Dos medidas de asimetría basadas en la moda: cálculo y normas interpretativas
Este estudio metodológico de simulación presenta de forma ejemplificada dos medidas de asimetría. Aunque pueden ser útiles cuando la distribución es unimodal, no se reportan en la investigación psicológica. Una es la distancia estandarizada de la media a la moda de Pearson. La otra es la medida robu...
- Autores:
-
Moral de la Rubia, José
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/29335
- Acceso en línea:
- https://hdl.handle.net/10819/29335
https://doi.org/10.21500/19002386.6542
- Palabra clave:
- Simetría
estimación de la moda
bootstrap
inferencia estadística
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
| id |
SANBUENAV2_55f113e370cff2b7210d3955d1c6a210 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/29335 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Dos medidas de asimetría basadas en la moda: cálculo y normas interpretativas |
| dc.title.translated.eng.fl_str_mv |
Two measures of skewness based on mode: calculation and interpretative rules |
| title |
Dos medidas de asimetría basadas en la moda: cálculo y normas interpretativas |
| spellingShingle |
Dos medidas de asimetría basadas en la moda: cálculo y normas interpretativas Simetría estimación de la moda bootstrap inferencia estadística |
| title_short |
Dos medidas de asimetría basadas en la moda: cálculo y normas interpretativas |
| title_full |
Dos medidas de asimetría basadas en la moda: cálculo y normas interpretativas |
| title_fullStr |
Dos medidas de asimetría basadas en la moda: cálculo y normas interpretativas |
| title_full_unstemmed |
Dos medidas de asimetría basadas en la moda: cálculo y normas interpretativas |
| title_sort |
Dos medidas de asimetría basadas en la moda: cálculo y normas interpretativas |
| dc.creator.fl_str_mv |
Moral de la Rubia, José |
| dc.contributor.author.spa.fl_str_mv |
Moral de la Rubia, José |
| dc.subject.spa.fl_str_mv |
Simetría estimación de la moda bootstrap inferencia estadística |
| topic |
Simetría estimación de la moda bootstrap inferencia estadística |
| description |
Este estudio metodológico de simulación presenta de forma ejemplificada dos medidas de asimetría. Aunque pueden ser útiles cuando la distribución es unimodal, no se reportan en la investigación psicológica. Una es la distancia estandarizada de la media a la moda de Pearson. La otra es la medida robusta de asimetría de Bickel. Se muestra cómo calcular la estimación puntual y de intervalo con el programa R. Además, se calculan intervalos de confianza al 90 %, 95 % y 99 % con 10 000 extracciones con reemplazamiento de muestras-población con distribución normal y diferentes tamaños para disponer de directrices interpretativas de simetría. Se concluye que la regla ∓0.1 no aplica, la moda de Grenander proporciona los intervalos de confianza más eficientes, pero la asimetría de Bickel es la opción con variables ordinales. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-07-15T00:00:00Z 2025-08-25T21:59:48Z |
| dc.date.available.none.fl_str_mv |
2023-07-15T00:00:00Z 2025-08-25T21:59:48Z |
| dc.date.issued.none.fl_str_mv |
2023-07-15 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.spa.fl_str_mv |
Text |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/19002386.6542 |
| dc.identifier.eissn.none.fl_str_mv |
2665-4202 |
| dc.identifier.issn.none.fl_str_mv |
1900-2386 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/29335 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/19002386.6542 |
| identifier_str_mv |
10.21500/19002386.6542 2665-4202 1900-2386 |
| url |
https://hdl.handle.net/10819/29335 https://doi.org/10.21500/19002386.6542 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/Psychologia/article/download/6542/5304 |
| dc.relation.citationendpage.none.fl_str_mv |
54 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.none.fl_str_mv |
39 |
| dc.relation.citationvolume.spa.fl_str_mv |
17 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Psychologia |
| dc.relation.references.spa.fl_str_mv |
Bickel, D. R. (2002). Robust estimators of the mode and skewness of continuous data. Computational Statistics & Data Analysis, 39(2), 153-163. https://doi.org/10.1016/S0167-9473(01)00057-3. Bono, R., Arnau, J., Alarcón, R. & Blanca, M. J. (2020). Bias, precision, and accuracy of skewness and kurtosis estimators for frequently used continuous distributions. Symmetry, 12(1), article 19, 1-17. https://doi.org/10.3390/sym12010019. Canty, A. & Ripley, B. (2022). Boot: bootstrap R (S-Plus) functions. R package version 1.3-28. https://cran.r-project.org/web/packages/boot/boot.pdf. Eberl, A. & Klar, B. (2020). Asymptotic distributions and performance of empirical skewness measures. Computational Statistics & Data Analysis, 146, article 106939. https://doi.org/10.1016/j.csda.2020.106939. Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability density. Theory of Probability and Its Applications, 14(1), 153-158. https://doi.org/10.1137/1114019. Freedman, D. & Diaconis, P. (1981). On the histogram as a density estimator: L2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57(4), 453-476. https://doi.org/10.1007/BF01025868. Giorgi, F. M., Ceraolo, C. & Mercatelli, D. (2022). The R language: an engine for bio-informatics and data science. Life, 12(5), article 648. https://doi.org/10.3390/life12050648. Grenander, U. (1965). Some direct estimates of the mode. Annals of Mathematical Statistics, 36(1), 131-138. https://doi.org/10.1214/aoms/1177700277. Guidoum, A. C. (2020). Kernel estimator and bandwidth selection for density and its derivatives: the kedd package. arxiv, article 2012.06102v1. https://doi.org/10.48550/arXiv.2012.06102. Gupta, S. C. & Kapoor, V. K. (2020). Descriptive measures. In Fundamentals of mathematical statistics, twelfth edition (section 2, pp. 1-78). New Delhi: Sultan Chand & Sons. Henderson, D. J., Papadopoulos, A. & Parmeter, C. F. (2023). Bandwidth selection for kernel density estimation of fat-tailed and skewed distributions. Journal of Statistical Computation and Simulation, article 2173194, 1-26. https://doi.org/10.1080/00949655.2023.2173194 Khan, A. A., Cheema, S. A., Hussain, Z. & Abdel-Salam, G. A. (2021). Measuring skewness: We do not assume much. Scientia Iranica, 28(6), 3525-3537. https://doi.org/10.24200/SCI.2020.52306.2649. Lane, D. M. (2015). Histograms. En Online statistics education: a multimedia course of study. https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Book%3A_Introductory_Statistics_(Lane)/02%3A_Graphing_Distributions/2.04%3A_Histograms. Mokhtar, S. F., Yusof, Z. M. & Sapiri, H. (2023). Confidence intervals by bootstrapping approach: a significance review. Malaysian Journal of Fundamental and Applied Sciences, 19(1), 30-42. https://doi.org/10.11113/mjfas.v19n1.2660. Moral, J. (2022). Una medida de asimetría unidimensional para variables cualitativas. Revista de Psicología (PUCP), 40(1), 519-551. https://dx.doi.org/10.18800/psico.202201.017. Moral, J. (2023). Standardized distance from the mean to the median as a measure of skewness. Open Journal of Statistics, 13, 359-378. https://dx.doi.org/10.4236/ojs.2023.133018. Pakgohar, A. & Mehrannia, H. (2023). Statistical rules in scientific reports (the basics). Iranian Journal of Diabetes and Obesity, 15, article 12205. https://doi.org/10.18502/ijdo.v15i1.12205. Parzen, E. (1962). On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33(3), 1065-1076. https://doi.org/10.1214/aoms/1177704472. Pearson, K. (1894). Contributions to the mathematical theory of evolution. I. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society of London A, 185, 71-110. https://doi.org/10.1098/rsta.1894.0003. Poncet, P. (2022). Package ‘modeest’. Mode estimation. https://cran.r-project.org/web/packages/modeest/modeest.pdf. Ruzankin, P. S. (2022). A class of nonparametric mode estimators. Communications in Statistics - Simulation and Computation, 51(6), 3291-3304. https://doi.org/10.1080/03610918.2019.1711410. Sarka, D. (2021). Descriptive statistics. In: Advanced Analytics with Transact-SQL (pp. 3-29). Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4842-7173-5_1. Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605-610. https://doi.org/10.1093/biomet/66.3.605. Sheather, S. J. & Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society. Series B (Methodological), 53(3), 683-690. https://doi.org/10.1111/j.2517-6161.1991.tb01857.x. Shi, J., Luo, D., Wan, X., Liu, Y., Liu, J., Bian, Z. & Tong, T. (2020). Detecting the skewness of data from the sample size and the five-number summary. arXiv, article 2010.05749. https://doi.org/10.48550/arXiv.2010.05749. Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall. |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0 |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 http://creativecommons.org/licenses/by-nc-sa/4.0 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.spa.fl_str_mv |
https://revistas.usb.edu.co/index.php/Psychologia/article/view/6542 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/a1fb293a-0852-4d6d-95f1-2ccd6c6d241c/download |
| bitstream.checksum.fl_str_mv |
5428c8c068d07ce5cc6837f701f19ef5 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053614894678016 |
| spelling |
Moral de la Rubia, José2023-07-15T00:00:00Z2025-08-25T21:59:48Z2023-07-15T00:00:00Z2025-08-25T21:59:48Z2023-07-15Este estudio metodológico de simulación presenta de forma ejemplificada dos medidas de asimetría. Aunque pueden ser útiles cuando la distribución es unimodal, no se reportan en la investigación psicológica. Una es la distancia estandarizada de la media a la moda de Pearson. La otra es la medida robusta de asimetría de Bickel. Se muestra cómo calcular la estimación puntual y de intervalo con el programa R. Además, se calculan intervalos de confianza al 90 %, 95 % y 99 % con 10 000 extracciones con reemplazamiento de muestras-población con distribución normal y diferentes tamaños para disponer de directrices interpretativas de simetría. Se concluye que la regla ∓0.1 no aplica, la moda de Grenander proporciona los intervalos de confianza más eficientes, pero la asimetría de Bickel es la opción con variables ordinales.This article presents in exemplified form two measures of skewness. Although they may be useful when the distribution is unimodal, they are not reported in psychological research. One is Pearson’s standardized distance from the mean to the mode. The other is the Bickel’s robust measure of skewness. It is shown how to compute the point and interval estimate with the R program. Moreover, interval confidences at 90%, 95% and 99% are calculated with 10 000 draws with replacement from normally distributed samples-population with different sizes to have interpretative guidelines for symmetry. It is concluded that the ∓0.1 rule does not apply with these measures, Grenander’s mode provides the most efficient confidence intervals, but Bickel’s skewness is the option with ordinal variables.application/pdf10.21500/19002386.65422665-42021900-2386https://hdl.handle.net/10819/29335https://doi.org/10.21500/19002386.6542spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/Psychologia/article/download/6542/53045423917PsychologiaBickel, D. R. (2002). Robust estimators of the mode and skewness of continuous data. Computational Statistics & Data Analysis, 39(2), 153-163. https://doi.org/10.1016/S0167-9473(01)00057-3.Bono, R., Arnau, J., Alarcón, R. & Blanca, M. J. (2020). Bias, precision, and accuracy of skewness and kurtosis estimators for frequently used continuous distributions. Symmetry, 12(1), article 19, 1-17. https://doi.org/10.3390/sym12010019.Canty, A. & Ripley, B. (2022). Boot: bootstrap R (S-Plus) functions. R package version 1.3-28. https://cran.r-project.org/web/packages/boot/boot.pdf.Eberl, A. & Klar, B. (2020). Asymptotic distributions and performance of empirical skewness measures. Computational Statistics & Data Analysis, 146, article 106939. https://doi.org/10.1016/j.csda.2020.106939.Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability density. Theory of Probability and Its Applications, 14(1), 153-158. https://doi.org/10.1137/1114019.Freedman, D. & Diaconis, P. (1981). On the histogram as a density estimator: L2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57(4), 453-476. https://doi.org/10.1007/BF01025868.Giorgi, F. M., Ceraolo, C. & Mercatelli, D. (2022). The R language: an engine for bio-informatics and data science. Life, 12(5), article 648. https://doi.org/10.3390/life12050648.Grenander, U. (1965). Some direct estimates of the mode. Annals of Mathematical Statistics, 36(1), 131-138. https://doi.org/10.1214/aoms/1177700277.Guidoum, A. C. (2020). Kernel estimator and bandwidth selection for density and its derivatives: the kedd package. arxiv, article 2012.06102v1. https://doi.org/10.48550/arXiv.2012.06102.Gupta, S. C. & Kapoor, V. K. (2020). Descriptive measures. In Fundamentals of mathematical statistics, twelfth edition (section 2, pp. 1-78). New Delhi: Sultan Chand & Sons.Henderson, D. J., Papadopoulos, A. & Parmeter, C. F. (2023). Bandwidth selection for kernel density estimation of fat-tailed and skewed distributions. Journal of Statistical Computation and Simulation, article 2173194, 1-26. https://doi.org/10.1080/00949655.2023.2173194 Khan, A. A., Cheema, S. A., Hussain, Z. & Abdel-Salam, G. A. (2021). Measuring skewness: We do not assume much. Scientia Iranica, 28(6), 3525-3537. https://doi.org/10.24200/SCI.2020.52306.2649.Lane, D. M. (2015). Histograms. En Online statistics education: a multimedia course of study. https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Book%3A_Introductory_Statistics_(Lane)/02%3A_Graphing_Distributions/2.04%3A_Histograms.Mokhtar, S. F., Yusof, Z. M. & Sapiri, H. (2023). Confidence intervals by bootstrapping approach: a significance review. Malaysian Journal of Fundamental and Applied Sciences, 19(1), 30-42. https://doi.org/10.11113/mjfas.v19n1.2660.Moral, J. (2022). Una medida de asimetría unidimensional para variables cualitativas. Revista de Psicología (PUCP), 40(1), 519-551. https://dx.doi.org/10.18800/psico.202201.017.Moral, J. (2023). Standardized distance from the mean to the median as a measure of skewness. Open Journal of Statistics, 13, 359-378. https://dx.doi.org/10.4236/ojs.2023.133018.Pakgohar, A. & Mehrannia, H. (2023). Statistical rules in scientific reports (the basics). Iranian Journal of Diabetes and Obesity, 15, article 12205. https://doi.org/10.18502/ijdo.v15i1.12205.Parzen, E. (1962). On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33(3), 1065-1076. https://doi.org/10.1214/aoms/1177704472.Pearson, K. (1894). Contributions to the mathematical theory of evolution. I. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society of London A, 185, 71-110. https://doi.org/10.1098/rsta.1894.0003.Poncet, P. (2022). Package ‘modeest’. Mode estimation. https://cran.r-project.org/web/packages/modeest/modeest.pdf.Ruzankin, P. S. (2022). A class of nonparametric mode estimators. Communications in Statistics - Simulation and Computation, 51(6), 3291-3304. https://doi.org/10.1080/03610918.2019.1711410.Sarka, D. (2021). Descriptive statistics. In: Advanced Analytics with Transact-SQL (pp. 3-29). Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4842-7173-5_1.Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605-610. https://doi.org/10.1093/biomet/66.3.605.Sheather, S. J. & Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society. Series B (Methodological), 53(3), 683-690. https://doi.org/10.1111/j.2517-6161.1991.tb01857.x.Shi, J., Luo, D., Wan, X., Liu, Y., Liu, J., Bian, Z. & Tong, T. (2020). Detecting the skewness of data from the sample size and the five-number summary. arXiv, article 2010.05749. https://doi.org/10.48550/arXiv.2010.05749.Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.http://creativecommons.org/licenses/by-nc-sa/4.0https://revistas.usb.edu.co/index.php/Psychologia/article/view/6542Simetríaestimación de la modabootstrapinferencia estadísticaDos medidas de asimetría basadas en la moda: cálculo y normas interpretativasTwo measures of skewness based on mode: calculation and interpretative rulesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2537https://bibliotecadigital.usb.edu.co/bitstreams/a1fb293a-0852-4d6d-95f1-2ccd6c6d241c/download5428c8c068d07ce5cc6837f701f19ef5MD5110819/29335oai:bibliotecadigital.usb.edu.co:10819/293352025-08-25 16:59:48.764http://creativecommons.org/licenses/by-nc-sa/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
