgZGU8QlI+IHByZXNlcnZhY2nDs24gZGlnaXRhbC4gPEJSPgogCkVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHBvc3Rlcmlvcm1lbnRlIGxhIG9icmEsIGVuIGZvcm1hIHRvdGFsIG8gPEJSPnBhcmNpYWwsIHBvciBsbyBjdWFsIHBvZHLDqSwgZGFuZG8gYXZpc28gcG9yIGVzY3JpdG8gY29uIG5vIG1lbm9zIGRlIHVuIG1lcyBkZSBhbnRlbGFjacOzbiwgc29saWNpdGFyIHF1ZSBlbCA8QlI+ZG9jdW1lbnRvIGRlamUgZGUgZXN0YXIgZGlzcG9uaWJsZSBwYXJhIGVsIHDDumJsaWNvIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgPEJSPiBhc8Otwq0gbWlzbW8sIGN1YW5kbyBzZSByZXF1aWVyYSBwb3IgcmF6b25lcyBsZWdhbGVzIHkvbyByZWdsYXMgZGVsIGVkaXRvciBkZSB1bmEgcmV2aXN0YS4gPEJSPjwvUD4K