Analyzing reaction times
Reaction times (RTs) are an important source of information in experimental psychology. Classical methodological considerations pertaining to the statistical analysis of RT data are optimized for analyses of aggregated data, based on subject or item means (c.f., Forster & Dickinson, 1976). Mixed...
- Autores:
-
Baayen, R. Harald
Milin, Petar
- Tipo de recurso:
- Fecha de publicación:
- 2010
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/6551
- Acceso en línea:
- http://hdl.handle.net/10819/6551
- Palabra clave:
- Reaction times
Distributions
Outliers
Transformations
Temporal dependencies
Linear mixed-effects modeling
Identidades masculinas
Patriarcado
Violencia intrafamiliar
Violencia familiar
Masculinidad (psicología)
- Rights
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
Summary: | Reaction times (RTs) are an important source of information in experimental psychology. Classical methodological considerations pertaining to the statistical analysis of RT data are optimized for analyses of aggregated data, based on subject or item means (c.f., Forster & Dickinson, 1976). Mixed-effects modeling (see, e.g., Baayen, Davidson, & Bates, 2008) does not require prior aggregation and allows the researcher the more ambitious goal of predicting individual responses. Mixed-modeling calls for a reconsideration of the classical methodological strategies for analysing rts. In this study, we argue for empirical exibility with respect to the choice of transformation for the RTs. We advocate minimal apriori data trimming, combined with model criticism. We also show how trial-to-trial, longitudinal dependencies between individual observations can be brought into the statistical model. These strategies are illustrated for a large dataset with a non-trivial random-effects structure. Special attention is paid to the evaluation of interactions involving fixed-effect factors that partition the levels sampled by random-effect factors. |
---|