Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos
En esta revisión narrativa, se investigó la capacidad de diversos microorganismos para la biorremediación de metales pesados, centrándose en plomo, cromo, cadmio, mercurio y arsénico. A través de la revisión y análisis de 47 artículos científicos seleccionados de las bases de datos Pubmed, Scielo, L...
- Autores:
-
García Cárdenas, Daniela
Rodríguez Arroyo, Shery
Marrugo Parra, María José
- Tipo de recurso:
- Review article
- Fecha de publicación:
- 2023
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/13625
- Acceso en línea:
- https://hdl.handle.net/10819/13625
- Palabra clave:
- 610 - Medicina y salud::616 - Enfermedades
Tesis - bacteriologìa
Biorremediaciòn
Microorganismos
Sedimentos
Agua
Metales pesados
Biorremediación
Microorganismos
Agua
Sedimentos
Metales pesados
Bioremediation
Heavy metals
Microorganisms
Water
Sediment
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
SANBUENAV2_55f6b60864fab29ec195013b9a706571 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/13625 |
network_acronym_str |
SANBUENAV2 |
network_name_str |
Repositorio USB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos |
title |
Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos |
spellingShingle |
Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos 610 - Medicina y salud::616 - Enfermedades Tesis - bacteriologìa Biorremediaciòn Microorganismos Sedimentos Agua Metales pesados Biorremediación Microorganismos Agua Sedimentos Metales pesados Bioremediation Heavy metals Microorganisms Water Sediment |
title_short |
Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos |
title_full |
Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos |
title_fullStr |
Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos |
title_full_unstemmed |
Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos |
title_sort |
Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos |
dc.creator.fl_str_mv |
García Cárdenas, Daniela Rodríguez Arroyo, Shery Marrugo Parra, María José |
dc.contributor.advisor.none.fl_str_mv |
Ríos Montes, Karina Galvis Ballesteros, Javier David Rios Montes, Karina Andrea |
dc.contributor.author.none.fl_str_mv |
García Cárdenas, Daniela Rodríguez Arroyo, Shery Marrugo Parra, María José |
dc.contributor.jury.none.fl_str_mv |
Romero Murillo, Patricia Maldonado Rojas, Wilson |
dc.contributor.researchgroup.none.fl_str_mv |
Grupo de Investigación Microbiología y Ambiente (GIMA) (Cartagena) |
dc.subject.ddc.none.fl_str_mv |
610 - Medicina y salud::616 - Enfermedades |
topic |
610 - Medicina y salud::616 - Enfermedades Tesis - bacteriologìa Biorremediaciòn Microorganismos Sedimentos Agua Metales pesados Biorremediación Microorganismos Agua Sedimentos Metales pesados Bioremediation Heavy metals Microorganisms Water Sediment |
dc.subject.other.none.fl_str_mv |
Tesis - bacteriologìa Biorremediaciòn Microorganismos Sedimentos Agua Metales pesados |
dc.subject.proposal.spa.fl_str_mv |
Biorremediación Microorganismos Agua Sedimentos Metales pesados |
dc.subject.proposal.eng.fl_str_mv |
Bioremediation Heavy metals Microorganisms Water Sediment |
description |
En esta revisión narrativa, se investigó la capacidad de diversos microorganismos para la biorremediación de metales pesados, centrándose en plomo, cromo, cadmio, mercurio y arsénico. A través de la revisión y análisis de 47 artículos científicos seleccionados de las bases de datos Pubmed, Scielo, LILACS y ScienceDirect, que se incluyeron teniendo en cuenta los años de publicación (2018 y 2022) y que abordaban la utilización de microorganismos para la biorremediación de metales pesados, se describieron las características para algunos de estos, de los cuales se destacaron en el grupo de bacterias: Pseudomonas sp., Bacillus sp., Serratia marcescens, Acidithiobacillus ferrooxidans, Escherichia coli y Staphylococcus hominis; entre las levaduras Kluyveromyces marxianus, y entre las microalgas el género Chlorella. Lo anterior con el propósito de identificar el potencial biorremediador de los microorganismos mencionados. Los resultados demostraron que estos poseen un alto potencial para tolerar altas concentraciones de metales pesados, incluso poder reducir su concentración en los ambientes contaminados como aguas residuales y sedimentos. Se identificaron diferentes mecanismos asociados a la resistencia y tolerancia de los microorganismos, como la acumulación, adsorción, biotransformación y precipitación biológica de los metales. Son estrategias claves de los microorganismos para transformar metales pesados y mitigar sus efectos tóxicos. En conclusión, la literatura revisada resalta el potencial de los microorganismos para la biorremediación de la contaminación por metales pesados, lo que podría tener aplicaciones prácticas en la descontaminación ambiental y el tratamiento de aguas residuales industriales contaminadas. Sin embargo, se enfatiza en la importancia de considerar las condiciones particulares de cada matriz de estudio y adaptar los resultados a situaciones y entornos particulares antes de su implementación práctica. Además, se recomienda continuar investigando en este campo para abordar los desafíos restantes y mejorar las estrategias de biorremediación. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-05-28T21:57:15Z |
dc.date.available.none.fl_str_mv |
2024-05-28T21:57:15Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_dcae04bc |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/other |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_dcae04bc |
status_str |
acceptedVersion |
dc.identifier.citation.none.fl_str_mv |
García Cárdenas, D., Marrugo Parra, M. J. & Rodríguez Arroyo, Ch. F. (2023). Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos. [Trabajo de grado de Bacteriología]. Universidad de San Buenaventura, Cartagena. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/13625 |
identifier_str_mv |
García Cárdenas, D., Marrugo Parra, M. J. & Rodríguez Arroyo, Ch. F. (2023). Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos. [Trabajo de grado de Bacteriología]. Universidad de San Buenaventura, Cartagena. |
url |
https://hdl.handle.net/10819/13625 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Goswami RK, Agrawal K, Shah MP, Verma P. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in applied microbiology. 2022;75(4): 701–717. https://doi.org/10.1111/lam.13564. Kapahi M, Sachdeva S. Bioremediation options for heavy metal pollution. Journal of health & pollution. 2019;9(24): 191203. https://doi.org/10.5696/2156-9614-9.24.191203. World Health Organization. Lead Poisoning and Health [Internet]. Who.int. World Health Organization: WHO; 2022. https://www.who.int/es/news-room/fact-sheets/detail/lead-poisoning-and-health US EPA. National Primary Drinking Water Regulations | US EPA [Internet]. US EPA. 2018. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#:~:text=The%20National%20Primary%20Drinking%20Water,of%20contaminants%20in%20drinking%20water. González-Reguero D, Robas-Mora M, Probanza Lobo A, Jiménez Gómez PA. Bioremediation of environments contaminated with mercury. Present and perspectives. World Journal of Microbiology and Biotechnology. 2023;39(9). https://doi.org/10.1007/s11274-023-03686-1. Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh U, SahuA, et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteriaof fundamental processes. Sustainability. 2015;7(2): 2189–2212. https://doi.org/10.3390/su7022189. Zhou B, Zhang T, Wang F. Microbial-based heavy metal bioremediation: Toxicity and Eco-friendly approaches to heavy metal decontamination. Applied sciences (Basel, Switzerland). 2023;13(14): 8439. https://doi.org/10.3390/app13148439. Sarker A, Masud MAA, Deepo DM, Das K, Nandi R, Ansary MWR, et al. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere. 2023;332(138861): 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001 Choudhury S, Chatterjee A. Microbial application in remediation of heavy metals: an overview. Archives of microbiology. 2022;204(5). https://doi.org/10.1007/s00203-022-02874-1 Duwiejuah AB, Abubakari AH, Quainoo AK, Amadu Y. Review of biochar properties and remediation of metal pollution of water and soil. Journal of health & pollution. 2020;10(27). https://doi.org/10.5696/2156-9614-10.27.200902 Xu Q, Wu B, Chai X. In situ remediation technology for heavy metal contaminated sediment: A review. International journal of environmental research and public health. 2022;19(24): 16767. https://doi.org/10.3390/ijerph192416767 González Henao S, Ghneim-Herrera T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in environmental science. 2021;9. https://doi.org/10.3389/fenvs.2021.604216 Wang Y, Li H, Lin S. Advances in the study of heavy metal adsorption from water and soil by modified biochar. Water. 2022;14(23): 3894. https://doi.org/10.3390/w14233894 Uhrynowski W, Debiec K, Sklodowska A, Drewniak L. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. The Science of the total environment. 2017;598: 680-689. https://doi.org/10.1016/j.scitotenv.2017.04.137 Sandil S. Recent trends in bioremediation of heavy metals. En: Metagenomics to Bioremediation. Elsevier; 2023. p. 23-53. https://doi.org/10.1016/B978-0-323-96113-4.00027-5 Xu Q y Wu B. Recent progress on ex situ remediation technology and resource utilization for heavy metal contaminated sediment. Toxics. 2023;11(3): 207. https://doi.org/10.3390/toxics11030207. Kumar, V., Saxena, Gy Shah, M. Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and GreenerSociety. 2020; https://www.researchgate.net/publication/340363236_Bioremediation_for_Environmental_Sustainability_Approaches_to_Tackle_Pollution_for_Cleaner_and_Greener_Society Njoku KL, Akinyede OR, Obidi OF. Microbial Remediation of Heavy Metals Contaminated Media by Bacillus megaterium and Rhizopus stolonifer. Scientific African. 2020;10(e00545): e00545. https://doi.org/10.1016/j.sciaf.2020.e00545 Ayilara MS, Babalola OO. Bioremediation of environmental wastes: the role of microorganisms. Frontiers in agronomy. 2023;5. https://doi.org/10.3389/fagro.2023.1183691 Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK. Bioremediation of heavy metals by rhizobacteria. Applied biochemistry and biotechnology. 2023;195(8): 4689-4711. https://doi.org/10.1007/s12010-022-04177-z Sayqal A, Ahmed OB. Advances in heavy metal bioremediation: An overview. Applied bionics and biomechanics. 2021;2021: 1-8. https://doi.org/10.1155/2021/1609149 Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 1-13. https://doi.org/10.4061/2011/941810 Paul T, Saha NC. Bioremediation of heavy metals. Biotechnology for Zero Waste. 2022. p. 67-81. https://doi.org/10.1002/9783527832064.ch5 Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3), 609-643. https://doi.org/10.1099/mic.0.037143-0 Raklami A, Meddich A, Oufdou K, Baslam M. Plants-microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International journal of molecular sciences. 2022;23(9): 5031. https://doi.org/10.3390/ijms23095031 Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. Journal of Hazardous Materials, 152(1), 407-414. https://doi.org/10.1016/j.jhazmat.2007.07.028 Saha L, Tiwari J, Bauddh K, Ma Y. Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils. Frontiers in microbiology. 2021;12. https://doi.org/10.3389/fmicb.2021.731723 Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M. Trends in bioremediation of heavy metal contaminations. Environmental Engineering Research. 2022;28(4): 220631-220630. https://doi.org/10.4491/eer.2021.631 30. Pande V, Pandey SC, Sati D, Bhatt P, Samant M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Frontiers in microbiology. 2022;13. https://doi.org/10.3389/fmicb.2022.824084 Cota Ruiz K, Nuñez Gastelúm JA, Delgado Rios M, Martinez Martinez A. Biorremediación: actualidad de conceptos y aplicaciones. BIOTECNIA [Internet]. 23 de diciembre de 2018; 21(1):37-44. Disponible en: https://biotecnia.unison.mx/index.php/biotecnia/article/view/811 Abdel-razek, A. G., El-Sheekh, M. M., & El-Naggar, A. H. (2021). Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in Applied Microbiology, 72(1), 165-196. https://doi.org/10.1111/lam.13564 Prachi, & Gautam, Pranay & Madathil, D. & Nalinakumari, Brijesh Nair. (2013). Nanotechnology in waste water treatment: A review. International Journal of ChemTech Research.5.2303-2308. https://www.sphinxsai.com/2013/JulySept13/4CHEMTECHJULY-SEPT13.htm John R, Rajan AP. Pseudomonas putida APRRJVITS11 as a potent tool in chromium (VI) removal from effluent wastewater. Preparative biochemistry & biotechnology. 2022;52(2): 163–170. https://doi.org/10.1080/10826068.2021.1922918. Princy S. Reduction of Cr(VI) by Bacillus species isolated from tannery effluent contaminated sites of Tamil Nadu, India [Internet]; Materials Today: Proceedings, vol. 48, no. 2, May 2020. Disponible en: https://doi.org/10.1016/j.matpr.2020.04.850 Yu Q, Mishra B, Fein JB. Role of bacterial cell surface sulfhydryl sites in cadmium detoxification by Pseudomonas putida. Journal of hazardous materials. 2020;391(122209): 122209. https://doi.org/10.1016/j.jhazmat.2020.122209. Zhang J, Zeng Y, Liu B, Deng X. MerP/MerT-mediated mechanism: A different approach to mercury resistance and bioaccumulation by marine bacteria. Journal of hazardous materials. 2020;388(122062): 122062. https://doi.org/10.1016/j.jhazmat.2020.122062. Sathvika T, Balaji S, Chandra M, Soni A, Rajesh V, Rajesh N. A co-operative endeavor by nitrifying bacteria Nitrosomonas and Zirconium based metal organic framework to remove hexavalent chromium. Chemical engineering journal (Lausanne, Switzerland: 1996). 2019;360: 879–889. https://doi.org/10.1016/j.cej.2018.12.015. Zhang K, Li N, Liao P, Jin Y, Li Q, Gan M, Chen Y, He P, Chen F, Peng M, Zhu J. Conductive property of secondary minerals triggered Cr (VI) bioreduction by dissimilatory iron reducing bacteria. Environmental pollution (Barking, Essex: 1987). 2021;286(117227): 117227. https://doi.org/10.1016/j.envpol.2021.117227. Zhang X, Tang S, Wang M, Sun W, Xie Y, Peng H, Zhong A, Liu H, Zhang X, Yu H, Giesy P, Hecker M. “Acid Mine Drainage Affects the Diversity and Metal Resistance Gene Profile of Sediment Bacterial Community along a River.” Chemosphere, vol. 217, Feb. 2019, pp. 790–799, https://doi.org/10.1016/j.chemosphere.2018.10.210 Paganin P, Alisi C, Dore E, Fancello D, Marras A, Medas D, Montereali M, Naitza S, Rigonat N, Sprocati A, Tasso F, Vacca S, De Giudici G. “Microbial Diversity of Bacteria Involved in Biomineralization Processes in Mine-Impacted Freshwaters.” Frontiers in Microbiology, vol. 12, 2021, p. 778199, pubmed.ncbi.nlm.nih.gov/34880845/. https://doi.org/10.3389/fmicb.2021.778199 Pabón SE, Benítez R, Sarria Villa RA, Gallo JA. Water contamination by heavy metals, analysis methods and removal technologies. A review. 2020. Org.co. http://www.scielo.org.co/pdf/ecei/v14n27/1909-8367-ecei-14-27-9.pdf Paredes Páliz KI, Santillán Quiroga LM, Viteri Uscátegui MR. Capacidad degradadora de pseudomonas aeruginosa frente a metales pesados presentes en muestras de sedimentos del río Chibunga. Polo del Conocimiento: Revista científico - profesional, ISSN-e 2550-682X, Vol. 6, No. 5, 2021, págs. 496-519. https://dialnet.unirioja.es/servlet/articulo?codigo=8016910#:~:text=La%20bacteria%20Pseudomonas%20aeruginosa%20mostr%C3%B3,el%20Al%2C%20Zn%20y%20Cu. Choque Guevara RE. DETECCIÓN DE GENES merA Y merB EN Pseudomonas spp. RESISTENTES A MERCURIO AISLADAS DE AMBIENTES ACUÁTICOS. Edu.pe. 2019 https://repositorio.unica.edu.pe/bitstream/handle/20.500.13028/3158/Detecci%C3%B3n%20de%20genes%20mera%20y%20merb%20en%20pseudomonas%20spp.%20resistentes%20a%20mercurio%20aisladas%20de%20ambientes%20acu%C3%A1ticos.pdf?sequence=1&isAllowed=y Cedeño Moreira AV, Canchignia Martínez HF. Empleo de bacterias como alternativa de biorremediación en suelos contaminados con mercurio (Hg), Zinc (Zn), aluminio (Al) y cobre (Cu) con empleo de bacterias. Quevedo : UTEQ 2022; 2022. https://repositorio.uteq.edu.ec/handle/43000/6757 Ran Z, Bi W, Tao CQ, Xia LIX, Min LIU, Dong HU, et al. Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China. Biomedical and environmental sciences: BES. 2016;29(2): 127–136. https://doi.org/10.3967/bes2016.014. Su YQ, Zhao YJ, Zhang WJ, Chen GC, Qin H, Qiao DR, et al. Removal of mercury(II), lead(II) and cadmium(II) from aqueous solutions using Rhodobacter sphaeroides SC01. Chemosphere. 2020;243(125166): 125166. https://doi.org/10.1016/j.chemosphere.2019.125166. |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.extent.none.fl_str_mv |
28 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de San Buenaventura - Cartagena |
dc.publisher.branch.none.fl_str_mv |
Cartagena |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias de la Salud |
dc.publisher.place.none.fl_str_mv |
Cartagena |
dc.publisher.program.none.fl_str_mv |
Bacteriología |
publisher.none.fl_str_mv |
Universidad de San Buenaventura - Cartagena |
institution |
Universidad de San Buenaventura |
bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/bd5cb815-0658-490a-96fa-8b9fdf699f2c/download https://bibliotecadigital.usb.edu.co/bitstreams/aeeb11ca-63b2-44a9-a025-cf251bd84bab/download https://bibliotecadigital.usb.edu.co/bitstreams/b73a81c9-9498-46e1-8d22-ad858c2b064b/download https://bibliotecadigital.usb.edu.co/bitstreams/89c70b42-c384-4221-aeb3-55139dcb9a56/download https://bibliotecadigital.usb.edu.co/bitstreams/f172310a-ec64-498c-ae45-d8f4b5e5700f/download https://bibliotecadigital.usb.edu.co/bitstreams/cb795da5-7bd7-492c-9354-36a4add4cd10/download https://bibliotecadigital.usb.edu.co/bitstreams/80b33b58-bd12-4831-8585-ac2f5d8c4808/download https://bibliotecadigital.usb.edu.co/bitstreams/d04183f0-4b71-4eb9-9dd7-7ee6776b9a1f/download |
bitstream.checksum.fl_str_mv |
ce8fd7f912f132cbeb263b9ddc893467 0edd1151cc2d90c9d9c77b9ff69acfc1 0534f65d3fcee90a87bbf91eb0480d4e 3b6ce8e9e36c89875e8cf39962fe8920 35219e007d54750e6b70d30806ef1bc8 38bb6b4e6291ba98666480d94b3ef190 8b234b9cadce11188575553b2cb08663 45e28b57f8b4148311870d2bc65f6102 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1837099228059402240 |
spelling |
Ríos Montes, Karina6de82ee9-56bd-4c79-9265-65dc86ec8045-1Galvis Ballesteros, Javier Davidf373e3b7-05cd-46c3-93c1-09abcff7e26f-1Rios Montes, Karina Andreavirtual::3378-1García Cárdenas, Danielaa4a6c37c-b41b-4854-80a2-262b04d8369e-1Rodríguez Arroyo, Shery0456da89-ae38-4ae3-8cfc-ce078c2b3d4f-1Marrugo Parra, María Joséd5c62924-6c7e-46fe-8d10-c92d47b5153a-1Romero Murillo, Patricia7a9fb63f-5614-4ee1-b281-c2287c0bcb0d-1Maldonado Rojas, Wilson5e9c6e48-a99b-4fe7-8636-00ee8224e0f0-1Grupo de Investigación Microbiología y Ambiente (GIMA) (Cartagena)2024-05-28T21:57:15Z2024-05-28T21:57:15Z2023En esta revisión narrativa, se investigó la capacidad de diversos microorganismos para la biorremediación de metales pesados, centrándose en plomo, cromo, cadmio, mercurio y arsénico. A través de la revisión y análisis de 47 artículos científicos seleccionados de las bases de datos Pubmed, Scielo, LILACS y ScienceDirect, que se incluyeron teniendo en cuenta los años de publicación (2018 y 2022) y que abordaban la utilización de microorganismos para la biorremediación de metales pesados, se describieron las características para algunos de estos, de los cuales se destacaron en el grupo de bacterias: Pseudomonas sp., Bacillus sp., Serratia marcescens, Acidithiobacillus ferrooxidans, Escherichia coli y Staphylococcus hominis; entre las levaduras Kluyveromyces marxianus, y entre las microalgas el género Chlorella. Lo anterior con el propósito de identificar el potencial biorremediador de los microorganismos mencionados. Los resultados demostraron que estos poseen un alto potencial para tolerar altas concentraciones de metales pesados, incluso poder reducir su concentración en los ambientes contaminados como aguas residuales y sedimentos. Se identificaron diferentes mecanismos asociados a la resistencia y tolerancia de los microorganismos, como la acumulación, adsorción, biotransformación y precipitación biológica de los metales. Son estrategias claves de los microorganismos para transformar metales pesados y mitigar sus efectos tóxicos. En conclusión, la literatura revisada resalta el potencial de los microorganismos para la biorremediación de la contaminación por metales pesados, lo que podría tener aplicaciones prácticas en la descontaminación ambiental y el tratamiento de aguas residuales industriales contaminadas. Sin embargo, se enfatiza en la importancia de considerar las condiciones particulares de cada matriz de estudio y adaptar los resultados a situaciones y entornos particulares antes de su implementación práctica. Además, se recomienda continuar investigando en este campo para abordar los desafíos restantes y mejorar las estrategias de biorremediación.In this narrative review, the ability of various microorganisms for the bioremediation of heavy metals was investigated, focusing on lead, chromium, cadmium, mercury and arsenic. Through the review and analysis of 42 scientific articles selected from Pubmed, Scielo, LILACS and ScienceDirect databases, which were included taking into account the years of publication (2018 and 2022) and which addressed the use of microorganisms for the bioremediation of heavy metals, the characteristics for some of these were described, stood out in the group of bacteria: Pseudomonas sp, Bacillus sp., Serratia marcescens, Acidithiobacillus ferrooxidans, Escherichia coli and Staphylococcus hominis; Kluyveromyces marxianus among yeasts, and the genus Chlorella among microalgae. The above with the purpose of identifying the bioremediation potential of the mentioned microorganisms. The results showed that these microorganisms have a high potential to tolerate high concentrations of heavy metals, even being able to reduce their concentration in contaminated environments such as wastewater and sediments. Different mechanisms associated with the resistance and tolerance of microorganisms were identified, such as accumulation, adsorption, biotransformation and biological precipitation of metals. These mechanisms represent key strategies used by microorganisms to transform heavy metals and mitigate their toxic effects. In conclusion, the literature reviewed highlights the potential of microorganisms for bioremediation of heavy metal pollution, which could have practical applications in environmental decontamination and treatment of contaminated industrial wastewater. However, the importance of considering the specific conditions of each study and adapting the results to particular situations and environments before their practical implementation is emphasized. Furthermore, further research in this field is recommended to address remaining challenges and improve bioremediation strategiesPregradoBacteriólogoIndicadores y calidad ambiental28 páginasapplication/pdfGarcía Cárdenas, D., Marrugo Parra, M. J. & Rodríguez Arroyo, Ch. F. (2023). Biorremediación microbiana para la transformación de metales pesados en aguas y sedimentos. [Trabajo de grado de Bacteriología]. Universidad de San Buenaventura, Cartagena.https://hdl.handle.net/10819/13625spaUniversidad de San Buenaventura - CartagenaCartagenaFacultad de Ciencias de la SaludCartagenaBacteriologíaGoswami RK, Agrawal K, Shah MP, Verma P. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in applied microbiology. 2022;75(4): 701–717. https://doi.org/10.1111/lam.13564.Kapahi M, Sachdeva S. Bioremediation options for heavy metal pollution. Journal of health & pollution. 2019;9(24): 191203. https://doi.org/10.5696/2156-9614-9.24.191203.World Health Organization. Lead Poisoning and Health [Internet]. Who.int. World Health Organization: WHO; 2022. https://www.who.int/es/news-room/fact-sheets/detail/lead-poisoning-and-healthUS EPA. National Primary Drinking Water Regulations | US EPA [Internet]. US EPA. 2018. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#:~:text=The%20National%20Primary%20Drinking%20Water,of%20contaminants%20in%20drinking%20water.González-Reguero D, Robas-Mora M, Probanza Lobo A, Jiménez Gómez PA. Bioremediation of environments contaminated with mercury. Present and perspectives. World Journal of Microbiology and Biotechnology. 2023;39(9). https://doi.org/10.1007/s11274-023-03686-1.Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh U, SahuA, et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteriaof fundamental processes. Sustainability. 2015;7(2): 2189–2212. https://doi.org/10.3390/su7022189.Zhou B, Zhang T, Wang F. Microbial-based heavy metal bioremediation: Toxicity and Eco-friendly approaches to heavy metal decontamination. Applied sciences (Basel, Switzerland). 2023;13(14): 8439. https://doi.org/10.3390/app13148439.Sarker A, Masud MAA, Deepo DM, Das K, Nandi R, Ansary MWR, et al. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere. 2023;332(138861): 138861. https://doi.org/10.1016/j.chemosphere.2023.138861Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001Choudhury S, Chatterjee A. Microbial application in remediation of heavy metals: an overview. Archives of microbiology. 2022;204(5). https://doi.org/10.1007/s00203-022-02874-1Duwiejuah AB, Abubakari AH, Quainoo AK, Amadu Y. Review of biochar properties and remediation of metal pollution of water and soil. Journal of health & pollution. 2020;10(27). https://doi.org/10.5696/2156-9614-10.27.200902Xu Q, Wu B, Chai X. In situ remediation technology for heavy metal contaminated sediment: A review. International journal of environmental research and public health. 2022;19(24): 16767. https://doi.org/10.3390/ijerph192416767González Henao S, Ghneim-Herrera T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in environmental science. 2021;9. https://doi.org/10.3389/fenvs.2021.604216Wang Y, Li H, Lin S. Advances in the study of heavy metal adsorption from water and soil by modified biochar. Water. 2022;14(23): 3894. https://doi.org/10.3390/w14233894Uhrynowski W, Debiec K, Sklodowska A, Drewniak L. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. The Science of the total environment. 2017;598: 680-689. https://doi.org/10.1016/j.scitotenv.2017.04.137Sandil S. Recent trends in bioremediation of heavy metals. En: Metagenomics to Bioremediation. Elsevier; 2023. p. 23-53. https://doi.org/10.1016/B978-0-323-96113-4.00027-5Xu Q y Wu B. Recent progress on ex situ remediation technology and resource utilization for heavy metal contaminated sediment. Toxics. 2023;11(3): 207. https://doi.org/10.3390/toxics11030207.Kumar, V., Saxena, Gy Shah, M. Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and GreenerSociety. 2020; https://www.researchgate.net/publication/340363236_Bioremediation_for_Environmental_Sustainability_Approaches_to_Tackle_Pollution_for_Cleaner_and_Greener_SocietyNjoku KL, Akinyede OR, Obidi OF. Microbial Remediation of Heavy Metals Contaminated Media by Bacillus megaterium and Rhizopus stolonifer. Scientific African. 2020;10(e00545): e00545. https://doi.org/10.1016/j.sciaf.2020.e00545Ayilara MS, Babalola OO. Bioremediation of environmental wastes: the role of microorganisms. Frontiers in agronomy. 2023;5. https://doi.org/10.3389/fagro.2023.1183691Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK. Bioremediation of heavy metals by rhizobacteria. Applied biochemistry and biotechnology. 2023;195(8): 4689-4711. https://doi.org/10.1007/s12010-022-04177-zSayqal A, Ahmed OB. Advances in heavy metal bioremediation: An overview. Applied bionics and biomechanics. 2021;2021: 1-8. https://doi.org/10.1155/2021/1609149Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 1-13. https://doi.org/10.4061/2011/941810Paul T, Saha NC. Bioremediation of heavy metals. Biotechnology for Zero Waste. 2022. p. 67-81. https://doi.org/10.1002/9783527832064.ch5Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3), 609-643. https://doi.org/10.1099/mic.0.037143-0Raklami A, Meddich A, Oufdou K, Baslam M. Plants-microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International journal of molecular sciences. 2022;23(9): 5031. https://doi.org/10.3390/ijms23095031Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. Journal of Hazardous Materials, 152(1), 407-414. https://doi.org/10.1016/j.jhazmat.2007.07.028Saha L, Tiwari J, Bauddh K, Ma Y. Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils. Frontiers in microbiology. 2021;12. https://doi.org/10.3389/fmicb.2021.731723Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M. Trends in bioremediation of heavy metal contaminations. Environmental Engineering Research. 2022;28(4): 220631-220630. https://doi.org/10.4491/eer.2021.631 30. Pande V, Pandey SC, Sati D, Bhatt P, Samant M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Frontiers in microbiology. 2022;13. https://doi.org/10.3389/fmicb.2022.824084Cota Ruiz K, Nuñez Gastelúm JA, Delgado Rios M, Martinez Martinez A. Biorremediación: actualidad de conceptos y aplicaciones. BIOTECNIA [Internet]. 23 de diciembre de 2018; 21(1):37-44. Disponible en: https://biotecnia.unison.mx/index.php/biotecnia/article/view/811Abdel-razek, A. G., El-Sheekh, M. M., & El-Naggar, A. H. (2021). Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in Applied Microbiology, 72(1), 165-196. https://doi.org/10.1111/lam.13564Prachi, & Gautam, Pranay & Madathil, D. & Nalinakumari, Brijesh Nair. (2013). Nanotechnology in waste water treatment: A review. International Journal of ChemTech Research.5.2303-2308. https://www.sphinxsai.com/2013/JulySept13/4CHEMTECHJULY-SEPT13.htmJohn R, Rajan AP. Pseudomonas putida APRRJVITS11 as a potent tool in chromium (VI) removal from effluent wastewater. Preparative biochemistry & biotechnology. 2022;52(2): 163–170. https://doi.org/10.1080/10826068.2021.1922918.Princy S. Reduction of Cr(VI) by Bacillus species isolated from tannery effluent contaminated sites of Tamil Nadu, India [Internet]; Materials Today: Proceedings, vol. 48, no. 2, May 2020. Disponible en: https://doi.org/10.1016/j.matpr.2020.04.850Yu Q, Mishra B, Fein JB. Role of bacterial cell surface sulfhydryl sites in cadmium detoxification by Pseudomonas putida. Journal of hazardous materials. 2020;391(122209): 122209. https://doi.org/10.1016/j.jhazmat.2020.122209.Zhang J, Zeng Y, Liu B, Deng X. MerP/MerT-mediated mechanism: A different approach to mercury resistance and bioaccumulation by marine bacteria. Journal of hazardous materials. 2020;388(122062): 122062. https://doi.org/10.1016/j.jhazmat.2020.122062.Sathvika T, Balaji S, Chandra M, Soni A, Rajesh V, Rajesh N. A co-operative endeavor by nitrifying bacteria Nitrosomonas and Zirconium based metal organic framework to remove hexavalent chromium. Chemical engineering journal (Lausanne, Switzerland: 1996). 2019;360: 879–889. https://doi.org/10.1016/j.cej.2018.12.015.Zhang K, Li N, Liao P, Jin Y, Li Q, Gan M, Chen Y, He P, Chen F, Peng M, Zhu J. Conductive property of secondary minerals triggered Cr (VI) bioreduction by dissimilatory iron reducing bacteria. Environmental pollution (Barking, Essex: 1987). 2021;286(117227): 117227. https://doi.org/10.1016/j.envpol.2021.117227.Zhang X, Tang S, Wang M, Sun W, Xie Y, Peng H, Zhong A, Liu H, Zhang X, Yu H, Giesy P, Hecker M. “Acid Mine Drainage Affects the Diversity and Metal Resistance Gene Profile of Sediment Bacterial Community along a River.” Chemosphere, vol. 217, Feb. 2019, pp. 790–799, https://doi.org/10.1016/j.chemosphere.2018.10.210Paganin P, Alisi C, Dore E, Fancello D, Marras A, Medas D, Montereali M, Naitza S, Rigonat N, Sprocati A, Tasso F, Vacca S, De Giudici G. “Microbial Diversity of Bacteria Involved in Biomineralization Processes in Mine-Impacted Freshwaters.” Frontiers in Microbiology, vol. 12, 2021, p. 778199, pubmed.ncbi.nlm.nih.gov/34880845/. https://doi.org/10.3389/fmicb.2021.778199Pabón SE, Benítez R, Sarria Villa RA, Gallo JA. Water contamination by heavy metals, analysis methods and removal technologies. A review. 2020. Org.co. http://www.scielo.org.co/pdf/ecei/v14n27/1909-8367-ecei-14-27-9.pdfParedes Páliz KI, Santillán Quiroga LM, Viteri Uscátegui MR. Capacidad degradadora de pseudomonas aeruginosa frente a metales pesados presentes en muestras de sedimentos del río Chibunga. Polo del Conocimiento: Revista científico - profesional, ISSN-e 2550-682X, Vol. 6, No. 5, 2021, págs. 496-519. https://dialnet.unirioja.es/servlet/articulo?codigo=8016910#:~:text=La%20bacteria%20Pseudomonas%20aeruginosa%20mostr%C3%B3,el%20Al%2C%20Zn%20y%20Cu.Choque Guevara RE. DETECCIÓN DE GENES merA Y merB EN Pseudomonas spp. RESISTENTES A MERCURIO AISLADAS DE AMBIENTES ACUÁTICOS. Edu.pe. 2019 https://repositorio.unica.edu.pe/bitstream/handle/20.500.13028/3158/Detecci%C3%B3n%20de%20genes%20mera%20y%20merb%20en%20pseudomonas%20spp.%20resistentes%20a%20mercurio%20aisladas%20de%20ambientes%20acu%C3%A1ticos.pdf?sequence=1&isAllowed=yCedeño Moreira AV, Canchignia Martínez HF. Empleo de bacterias como alternativa de biorremediación en suelos contaminados con mercurio (Hg), Zinc (Zn), aluminio (Al) y cobre (Cu) con empleo de bacterias. Quevedo : UTEQ 2022; 2022. https://repositorio.uteq.edu.ec/handle/43000/6757Ran Z, Bi W, Tao CQ, Xia LIX, Min LIU, Dong HU, et al. Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China. Biomedical and environmental sciences: BES. 2016;29(2): 127–136. https://doi.org/10.3967/bes2016.014.Su YQ, Zhao YJ, Zhang WJ, Chen GC, Qin H, Qiao DR, et al. Removal of mercury(II), lead(II) and cadmium(II) from aqueous solutions using Rhodobacter sphaeroides SC01. Chemosphere. 2020;243(125166): 125166. https://doi.org/10.1016/j.chemosphere.2019.125166.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/610 - Medicina y salud::616 - EnfermedadesTesis - bacteriologìaBiorremediaciònMicroorganismosSedimentosAguaMetales pesadosBiorremediaciónMicroorganismosAguaSedimentosMetales pesadosBioremediationHeavy metalsMicroorganismsWaterSedimentBiorremediación microbiana para la transformación de metales pesados en aguas y sedimentosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_dcae04bcTextinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/acceptedVersionComunidad científica y académicaPublicationhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000713724virtual::3378-1https://scholar.google.com/citations?user=QG6wyAoAAAAJ&hl=esvirtual::3378-10000-0003-1692-1907virtual::3378-104fe8e38-1752-4cb2-95a9-c563f7af543dvirtual::3378-104fe8e38-1752-4cb2-95a9-c563f7af543dvirtual::3378-1LICENSElicense.txtlicense.txttext/plain; charset=utf-82079https://bibliotecadigital.usb.edu.co/bitstreams/bd5cb815-0658-490a-96fa-8b9fdf699f2c/downloadce8fd7f912f132cbeb263b9ddc893467MD53ORIGINALBiorremediación microbiana para la transformación_Daniela García C_2023.pdfBiorremediación microbiana para la transformación_Daniela García C_2023.pdfapplication/pdf506448https://bibliotecadigital.usb.edu.co/bitstreams/aeeb11ca-63b2-44a9-a025-cf251bd84bab/download0edd1151cc2d90c9d9c77b9ff69acfc1MD56Formato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdfapplication/pdf579609https://bibliotecadigital.usb.edu.co/bitstreams/b73a81c9-9498-46e1-8d22-ad858c2b064b/download0534f65d3fcee90a87bbf91eb0480d4eMD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bibliotecadigital.usb.edu.co/bitstreams/89c70b42-c384-4221-aeb3-55139dcb9a56/download3b6ce8e9e36c89875e8cf39962fe8920MD57TEXTBiorremediación microbiana para la transformación_Daniela García C_2023.pdf.txtBiorremediación microbiana para la transformación_Daniela García C_2023.pdf.txtExtracted texttext/plain57640https://bibliotecadigital.usb.edu.co/bitstreams/f172310a-ec64-498c-ae45-d8f4b5e5700f/download35219e007d54750e6b70d30806ef1bc8MD59Formato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdf.txtFormato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdf.txtExtracted texttext/plain7426https://bibliotecadigital.usb.edu.co/bitstreams/cb795da5-7bd7-492c-9354-36a4add4cd10/download38bb6b4e6291ba98666480d94b3ef190MD511THUMBNAILBiorremediación microbiana para la transformación_Daniela García C_2023.pdf.jpgBiorremediación microbiana para la transformación_Daniela García C_2023.pdf.jpgGenerated Thumbnailimage/jpeg7029https://bibliotecadigital.usb.edu.co/bitstreams/80b33b58-bd12-4831-8585-ac2f5d8c4808/download8b234b9cadce11188575553b2cb08663MD510Formato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdf.jpgFormato_Publicacion_Biorremediación microbiana para la transformación_Daniela García C_2023.pdf.jpgGenerated Thumbnailimage/jpeg16072https://bibliotecadigital.usb.edu.co/bitstreams/d04183f0-4b71-4eb9-9dd7-7ee6776b9a1f/download45e28b57f8b4148311870d2bc65f6102MD51210819/13625oai:bibliotecadigital.usb.edu.co:10819/136252025-03-20 09:37:52.974http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPlJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5JVkVSU0lEQUQgREUgU0FOIEJVRU5BVkVOVFVSQSAtIENPTE9NQklBPC9oMz4KPHA+ClTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBnZW5lcmFsIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWw8L3A+PC9jZW50ZXI+CjxQIEFMSUdOPWNlbnRlcj4KUG9yIG1lZGlvIGRlIGVzdGUgZm9ybWF0byBtYW5pZmllc3RvIG1pIHZvbHVudGFkIGRlIEFVVE9SSVpBUiBhIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIFNlZGUgQm9nb3TDoSB5IDxCUj5TZWNjaW9uYWxlcyBNZWRlbGzDrW4sIENhbGkgeSBDYXJ0YWdlbmEsIGxhIGRpZnVzacOzbiBlbiB0ZXh0byBjb21wbGV0byBkZSBtYW5lcmEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gZW4gZWw8QlI+IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgZWwgZG9jdW1lbnRvIGFjYWTDqW1pY28gLSBpbnZlc3RpZ2F0aXZvIG9iamV0byBkZSBsYSBwcmVzZW50ZSA8QlI+YXV0b3JpemFjacOzbiwgY29uIGZpbmVzIGVzdHJpY3RhbWVudGUgZWR1Y2F0aXZvcywgY2llbnTDrcKtZmljb3MgeSBjdWx0dXJhbGVzLCBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgPEJSPiAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGRlcmVjaG9zPEJSPiBkZSBhdXRvci4gPEJSPiAKIApDb21vIGF1dG9yIG1hbmlmaWVzdG8gcXVlIGVsIHByZXNlbnRlIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBlcyBvcmlnaW5hbCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyA8QlI+IHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrcKtYSB5IHBvc2VvIGxhIHRpdHVsYXJpZGFkIDxCUj4gc29icmUgbGEgbWlzbWEuIExhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZGUgbmluZ3VuYSB1dGlsaXphY2nDs24gaW5kZWJpZGEgZGVsIGRvY3VtZW50byA8QlI+cG9yIHBhcnRlIGRlIHRlcmNlcm9zIHkgc2Vyw6EgZXhjbHVzaXZhbWVudGUgbWkgcmVzcG9uc2FiaWxpZGFkIGF0ZW5kZXIgcGVyc29uYWxtZW50ZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSBwdWVkYTxCUj4gcHJlc2VudGFyc2UgYSBsYSBVbml2ZXJzaWRhZC4gPEJSPgogCkF1dG9yaXpvIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGFsIGZvcm1hdG8gcXVlIDxCUj5yZXF1aWVyYSAoaW1wcmVzbywgZGlnaXRhbCwgZWxlY3Ryw7NuaWNvIG8gY3VhbHF1aWVyIG90cm8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgbyBjb24gZmluZXMgZGU8QlI+IHByZXNlcnZhY2nDs24gZGlnaXRhbC4gPEJSPgogCkVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHBvc3Rlcmlvcm1lbnRlIGxhIG9icmEsIGVuIGZvcm1hIHRvdGFsIG8gPEJSPnBhcmNpYWwsIHBvciBsbyBjdWFsIHBvZHLDqSwgZGFuZG8gYXZpc28gcG9yIGVzY3JpdG8gY29uIG5vIG1lbm9zIGRlIHVuIG1lcyBkZSBhbnRlbGFjacOzbiwgc29saWNpdGFyIHF1ZSBlbCA8QlI+ZG9jdW1lbnRvIGRlamUgZGUgZXN0YXIgZGlzcG9uaWJsZSBwYXJhIGVsIHDDumJsaWNvIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgPEJSPiBhc8Otwq0gbWlzbW8sIGN1YW5kbyBzZSByZXF1aWVyYSBwb3IgcmF6b25lcyBsZWdhbGVzIHkvbyByZWdsYXMgZGVsIGVkaXRvciBkZSB1bmEgcmV2aXN0YS4gPEJSPjwvUD4K |