The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements

The usefulness of Bayesian methods in estimating complex statistical models is undeniable. From a Bayesian standpoint, this paper aims to demonstrate the capacity of Bayesian methods and propose a comprehensive model combining both a measurement model (e.g., an item response model, IRM) and a struct...

Full description

Autores:
Hsieh, Chueh An
Von Eye, Alexander
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/6549
Acceso en línea:
http://hdl.handle.net/10819/6549
Palabra clave:
Bayesian inference
Generalized linear latent and mixed mode
Item response model
Latent growth curve analysis
Simulation
Análisis de curva de crecimiento latente
Inferencia Bayesiana
Modelo de respuesta al ítem
Modelo linear generalizado latente y mixto
Simulación
Estadística
Investigación cuantitativa
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANBUENAV2_51eda02f40aa3689af81e1143bab0ff8
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/6549
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
dc.title.alternative.spa.fl_str_mv Lo mejor de ambos mundos: una propuesta de modelamiento combinado para la evaluación del cambio a lo largo de mediciones repetidas
title The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
spellingShingle The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
Bayesian inference
Generalized linear latent and mixed mode
Item response model
Latent growth curve analysis
Simulation
Análisis de curva de crecimiento latente
Inferencia Bayesiana
Modelo de respuesta al ítem
Modelo linear generalizado latente y mixto
Simulación
Estadística
Investigación cuantitativa
title_short The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
title_full The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
title_fullStr The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
title_full_unstemmed The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
title_sort The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
dc.creator.fl_str_mv Hsieh, Chueh An
Von Eye, Alexander
dc.contributor.author.none.fl_str_mv Hsieh, Chueh An
Von Eye, Alexander
dc.subject.spa.fl_str_mv Bayesian inference
Generalized linear latent and mixed mode
Item response model
Latent growth curve analysis
Simulation
Análisis de curva de crecimiento latente
Inferencia Bayesiana
Modelo de respuesta al ítem
Modelo linear generalizado latente y mixto
Simulación
topic Bayesian inference
Generalized linear latent and mixed mode
Item response model
Latent growth curve analysis
Simulation
Análisis de curva de crecimiento latente
Inferencia Bayesiana
Modelo de respuesta al ítem
Modelo linear generalizado latente y mixto
Simulación
Estadística
Investigación cuantitativa
dc.subject.lemb.spa.fl_str_mv Estadística
Investigación cuantitativa
description The usefulness of Bayesian methods in estimating complex statistical models is undeniable. From a Bayesian standpoint, this paper aims to demonstrate the capacity of Bayesian methods and propose a comprehensive model combining both a measurement model (e.g., an item response model, IRM) and a structural model (e.g., a latent variable model, LVM). That is, through the incorporation of the probit link and Bayesian estimation, the item response model can be introduced naturally into a latent variable model. The utility of this IRM-LVM comprehensive framework is investigated with a real data example and promising results are obtained, in which the data drawn from part of the British Social Attitudes Panel Survey 1983-1986 reveal the attitude toward abortion of a representative sample of adults aged 18 or older living in Great Britain. The application of IRMs to responses gathered from repeated assessments allows us to take the characteristics of both item responses and measurement error into consideration in the analysis of individual developmental trajectories, and helps resolve some difficult modeling issues commonly encountered in developmental research, such as small sample sizes, multiple discretely scaled items, many repeated assessments, and attrition over time
publishDate 2010
dc.date.issued.none.fl_str_mv 2010
dc.date.accessioned.none.fl_str_mv 2018-11-19T21:35:21Z
dc.date.available.none.fl_str_mv 2018-11-19T21:35:21Z
dc.date.submitted.none.fl_str_mv 2018-11-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.spa.spa.fl_str_mv Artículo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.identifier.citation.spa.fl_str_mv Hsieh, C., & Von Eye, A. (2010). The Best of Both Worlds: A Joint Modeling Approach for the Assessment of Change across Repeated Measurements. International Journal of Psychological Research (Vol. 3). Retrieved from http://bit.ly/2A2ciQu
dc.identifier.issn.none.fl_str_mv 2011-7922
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10819/6549
identifier_str_mv Hsieh, C., & Von Eye, A. (2010). The Best of Both Worlds: A Joint Modeling Approach for the Assessment of Change across Repeated Measurements. International Journal of Psychological Research (Vol. 3). Retrieved from http://bit.ly/2A2ciQu
2011-7922
url http://hdl.handle.net/10819/6549
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.uri.spa.fl_str_mv http://dx.doi.org/10.21500/20112084.862
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.cc.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.spa.fl_str_mv pdf
dc.format.extent.spa.fl_str_mv 34 páginas
dc.format.medium.spa.fl_str_mv Recurso en linea
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Editorial Bonaventuriana
dc.publisher.faculty.spa.fl_str_mv Psicología
dc.publisher.sede.spa.fl_str_mv Medellín
dc.source.spa.fl_str_mv International Journal of Psychological Research
institution Universidad de San Buenaventura
dc.source.instname.spa.fl_str_mv Universidad de San Buenaventura - Medellín
dc.source.reponame.spa.fl_str_mv Biblioteca Digital Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/59d79e5a-1520-46d2-ba25-d16cf0d9c757/download
https://bibliotecadigital.usb.edu.co/bitstreams/6301f2e2-d7cf-409f-82ef-96ae13a512a4/download
https://bibliotecadigital.usb.edu.co/bitstreams/daab4290-0364-4719-8501-8f4c97bbe1d0/download
https://bibliotecadigital.usb.edu.co/bitstreams/4d30e696-c6bc-486a-bcae-94f09bb646eb/download
bitstream.checksum.fl_str_mv 6308d4d8f9820753ec0bf95111b7bf8e
0c7b7184e7583ec671a5d9e43f0939c0
5356b6b5e756ca0c33757bae73eb8bf8
35d28c944bf4a1965ae02672adb06e82
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1837099214221344768
spelling Comunidad Científica y AcadémicaHsieh, Chueh An2944fb08-9935-4b61-ab26-b85621dd0d86-1Von Eye, Alexander1ee93af2-bd10-4fcd-8735-053cf33ba631-12018-11-19T21:35:21Z2018-11-19T21:35:21Z20102018-11-15The usefulness of Bayesian methods in estimating complex statistical models is undeniable. From a Bayesian standpoint, this paper aims to demonstrate the capacity of Bayesian methods and propose a comprehensive model combining both a measurement model (e.g., an item response model, IRM) and a structural model (e.g., a latent variable model, LVM). That is, through the incorporation of the probit link and Bayesian estimation, the item response model can be introduced naturally into a latent variable model. The utility of this IRM-LVM comprehensive framework is investigated with a real data example and promising results are obtained, in which the data drawn from part of the British Social Attitudes Panel Survey 1983-1986 reveal the attitude toward abortion of a representative sample of adults aged 18 or older living in Great Britain. The application of IRMs to responses gathered from repeated assessments allows us to take the characteristics of both item responses and measurement error into consideration in the analysis of individual developmental trajectories, and helps resolve some difficult modeling issues commonly encountered in developmental research, such as small sample sizes, multiple discretely scaled items, many repeated assessments, and attrition over timeLa utilidad de los métodos Bayesianos en la estimación de modelos estadísticos complejos es innegable. Desde un punto de vista Bayesiano, el presente artículo busca demostrar la capacidad de los métodos Bayesianos y proponer un modelo exhaustivo que combina un modelo de medición y un modelo estructural. La utilidad de este método combinado se investiga usando datos reales tomados de una encuesta sobre actitudes sociales. El método combinado permite extraer las características de las respuestas a los ítems como de los errores en la medición para el análisis individual de trayectorias del desarrollo. Tales resultados permiten resolver asuntos que se presentan en investigación en psicología del desarrollo, e.g., tamaños de muestra pequeños, evaluaciones repetidas, etc.pdf34 páginasRecurso en lineaapplication/pdfHsieh, C., & Von Eye, A. (2010). The Best of Both Worlds: A Joint Modeling Approach for the Assessment of Change across Repeated Measurements. International Journal of Psychological Research (Vol. 3). Retrieved from http://bit.ly/2A2ciQu2011-7922http://hdl.handle.net/10819/6549spaEditorial BonaventurianaPsicologíaMedellínhttp://dx.doi.org/10.21500/20112084.862Atribución-NoComercial-SinDerivadas 2.5 ColombiaPor medio de este formato manifiesto mi voluntad de AUTORIZAR a la Universidad de San Buenaventura, Sede Bogotá, Seccionales Medellín, Cali y Cartagena, la difusión en texto completo de manera gratuita y por tiempo indefinido en la Biblioteca Digital Universidad de San Buenaventura, el documento académico-investigativo objeto de la presente autorización, con fines estrictamente educativos, científicos y culturales, en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre derechos de autor. Como autor manifiesto que el presente documento académico-investigativo es original y se realiza sin violar o usurpar derechos de autor de terceros, por lo tanto, la obra es de mi exclusiva autora y poseo la titularidad sobre la misma. La Universidad de San Buenaventura no será responsable de ninguna utilización indebida del documento por parte de terceros y será exclusivamente mi responsabilidad atender personalmente cualquier reclamación que pueda presentarse a la Universidad. Autorizo a la Biblioteca Digital de la Universidad de San Buenaventura convertir el documento al formato que el repositorio lo requiera (impreso, digital, electrónico o cualquier otro conocido o por conocer) o con fines de preservación digital. Esta autorización no implica renuncia a la facultad que tengo de publicar posteriormente la obra, en forma total o parcial, por lo cual podrá, dando aviso por escrito con no menos de un mes de antelación, solicitar que el documento deje de estar disponible para el público en la Biblioteca Digital de la Universidad de San Buenaventura, así mismo, cuando se requiera por razones legales y/o reglas del editor de una revista.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2International Journal of Psychological ResearchUniversidad de San Buenaventura - MedellínBiblioteca Digital Universidad de San BuenaventuraBayesian inferenceGeneralized linear latent and mixed modeItem response modelLatent growth curve analysisSimulationAnálisis de curva de crecimiento latenteInferencia BayesianaModelo de respuesta al ítemModelo linear generalizado latente y mixtoSimulaciónEstadísticaInvestigación cuantitativaThe best of both worlds: a joint modeling approach for the assessment of change across repeated measurementsLo mejor de ambos mundos: una propuesta de modelamiento combinado para la evaluación del cambio a lo largo de mediciones repetidasArtículo de revistaArtículoinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1PublicationORIGINALBest_ Both_Worlds_Hsieh_2010.pdfBest_ Both_Worlds_Hsieh_2010.pdfapplication/pdf1858084https://bibliotecadigital.usb.edu.co/bitstreams/59d79e5a-1520-46d2-ba25-d16cf0d9c757/download6308d4d8f9820753ec0bf95111b7bf8eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82071https://bibliotecadigital.usb.edu.co/bitstreams/6301f2e2-d7cf-409f-82ef-96ae13a512a4/download0c7b7184e7583ec671a5d9e43f0939c0MD52TEXTBest_ Both_Worlds_Hsieh_2010.pdf.txtBest_ Both_Worlds_Hsieh_2010.pdf.txtExtracted texttext/plain125186https://bibliotecadigital.usb.edu.co/bitstreams/daab4290-0364-4719-8501-8f4c97bbe1d0/download5356b6b5e756ca0c33757bae73eb8bf8MD53THUMBNAILBest_ Both_Worlds_Hsieh_2010.pdf.jpgBest_ Both_Worlds_Hsieh_2010.pdf.jpgGenerated Thumbnailimage/jpeg13499https://bibliotecadigital.usb.edu.co/bitstreams/4d30e696-c6bc-486a-bcae-94f09bb646eb/download35d28c944bf4a1965ae02672adb06e82MD5410819/6549oai:bibliotecadigital.usb.edu.co:10819/65492023-04-12 16:39:34.975http://creativecommons.org/licenses/by-nc-nd/2.5/co/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPkJJQkxJT1RFQ0EgRElHSVRBTCBVTklWRVJTSURBRCBERSBTQU4gQlVFTkFWRU5UVVJBIC0gQ09MT01CSUE8L2gzPgo8cD4KVMOpcm1pbm9zIGRlIGxhIGxpY2VuY2lhIGdlbmVyYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgcmVwb3NpdG9yaW8gaW5zdGl0dWNpb25hbDwvcD48L2NlbnRlcj4KPFAgQUxJR049Y2VudGVyPgpQb3IgbWVkaW8gZGUgZXN0ZSBmb3JtYXRvIG1hbmlmaWVzdG8gbWkgdm9sdW50YWQgZGUgQVVUT1JJWkFSIGEgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgU2VkZSBCb2dvdMOhIHkgPEJSPlNlY2Npb25hbGVzIE1lZGVsbMOtbiwgQ2FsaSB5IENhcnRhZ2VuYSwgbGEgZGlmdXNpw7NuIGVuIHRleHRvIGNvbXBsZXRvIGRlIG1hbmVyYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBlbiBsYTxCUj4gQmlibGlvdGVjYSBEaWdpdGFsIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIGVsIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBvYmpldG8gZGUgbGEgcHJlc2VudGUgPEJSPmF1dG9yaXphY2nDs24sIGNvbiBmaW5lcyBlc3RyaWN0YW1lbnRlIGVkdWNhdGl2b3MsIGNpZW50w63CrWZpY29zIHkgY3VsdHVyYWxlcywgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW4gbGEgTGV5IDIzIGRlIDxCUj4gMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvczxCUj4gZGUgYXV0b3IuIDxCUj4gCiAKQ29tbyBhdXRvciBtYW5pZmllc3RvIHF1ZSBlbCBwcmVzZW50ZSBkb2N1bWVudG8gYWNhZMOpbWljbyAtIGludmVzdGlnYXRpdm8gZXMgb3JpZ2luYWwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gPEJSPiB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgbWkgZXhjbHVzaXZhIGF1dG9yw63CrWEgeSBwb3NlbyBsYSB0aXR1bGFyaWRhZCA8QlI+IHNvYnJlIGxhIG1pc21hLiBMYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIG5vIHNlcsOhIHJlc3BvbnNhYmxlIGRlIG5pbmd1bmEgdXRpbGl6YWNpw7NuIGluZGViaWRhIGRlbCBkb2N1bWVudG8gPEJSPnBvciBwYXJ0ZSBkZSB0ZXJjZXJvcyB5IHNlcsOhIGV4Y2x1c2l2YW1lbnRlIG1pIHJlc3BvbnNhYmlsaWRhZCBhdGVuZGVyIHBlcnNvbmFsbWVudGUgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBxdWUgcHVlZGE8QlI+IHByZXNlbnRhcnNlIGEgbGEgVW5pdmVyc2lkYWQuIDxCUj4KIApBdXRvcml6byBhIGxhIEJpYmxpb3RlY2EgRGlnaXRhbCBkZSBsYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYWwgZm9ybWF0byBxdWUgZWwgPEJSPnJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBvIGNvbiBmaW5lcyBkZTxCUj4gcHJlc2VydmFjacOzbiBkaWdpdGFsLiA8QlI+CiAKRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGVuZ28gZGUgcHVibGljYXIgcG9zdGVyaW9ybWVudGUgbGEgb2JyYSwgZW4gZm9ybWEgdG90YWwgbyA8QlI+cGFyY2lhbCwgcG9yIGxvIGN1YWwgcG9kcsOpLCBkYW5kbyBhdmlzbyBwb3IgZXNjcml0byBjb24gbm8gbWVub3MgZGUgdW4gbWVzIGRlIGFudGVsYWNpw7NuLCBzb2xpY2l0YXIgcXVlIGVsIDxCUj5kb2N1bWVudG8gZGVqZSBkZSBlc3RhciBkaXNwb25pYmxlIHBhcmEgZWwgcMO6YmxpY28gZW4gbGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIDxCUj4gYXPDrcKtIG1pc21vLCBjdWFuZG8gc2UgcmVxdWllcmEgcG9yIHJhem9uZXMgbGVnYWxlcyB5L28gcmVnbGFzIGRlbCBlZGl0b3IgZGUgdW5hIHJldmlzdGEuIDxCUj48L1A+Cg==