El papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impacto

La economía circular desempeña un papel importante en la industria química, ya que busca desarrollar y mejorar los procesos desde una perspectiva de cuidado del medio ambiente. En este trabajo se realizó una vigilancia tecnológica sobre las técnicas y procesos que permiten la implementación de la ec...

Full description

Autores:
Ordosgoitia Novoa, Daniel
Tipo de recurso:
Review article
Fecha de publicación:
2024
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/22655
Acceso en línea:
https://hdl.handle.net/10819/22655
Palabra clave:
660 - Ingeniería química
Tesis - ingeniería química
Economía circular
Poliestireno
Protección del medio ambiente
Procesos químicos
Economía circular
Poliestireno alto impacto
Medio ambiente
Procesos fisicoquímicos
Circular economy
Expanded polystyrene
Environment
Physicochemical processes
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id SANBUENAV2_37bd1f6b6c3d689b94d0813034ddd71b
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/22655
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv El papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impacto
title El papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impacto
spellingShingle El papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impacto
660 - Ingeniería química
Tesis - ingeniería química
Economía circular
Poliestireno
Protección del medio ambiente
Procesos químicos
Economía circular
Poliestireno alto impacto
Medio ambiente
Procesos fisicoquímicos
Circular economy
Expanded polystyrene
Environment
Physicochemical processes
title_short El papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impacto
title_full El papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impacto
title_fullStr El papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impacto
title_full_unstemmed El papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impacto
title_sort El papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impacto
dc.creator.fl_str_mv Ordosgoitia Novoa, Daniel
dc.contributor.advisor.none.fl_str_mv Terán Acuña, Natalia
dc.contributor.author.none.fl_str_mv Ordosgoitia Novoa, Daniel
dc.contributor.jury.none.fl_str_mv Pájaro Contreras, Estefany
Fusaro, Carmine
dc.contributor.researchgroup.none.fl_str_mv Grupo de Investigación en Ciencias de las Ingenierías (GICI) (Cartagena)
dc.subject.ddc.none.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Tesis - ingeniería química
Economía circular
Poliestireno
Protección del medio ambiente
Procesos químicos
Economía circular
Poliestireno alto impacto
Medio ambiente
Procesos fisicoquímicos
Circular economy
Expanded polystyrene
Environment
Physicochemical processes
dc.subject.other.none.fl_str_mv Tesis - ingeniería química
Economía circular
Poliestireno
Protección del medio ambiente
Procesos químicos
dc.subject.proposal.spa.fl_str_mv Economía circular
Poliestireno alto impacto
Medio ambiente
Procesos fisicoquímicos
dc.subject.proposal.eng.fl_str_mv Circular economy
Expanded polystyrene
Environment
Physicochemical processes
description La economía circular desempeña un papel importante en la industria química, ya que busca desarrollar y mejorar los procesos desde una perspectiva de cuidado del medio ambiente. En este trabajo se realizó una vigilancia tecnológica sobre las técnicas y procesos que permiten la implementación de la economía circular en la producción de poliestireno de alto impacto (HIPS) con el fin de mitigar los efectos perjudiciales de los desechos plásticos generados en el medio ambiente. Para ello, se recurrió principalmente a la búsqueda de información en bases de datos especializadas, incluyendo diferentes tipos de documentos de investigación, como artículos, tesis, reseñas y libros. Se ha observado que, en los últimos cinco años, se ha producido un aumento en el desarrollo de procesos orientados a la reducción del impacto ambiental que generan los plásticos. Entre los procesos fisicoquímicos que aportan valor al producto final se encuentran la licuefacción hidrotermal, la pirolisis, la reacción catalizada por vanadio, las reacciones de sulfonación, así como la degradación que puede llevarse a cabo mediante benceno, catalizadores alcalinos y catalizadores ácidos. También se han encontrado la hidrogenación termoquímica y la despolimerización y polimerización basadas en solventes; estos procesos de transformación aportan beneficios, tanto para su transformación como para su reutilización. Por lo tanto, son procesos que cumplen con los principios de la economía circular.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-31T21:31:03Z
dc.date.available.none.fl_str_mv 2024-10-31T21:31:03Z
dc.date.issued.none.fl_str_mv 2024
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_dcae04bc
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/other
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_dcae04bc
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Ordosgoitia Novoa, D. (2024). El papel de la economía circular en la reducción del impacto ambiental. [Trabajo de grado de Ingeniería Química]. Universidad de San Buenaventura, Cartagena, Colombia.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/22655
identifier_str_mv Ordosgoitia Novoa, D. (2024). El papel de la economía circular en la reducción del impacto ambiental. [Trabajo de grado de Ingeniería Química]. Universidad de San Buenaventura, Cartagena, Colombia.
url https://hdl.handle.net/10819/22655
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv J. Kirchherr, D. Reike, y M. Hekkert, “Conceptualizing the circular economy: An analysis of 114 definitions”, 2017. doi: 10.1016/j.resconrec.2017.09.005.
I. Belda Heriz, “Economia circular: un nuevo modelo de produccion y consumo sostenible”, p. 229, 2018, Accedido: 28 de septiembre de 2023. [En línea]. Disponible en: https://elibro.net/es/lc/areandina/titulos/51998
L. Fu y W. R. Gutekunst, “Mixing Physical Organic Chemistry with Monomer Design Gives New Recyclable Materials”, Chem, vol. 6, no 7, pp. 1510–1512, jul. 2020, doi: 10.1016/j.chempr.2020.06.026.
V. P. Sandoval, C. Jaca, y M. Ormazabal, “Economía circular”, Memoria Investigaciones en Ingeniería, no 15, pp. 85–95, 2017, [En línea]. Disponible en: http://revistas.um.edu.uy/index.php/ingenieria/article/view/308
S. T. Ghaly, H. Noby, J. I. Hayashi, y A. H. El-Shazly, “Various waste polystyrene for useful membrane fabrication: Comparative experimental study”, 2023, doi: 10.1016/j.matpr.2023.07.368.
M. Shamsuyeva y H.-J. Endres, “Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market”, 2021, doi: 10.1016/j.jcomc.2021.100168.
“The Organisation for Economic Co-operation and Development - OECD”. Accedido: 28 de agosto de 2023. [En línea]. Disponible en: https://www.oecd.org/
M. Ertz, W. Addar, C. Ouerghemmi, y M. Takaffoli, “Overview of factors influencing consumer engagement with plastic recycling”, Wiley Interdiscip Rev Energy Environ, vol. 12, no 6, 2023, doi: 10.1002/wene.493.
“Plastics use by polymer - projections | Global Plastics Outlook | OECD iLibrary”. Accedido: 30 de marzo de 2024. [En línea]. Disponible en: https://www.oecd-ilibrary.org/environment/data/global-plastics-outlook/plastics-use-by-polymer-projections_b9bae4d1-en?parentId=http%3A%2F%2Finstance.metastore.ingenta.com%2Fcontent%2Fthematicgrouping%2Fc0821f81-en
[M. Czepiel, M. Bańkosz, y A. Sobczak-Kupiec, “Advanced Injection Molding Methods: Review”, Materials, vol. 16, no 17, 2023, doi: 10.3390/ma16175802.
J. C. Capricho, K. Prasad, N. Hameed, M. Nikzad, y N. Salim, “Upcycling Polystyrene”, Polymers 2022, Vol. 14, Page 5010, vol. 14, no 22, p. 5010, nov. 2022, doi: 10.3390/POLYM14225010.
R. A. Rojas-Luna, L. Oquendo-Ruiz, C. A. García-Alzate, V. A. Arana, R. García-Alzate, y J. Trilleras, “Identification, Abundance, and Distribution of Microplastics in Surface Water Collected from Luruaco Lake, Low Basin Magdalena River, Colombia”, Water 2023, Vol. 15, Page 344, vol. 15, no 2, p. 344, ene. 2023, doi: 10.3390/W15020344.
G. Rozo Doncel, “Estado del Arte de la Economía Circular en Colombia”, 2019, Accedido: 12 de octubre de 2023. [En línea]. Disponible en: https://repository.ucc.edu.co/items/c4d66563-abb2-4b7c-a196-c98a42512669
N. Delangiz, S. Aliyar, N. Pashapoor, K. Nobaharan, B. Asgari Lajayer, y S. Rodríguez-Couto, “Can polymer-degrading microorganisms solve the bottleneck of plastics’ environmental challenges?”, Chemosphere, vol. 294, p. 133709, 2022, doi: 10.1016/j.chemosphere.2022.133709.
M. Chanda, “Chemical aspects of polymer recycling”, Advanced Industrial and Engineering Polymer Research, vol. 4, no 3, pp. 133–150, 2021, doi: 10.1016/j.aiepr.2021.06.002.
A. Kulakovskaya, M. Wiprächtiger, C. Knoeri, y C. R. Bening, “Integrated environmental-economic circular economy assessment: Application to the case of expanded polystyrene”, Resour Conserv Recycl, vol. 197, 2023, doi: 10.1016/j.resconrec.2023.107069.
J. Hidalgo-Crespo, F. X. Jervis, C. M. Moreira, M. Soto, y J. L. Amaya, “Introduction of the circular economy to expanded polystyrene household waste: A case study from an Ecuadorian plastic manufacturer”, en Procedia CIRP, 2020, pp. 49–54. doi: 10.1016/j.procir.2020.01.089.
R. Banu y G. Sharmila, “Review on food waste valorisation for bioplastic production towards a circular economy: sustainable approaches and biodegradability assessment”, 2023, doi: 10.1039/d3se00500c.
L. D. Vera-Acevedo, E. Raufllet, L. D. Vera-Acevedo, y E. Raufllet, “Análisis de la Estrategia Nacional de Economía Circular de Colombia a partir de dos modelos”, Estudios Políticos, no 64, pp. 27–52, may 2022, doi: 10.17533/UDEA.ESPO.N64A02.
B. C. Rojas y E. Vivares, “COLOMBIA AND OECD: How Institutional Imperialism Shapes the Global Order and National Development”, The Oxford Handbook of Economic Imperialism, pp. 567–588, ene. 2022, doi: 10.1093/OXFORDHB/9780197527085.013.42.
Ministerio de Ambiente y Desarrollo Sostenible, “Ley 2111 de 2021”, 2021, Accedido: 12 de octubre de 2023. [En línea]. Disponible en: https://www.minambiente.gov.co/wp-content/uploads/2021/06/ley-2111-2021.pdf
“Decreto 1630 de 2021 -”. Accedido: 1 de julio de 2024. [En línea]. Disponible en: https://www.minambiente.gov.co/documento-normativa/decreto-1630-de-2021/
A. Saravanan, P. Thamarai, P. Senthil Kumar, y G. Rangasamy, “Recent advances in polymer composite, extraction, and their application for wastewater treatment: A review”, 2022, doi: 10.1016/j.chemosphere.2022.136368.
C. Blümel y A. Schniedermann, “Studying review articles in scientometrics and beyond: a research agenda”, Scientometrics, vol. 124, no 1, pp. 711–728, jul. 2020, doi: 10.1007/S11192-020-03431-7/METRICS.
M. K. Lazarides, G. S. Georgiadis, y N. Papanas, “Do’s and Don’ts for a Good Reviewer of Scientific Papers: A Beginner’s Brief Decalogue”, https://recursosdigitales.usb.edu.co:2082/10.1177/1534734620924349, vol. 19, no 3, pp. 227–229, jun. 2020, doi: 10.1177/1534734620924349.
J. I. Seeman y M. C. House, “Peer review experiences of academic chemists in Ph.D. granting institutions in the United States”, Account Res, vol. 30, no 2, pp. 63–76, feb. 2023, doi: 10.1080/08989621.2021.1962714.
M. Bahl, “A Step-by-Step Guide to Writing a Scientific Review Article”, J Breast Imaging, pp. 480–485, 2023, doi: 10.1093/jbi/wbad028.
J. Hidalgo-Crespo, C. M. Moreira, F. X. Jervis, M. Soto, J. L. Amaya, y L. Banguera, “Circular economy of expanded polystyrene container production: Environmental benefits of household waste recycling considering renewable energies”, pp. 13–17, doi: 10.1016/j.egyr.2022.01.071.
S. C. H. Rives, S. Bautista, Z. N. Correa, y R. I. Ventura, “Situación actual de los envases utilizados para la conservación postcosecha de productos hortofrutícolas”, Revista Iberoamericana de Tecnología Postcosecha, vol. 21, no 1, 2020.
C. G. Otoni, H. M. C. Azeredo, B. D. Mattos, M. Beaumont, D. S. Correa, y O. J. Rojas, “The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues”, Advanced Materials, vol. 33, no 43, 2021, doi: 10.1002/adma.202102520.
M. Waqas, A. S. Nizami, A. S. Aburiazaiza, M. A. Barakat, I. M. I. Ismail, y M. I. Rashid, “Optimization of food waste compost with the use of biochar”, J Environ Manage, vol. 216, pp. 70–81, 2018, doi: 10.1016/j.jenvman.2017.06.015.
S. Adamczyk et al., “Polystyrene nanoparticles induce concerted response of plant defense mechanisms in plant cells”, Scientific Reports 2023 13:1, vol. 13, no 1, pp. 1–9, dic. 2023, doi: 10.1038/S41598-023-50104-5.
I. E. Gilani, S. Sayadi, N. Zouari, y M. A. Al-Ghouti, “Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications”, Bioresour Technol Rep, vol. 24, 2023, doi: 10.1016/j.biteb.2023.101606.
J. Lee y S. Jeong, “Approach to an answer to ‘How dangerous microplastics are to the human body’: A systematic review of the quantification of MPs and simultaneously exposed chemicals”, J Hazard Mater, vol. 460, 2023, doi: 10.1016/j.jhazmat.2023.132404.
K. Rani y K. Senthil, “Potential of industrial waste and plastic nanomaterials as a danger or a way to create a sustainable environment: a critical review”, Nanotechnology for Environmental Engineering, vol. 8, no 4, pp. 879–890, 2023, doi: 10.1007/s41204-023-00330-z.
F. Belblidia, M. H. Gabr, J. F. T. Pittman, y A. Rajkumar, “Recycling high impact polystyrene: Material properties and reprocessing in a circular economy business model”, Progress in Rubber, Plastics and Recycling Technology, 2023, doi: 10.1177/14777606231168653.
J. M. Millican y S. Agarwal, “Plastic Pollution: A Material Problem?”, Macromolecules, vol. 54, no 10, pp. 4455–4469, may 2021, doi: 10.1021/ACS.MACROMOL.0C02814/ASSET/IMAGES/MEDIUM/MA0C02814_0014.GIF.
K. Jaidev, M. Biswal, S. Mohanty, y S. K. Nayak, “Sustainable Waste Management of Engineering Plastics Generated from E-Waste: A Critical Evaluation of Mechanical, Thermal and Morphological Properties”, J Polym Environ, vol. 29, no 6, pp. 1763–1776, jun. 2021, doi: 10.1007/S10924-020-01998-Z/TABLES/4.
M. Biron, “Recycling Plastics: Advantages and Limitations of Use”, A Practical Guide to Plastics Sustainability, pp. 411–467, ene. 2020, doi: 10.1016/B978-0-12-821539-5.00009-4.
J. Samaniego, C. Salina, J. A. Ruette, J. P. Sanguinetti, y M. L. Allen, “Trazabilidad y contabilidad del plástico mediante el sistema A.P.A.”, jun. 2021, Accedido: 2 de agosto de 2023. [En línea]. Disponible en: https://repositorio.cepal.org/handle/11362/46950
J. A. Rodríguez-Liébana et al., “Morpho-structural and thermo-mechanical characterization of recycled polypropylene and polystyrene from mixed post-consumer plastic waste”, J Environ Chem Eng, vol. 10, no 5, p. 108332, 2022, doi: 10.1016/j.jece.2022.108332.
M. E. Grigore, “Methods of recycling, properties and applications of recycled thermoplastic polymers”, Recycling, vol. 2, no 4, 2017, doi: 10.3390/RECYCLING2040024.
H. El Bhilat, K. El Had, H. Salmi, y A. Hachim, “Thermo-mechanical characterization of post-consumer recycled high impact polystyrene from disposable cups: Influence of the number of processing cycles”, Journal of Computational and Applied Research in Mechanical Engineering, vol. 10, no 2, pp. 427–436, 2021, doi: 10.22061/jcarme.2019.5187.1643.
H. El Bhilat, H. Mabchour, H. Salmi, A. Hachim, y K. El Had, “EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF MULTI-RECYCLING ON THE FRACTURE BEHAVIOR OF POST CONSUMER HIGH IMPACT POLYSTYRENE FROM DISPOSABLE CUPS EVALUATED BY THE J-INTEGRAL APPROACH.”, IIUM Engineering Journal, vol. 23, no 1, pp. 268–281, ene. 2022, doi: 10.31436/IIUMEJ.V23I1.1693.
E. W. Hanitio, N. R. Lutfhyansyah, B. M. Efendi, Y. Mardiyati, y S. Steven, “From Electronic Waste to 3D-Printed Product, How Multiple Recycling Affects High-Impact Polystyrene (HIPS) Filament Performances”, Materials 2023, Vol. 16, Page 3412, vol. 16, no 9, p. 3412, abr. 2023, doi: 10.3390/MA16093412.
L. M. Garcia Gonçalves, T. R. Rigolin, B. M. Frenhe, y S. H. Prado Bettini, “On the recycling of a biodegradable polymer: Multiple extrusion of poly (Lactic acid)”, Materials Research, vol. 23, no 5, 2020, doi: 10.1590/1980-5373-MR-2020-0274.
A. H. Bahremand, S. M. Mousavi, A. Ahmadpour, y M. Taherian, “Biodegradable blend membranes of poly (butylene succinate)/cellulose acetate/dextran: Preparation, characterization and performance”, Carbohydr Polym, vol. 173, pp. 497–507, 2017, doi: 10.1016/j.carbpol.2017.06.010.
J. Shojaeiarani, D. S. Bajwa, C. Rehovsky, S. G. Bajwa, y G. Vahidi, “Deterioration in the physico-mechanical and thermal properties of biopolymers due to reprocessing”, Polymers (Basel), vol. 11, no 1, 2019, doi: 10.3390/polym11010058.
E. Brepohl, M. Paschetag, y S. Scholl, “Monomer Recycling as Complementary Technology in a Circular Economy”, Chemie Ingenieur Technik, vol. 95, no 8, pp. 1282–1289, ago. 2023, doi: 10.1002/CITE.202300052.
E. Franco-Urquiza, H. E. Ferrando, D. P. Luis, y M. L. I. Maspoch, “Mechanical recycling of plastic wastes. Case of study: High impact polystyrene for manufacturing TV components shelf | Reciclado mecánico de residuos plásticos. Caso práctico: Poliestireno de alto impacto para la fabricación de componentes de TV”, Afinidad, vol. 73, no 575, pp. 227–236, 2016.
F. da S. M. Teixeira, A. C. de C. Peres, y E. B. A. V. Pacheco, “Mechanical recycling of acrylonitrile-butadiene-styrene copolymer and high impact polystyrene from waste electrical and electronic equipment to comply with the circular economy”, Frontiers in Sustainability, vol. 4, p. 1203457, jun. 2023, doi: 10.3389/FRSUS.2023.1203457/BIBTEX.
B. A. M. e Silva, D. dos S. Aguiar, I. de O. Mota, C. F. Bandeira, y S. R. Montoro, “Avaliação das características reológicas de compósitos de matriz termoplástica de HIPS reforçados com biomassa lignocelulósica proveniente da casca do açaí”, Congresso Brasileiro de Ciências e Saberes Multidisciplinares, no 2, dic. 2023, Accedido: 3 de febrero de 2024. [En línea]. Disponible en: https://conferenciasunifoa.emnuvens.com.br/tc/article/view/1061
D. Lewicka et al., “Circular Economy in the European Union: Organisational Practice and Future Directions in Germany, Poland and Spain”, Circular Economy in the European Union: Organisational Practice and Future Directions in Germany, Poland and Spain, pp. 1–267, dic. 2023, doi: 10.4324/9781003411239/CIRCULAR-ECONOMY-EUROPEAN-UNION-DAGMARA-LEWICKA-JOANNA-ZAR.
K. Samaniego-Aguilar et al., “Valorization of Agricultural Waste Lignocellulosic Fibers for Poly(3-Hydroxybutyrate-Co-Valerate)-Based Composites in Short Shelf-Life Applications”, Polymers (Basel), vol. 15, no 23, 2023, doi: 10.3390/polym15234507.
A. Adeniyi, S. Abdulkareem, M. Ndagi, M. Abdulkareem, y J. Ighalo, “Effect of fiber content on the physical and mechanical properties of plantain fiber reinforced polystyrene composite”, Advances in Materials and Processing Technologies, vol. 8, no 4, pp. 4244–4256, oct. 2022, doi: 10.1080/2374068X.2022.2054583.
S. Sharma, S. R. Asolekar, V. Kumar Thakur, y P. Asokan, “Valorization of cellulosic fiber derived from waste biomass of constructed wetland as a potential reinforcement in polymeric composites: A technological approach to achieve circular economy”, J Environ Manage, vol. 340, p. 117850, 2023, doi: 10.1016/j.jenvman.2023.117850.
N. V. Santos y D. C. T. Cardoso, “3D printing of vegetable yarn-reinforced polymer components”, J Clean Prod, vol. 415, p. 137870, ago. 2023, doi: 10.1016/J.JCLEPRO.2023.137870.
A. V. García Barrera, Diseño innovador para la obtención y caracterización de un bioplástico utilizando como materia base la fibra de la cáscara de coco y papaya. ITCA Editores, 2020. [En línea]. Disponible en: http://redicces.org.sv/jspui/handle/10972/4209
J. Eduardo Mejia-Ballesteros, L. Rodier, R. Filomeno, H. Savastano, J. Fiorelli, y M. Frias Rojas, “Effect of activated coal waste and treated Pinus fibers on the physico-mechanical properties and durability of fibercement composites”, Constr Build Mater, vol. 392, 2023, doi: 10.1016/j.conbuildmat.2023.132038.
K. Cristina Coelho de Carvalho Benini, H. Jacobus Cornelis Voorwald, y M. Odila Hilário Cioffi, “Manufacturing and Characterization of High Impact Polystyrene (HIPS) Reinforced with Treated Sugarcane Bagasse”, Journal of Research Updates in Polymer Science, vol. 6, no 1, pp. 2–11, abr. 2017, doi: 10.6000/1929-5995.2017.06.01.1.
E. C. Silva et al., “Ecocomposites Based on High-Impact Polystyrene (HIPS) and Amazon Açaí (Euterpe oleracea) Fibers: Influence of NaOH Treatment on Its Structural, Thermal, and Mechanical Properties”, Mechanics of Composite Materials, vol. 59, no 1, pp. 147–158, 2023, doi: 10.1007/s11029-023-10087-w.
G. Brandão Pereira et al., “Featuring High Impact Polystyrene Composites Strengthened with Green Coconut Fiber Developed for Automotive Industry Application”, Journal of Research Updates in Polymer Science, vol. 6, no 1, pp. 17–20, abr. 2017, doi: 10.6000/1929-5995.2017.06.01.3.
Silva y J. R. S. da, “Obtenção e caracterização de um material compósito produzido com resíduos da castanha-do-brasil e poliestireno de alto impacto”, sep. 2019, Accedido: 4 de febrero de 2024. [En línea]. Disponible en: https://tede.ufam.edu.br/handle/tede/7496
D. Kusić, U. Božič, M. Monzón, R. Paz, y P. Bordón, “Thermal and mechanical characterization of banana fiber reinforced composites for its application in injection molding”, Materials, vol. 13, no 16, 2020, doi: 10.3390/MA13163581.
Vegetable Fiber Composites and their Technological Applications. 2023. [En línea]. Disponible en: https://recursosdigitales.usb.edu.co:2160/book/10.1007/978-981-16-1854-3
S. K. Bhaskaran, K. Boga, R. Arukula, y S. K. Gaddam, “Natural fibre reinforced vegetable-oil based polyurethane composites: a review”, Journal of Polymer Research, vol. 30, no 8, 2023, doi: 10.1007/s10965-023-03703-9.
A. D. Gudayu, L. Steuernagel, D. Meiners, y A. M. Woubou, “Sisal fiber reinforced polyethylene terephthalate composites; Fabrication, characterization and possible application”, Polymers and Polymer Composites, vol. 30, may 2022, doi: 10.1177/09673911221103317/ASSET/IMAGES/LARGE/10.1177_09673911221103317-FIG12.JPEG.
Y. Chen, C. Zang, y X. Zhu, “Toughening and Strengthening Modification of Flame-Retardant High-Impact Polystyrene”, en Journal of Physics: Conference Series, 2023. doi: 10.1088/1742-6596/2468/1/012098.
M. Touil, A. Lachheb, R. Saadani, M. R. Kabiri, y M. Rahmoune, “A new experimental strategy assessing the optimal thermo-mechanical properties of plaster composites containing Alfa fibers”, Energy Build, vol. 262, p. 111984, 2022, doi: 10.1016/j.enbuild.2022.111984.
D. Kusi´ckusi´c, U. Božič, M. Monzón, R. Paz, y P. Bordón, “materials Thermal and Mechanical Characterization of Banana Fiber Reinforced Composites for Its Application in Injection Molding”, doi: 10.3390/ma13163581.
L. Zhao et al., “Properties of Low-Exothermic polymer grouting materials and its application on highway”, Constr Build Mater, vol. 408, p. 133771, dic. 2023, doi: 10.1016/J.CONBUILDMAT.2023.133771.
M. A. Acquavia, R. Pascale, G. Martelli, M. Bondoni, y G. Bianco, “Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector”, Polymers 2021, Vol. 13, Page 158, vol. 13, no 1, p. 158, ene. 2021, doi: 10.3390/POLYM13010158.
B. Corona, L. Shen, D. Reike, J. Rosales Carreón, y E. Worrell, “Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics”, Resour Conserv Recycl, vol. 151, dic. 2019, doi: 10.1016/j.resconrec.2019.104498.
D. Marin, L. M. Chiarello, V. R. Wiggers, A. D. de Oliveira, y V. Botton, “Effect of coupling agents on properties of vegetable fiber polymeric composites: review”, Polímeros, vol. 33, no 1, p. e20230012, jun. 2023, doi: 10.1590/0104-1428.20220118.
F. J. Castillo-Díaz, L. J. Belmonte-Ureña, A. Batlles-delaFuente, y F. Camacho-Ferre, “Impact of the new measures related to the circular economy on the management of agrochemical packaging in Spanish agriculture and the use of biodegradable plastics”, Environ Sci Eur, vol. 34, no 1, pp. 1–17, dic. 2022, doi: 10.1186/S12302-022-00671-7/TABLES/6.
T. C. Vulpes y C. G. Opran, “Risk-Based Decision System for Reducing Random Events in the Plastics Industry”, Macromol Symp, vol. 404, no 1, p. 2100489, ago. 2022, doi: 10.1002/MASY.202100489.
P. R. Jadhao, A. Preetam, R. Panda, S. Mishra, K. K. Pant, y K. D. P. Nigam, Recovery and conversion of e-waste plastic via physical and chemical routes, vol. 1. 2023.
J. Duch Guillot, “Economía circular: definición, importancia y beneficios”, Parlamento Europeo. Accedido: 12 de octubre de 2023. [En línea]. Disponible en: https://www.europarl.europa.eu/news/es/headlines/economy/20151201STO05603/economia-circular-definicion-importancia-y-beneficios
S. Musivand, M. P. Bracciale, M. Damizia, P. De Filippis, y B. de Caprariis, “Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis”, Energies (Basel), vol. 16, no 13, p. 4917, jul. 2023, doi: 10.3390/EN16134917/S1.
G. Urgoitia, M. T. Herrero, y R. SanMartin, “Metal-Catalyzed, Photo-Assisted Selective Transformation of Tertiary Alkylbenzenes and Polystyrenes into Carbonyl Compounds”, ChemSusChem, vol. 15, no 17, p. e202200940, sep. 2022, doi: 10.1002/CSSC.202200940.
B. T. N. C. Andrade, A. C. D. S. Bezerra, y C. R. Calado, “Adding value to polystyrene waste by chemically transforming it into sulfonated polystyrene”, Matéria (Rio de Janeiro), vol. 24, no 3, p. e12417, sep. 2019, doi: 10.1590/S1517-707620190003.0732.
Z. Xu et al., “Cascade degradation and upcycling of polystyrene waste to high-value chemicals”, Proc Natl Acad Sci U S A, vol. 119, no 34, p. e2203346119, ago. 2022, doi: 10.1073/PNAS.2203346119/SUPPL_FILE/PNAS.2203346119.SAPP.PDF.
J. Huang, X. Cheng, H. Meng, G. Pan, S. Wang, y D. Wang, “Density functional theory study on the catalytic degradation mechanism of polystyrene”, AIP Adv, vol. 10, no 8, p. 85004, ago. 2020, doi: 10.1063/5.0013211/990044.
R. Li et al., “Polystyrene Waste Thermochemical Hydrogenation to Ethylbenzene by a N-Bridged Co, Ni Dual-Atom Catalyst”, J Am Chem Soc, vol. 145, no 29, pp. 16218–16227, jul. 2023, doi: 10.1021/JACS.3C05184/SUPPL_FILE/JA3C05184_SI_001.PDF.
Z. Kara Ali, J.-M. Pin, y C. Pellerin, “ Quantification of p -Cymene and Heptane in a Solvent-Based Green Process of Polystyrene Recycling ”, Applied Spectroscopy Practica, vol. 1, no 1, sep. 2023, doi: 10.1177/27551857231179982.
K. V Khopade, S. H. Chikkali, y N. Barsu, “Metal-catalyzed plastic depolymerization”, doi: 10.1016/j.xcrp.2023.101341.
M. Biron, “The Plastics Industry: Economic Overview”, Thermoplastics and Thermoplastic Composites, pp. 31–132, ene. 2018, doi: 10.1016/B978-0-08-102501-7.00002-3.
S. Thakur, A. Verma, B. Sharma, J. Chaudhary, S. Tamulevicius, y V. K. Thakur, “Recent developments in recycling of polystyrene based plastics”, Curr Opin Green Sustain Chem, vol. 13, pp. 32–38, oct. 2018, doi: 10.1016/J.COGSC.2018.03.011.
B. Ciuffi, L. Rosi, E. Miliotti, G. Lotti, A. M. Rizzo, y D. Chiaramonti, “Batch Hydrothermal liquefaction of end-of-life plastic and oil characterization”, E3S Web of Conferences, vol. 238, p. 08004, feb. 2021, doi: 10.1051/E3SCONF/202123808004.
J. Baena-González, A. Santamaria-Echart, J. L. Aguirre, y S. González, “Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil”, Waste Management, vol. 118, pp. 139–149, dic. 2020, doi: 10.1016/J.WASMAN.2020.08.035.
A. Thi -Kim Tran, N. Thi-Tuyet Hoang, y P. Thao Nguyen, “Optimizing sulfonation process of polystyrene waste for hardness and heavy metal removal”, 2023, doi: 10.1016/j.cscee.2023.100396.
C. Feng, Q. Wang, F. Liu, y B. Zhang, “Synthesis and application of novel benzophenone photoinitiators”, jun. 2023, doi: 10.21203/RS.3.RS-3026798/V1.
W. W. Sułkowski et al., “Chemical Recycling of Polystyrene. Sulfonation with Different Sulfonation Agents”, Molecular Crystals and Liquid Crystals, vol. 523, pp. 218/[790]-227/[799], 2010, doi: 10.1080/15421401003720140.
N. E. Munyaneza et al., “A Generic Platform for Upcycling Polystyrene to Aryl Ketones and Organosulfur Compounds”, Angewandte Chemie International Edition, vol. 62, no 36, p. e202307042, sep. 2023, doi: 10.1002/ANIE.202307042.
D. I. Collias, M. I. James, y J. M. Layman, “Introduction - Circular Economy of Polymers and Recycling Technologies”, ACS Symposium Series, vol. 1391, pp. 1–21, 2021, doi: 10.1021/BK-2021-1391.CH001/ASSET/IMAGES/LARGE/BK-2021-00144M_G013.JPEG.
R. Shanker et al., “Plastic waste recycling: existing Indian scenario and future opportunities”, International Journal of Environmental Science and Technology, vol. 20, no 5, pp. 5895–5912, may 2023, doi: 10.1007/S13762-022-04079-X/TABLES/4.
T. Thiounn y R. C. Smith, “Advances and approaches for chemical recycling of plastic waste”, Journal of Polymer Science, vol. 58, no 10, pp. 1347–1364, may 2020, doi: 10.1002/POL.20190261.
C. Marquez, C. Martin, N. Linares, y D. De Vos, “Catalytic routes towards polystyrene recycling”, Mater Horiz, vol. 10, no 5, pp. 1625–1640, 2023, doi: 10.1039/d2mh01215d. “Quantum Mechanical Study on the Effect of Solvent in the Properties of Benzophenone”. Accedido: 24 de abril de 2024. [En línea]. Disponible en: https://www.longdom.org/open-access/quantum-mechanical-study-on-the-effect-of-solvent-in-the-properties-ofbenzophenone-2329-6798-1000259.pdf
P. R. Jadhao, A. Preetam, R. Panda, S. Mishra, K. K. Pant, y K. D. P. Nigam, Recovery and conversion of e-waste plastic via physical and chemical routes, vol. 1. 2023.
C. Shan, A. H. Pandyaswargo, y H. Onoda, “Environmental Impact of Plastic Recycling in Terms of Energy Consumption: A Comparison of Japan’s Mechanical and Chemical Recycling Technologies”, Energies (Basel), vol. 16, no 5, 2023, doi: 10.3390/en16052199.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.none.fl_str_mv 37 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de San Buenaventura - Cartagena
dc.publisher.branch.none.fl_str_mv Cartagena
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
dc.publisher.place.none.fl_str_mv Cartagena
dc.publisher.program.none.fl_str_mv Ingeniería Química
publisher.none.fl_str_mv Universidad de San Buenaventura - Cartagena
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/f502e440-5d74-4f87-aa0a-e9d5b599a7d2/download
https://bibliotecadigital.usb.edu.co/bitstreams/79394b6f-12e3-4e06-a682-da1c87e05aad/download
https://bibliotecadigital.usb.edu.co/bitstreams/a5a88781-5944-4b14-97a9-4be7b6eeced5/download
https://bibliotecadigital.usb.edu.co/bitstreams/58af2638-9716-4bd9-89c7-f783dbba9dcd/download
https://bibliotecadigital.usb.edu.co/bitstreams/193c2912-2c12-4a88-8a2e-83f2f7c7fbe9/download
https://bibliotecadigital.usb.edu.co/bitstreams/3713d08f-681a-4c91-aaa7-703ba8e16de4/download
https://bibliotecadigital.usb.edu.co/bitstreams/ebee8974-6c20-4ce1-b947-4b75febbfcc2/download
https://bibliotecadigital.usb.edu.co/bitstreams/b14e37b1-0ea1-44b5-9cba-6c7fe6973de6/download
bitstream.checksum.fl_str_mv 49afabb897b3dc379ddfbc41affb3c00
bca3fdcf357049b7c262602cf2a8c9de
959608d4b24d20ffe3519f0921023015
aefae7d2c848cf71ce9bcfa7687f41c2
3b6ce8e9e36c89875e8cf39962fe8920
af5ca55cd5a4804292323504145d56ed
320ec0b40786d8802bf197a592c7c2f8
ce8fd7f912f132cbeb263b9ddc893467
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1837099289645416448
spelling Terán Acuña, Nataliaded36366-ecf4-4e00-8a4a-f9a7b848787e-1Ordosgoitia Novoa, Daniel2452aa98-6e1e-4201-bdeb-3e201c0c1354-1Pájaro Contreras, Estefany9b4f9792-8224-4030-93e2-154bc179fc1e-1Fusaro, Carminevirtual::1401-1Grupo de Investigación en Ciencias de las Ingenierías (GICI) (Cartagena)2024-10-31T21:31:03Z2024-10-31T21:31:03Z2024La economía circular desempeña un papel importante en la industria química, ya que busca desarrollar y mejorar los procesos desde una perspectiva de cuidado del medio ambiente. En este trabajo se realizó una vigilancia tecnológica sobre las técnicas y procesos que permiten la implementación de la economía circular en la producción de poliestireno de alto impacto (HIPS) con el fin de mitigar los efectos perjudiciales de los desechos plásticos generados en el medio ambiente. Para ello, se recurrió principalmente a la búsqueda de información en bases de datos especializadas, incluyendo diferentes tipos de documentos de investigación, como artículos, tesis, reseñas y libros. Se ha observado que, en los últimos cinco años, se ha producido un aumento en el desarrollo de procesos orientados a la reducción del impacto ambiental que generan los plásticos. Entre los procesos fisicoquímicos que aportan valor al producto final se encuentran la licuefacción hidrotermal, la pirolisis, la reacción catalizada por vanadio, las reacciones de sulfonación, así como la degradación que puede llevarse a cabo mediante benceno, catalizadores alcalinos y catalizadores ácidos. También se han encontrado la hidrogenación termoquímica y la despolimerización y polimerización basadas en solventes; estos procesos de transformación aportan beneficios, tanto para su transformación como para su reutilización. Por lo tanto, son procesos que cumplen con los principios de la economía circular.Circular economy plays an important role in the chemical industry, as it seeks to develop and improve processes from an environmental care perspective. In this work, a technology watch was conducted on the techniques and processes that allow the implementation of the circular economy in the production of high impact polystyrene (HIPS) in order to mitigate the harmful effects of plastic waste generated in the environment. For this purpose, we mainly resorted to searching for information in specialized databases, including different types of research papers, such as articles, theses, reviews and books. It has been observed that, in the last five years, there has been an increase in the development of processes aimed at reducing the environmental impact generated by plastics. Among the physicochemical processes that add value to the final product are hydrothermal liquefaction, pyrolysis, vanadium catalyzed reaction, sulfonation reactions, as well as degradation that can be carried out by means of benzene, alkaline catalysts and acid catalysts. Thermochemical hydrogenation and solvent-based depolymerization and polymerization have also been found; these transformation processes provide benefits, both for transformation and reuse. Therefore, they are processes that comply with the principles of the circular economy.PregradoIngeniero QuímicoSedes::Cartagena::Línea de investigación ingeniería de procesos37 páginasapplication/pdfOrdosgoitia Novoa, D. (2024). El papel de la economía circular en la reducción del impacto ambiental. [Trabajo de grado de Ingeniería Química]. Universidad de San Buenaventura, Cartagena, Colombia.https://hdl.handle.net/10819/22655spaUniversidad de San Buenaventura - CartagenaCartagenaFacultad de IngenieríasCartagenaIngeniería QuímicaJ. Kirchherr, D. Reike, y M. Hekkert, “Conceptualizing the circular economy: An analysis of 114 definitions”, 2017. doi: 10.1016/j.resconrec.2017.09.005.I. Belda Heriz, “Economia circular: un nuevo modelo de produccion y consumo sostenible”, p. 229, 2018, Accedido: 28 de septiembre de 2023. [En línea]. Disponible en: https://elibro.net/es/lc/areandina/titulos/51998L. Fu y W. R. Gutekunst, “Mixing Physical Organic Chemistry with Monomer Design Gives New Recyclable Materials”, Chem, vol. 6, no 7, pp. 1510–1512, jul. 2020, doi: 10.1016/j.chempr.2020.06.026.V. P. Sandoval, C. Jaca, y M. Ormazabal, “Economía circular”, Memoria Investigaciones en Ingeniería, no 15, pp. 85–95, 2017, [En línea]. Disponible en: http://revistas.um.edu.uy/index.php/ingenieria/article/view/308S. T. Ghaly, H. Noby, J. I. Hayashi, y A. H. El-Shazly, “Various waste polystyrene for useful membrane fabrication: Comparative experimental study”, 2023, doi: 10.1016/j.matpr.2023.07.368.M. Shamsuyeva y H.-J. Endres, “Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market”, 2021, doi: 10.1016/j.jcomc.2021.100168.“The Organisation for Economic Co-operation and Development - OECD”. Accedido: 28 de agosto de 2023. [En línea]. Disponible en: https://www.oecd.org/M. Ertz, W. Addar, C. Ouerghemmi, y M. Takaffoli, “Overview of factors influencing consumer engagement with plastic recycling”, Wiley Interdiscip Rev Energy Environ, vol. 12, no 6, 2023, doi: 10.1002/wene.493.“Plastics use by polymer - projections | Global Plastics Outlook | OECD iLibrary”. Accedido: 30 de marzo de 2024. [En línea]. Disponible en: https://www.oecd-ilibrary.org/environment/data/global-plastics-outlook/plastics-use-by-polymer-projections_b9bae4d1-en?parentId=http%3A%2F%2Finstance.metastore.ingenta.com%2Fcontent%2Fthematicgrouping%2Fc0821f81-en[M. Czepiel, M. Bańkosz, y A. Sobczak-Kupiec, “Advanced Injection Molding Methods: Review”, Materials, vol. 16, no 17, 2023, doi: 10.3390/ma16175802.J. C. Capricho, K. Prasad, N. Hameed, M. Nikzad, y N. Salim, “Upcycling Polystyrene”, Polymers 2022, Vol. 14, Page 5010, vol. 14, no 22, p. 5010, nov. 2022, doi: 10.3390/POLYM14225010.R. A. Rojas-Luna, L. Oquendo-Ruiz, C. A. García-Alzate, V. A. Arana, R. García-Alzate, y J. Trilleras, “Identification, Abundance, and Distribution of Microplastics in Surface Water Collected from Luruaco Lake, Low Basin Magdalena River, Colombia”, Water 2023, Vol. 15, Page 344, vol. 15, no 2, p. 344, ene. 2023, doi: 10.3390/W15020344.G. Rozo Doncel, “Estado del Arte de la Economía Circular en Colombia”, 2019, Accedido: 12 de octubre de 2023. [En línea]. Disponible en: https://repository.ucc.edu.co/items/c4d66563-abb2-4b7c-a196-c98a42512669N. Delangiz, S. Aliyar, N. Pashapoor, K. Nobaharan, B. Asgari Lajayer, y S. Rodríguez-Couto, “Can polymer-degrading microorganisms solve the bottleneck of plastics’ environmental challenges?”, Chemosphere, vol. 294, p. 133709, 2022, doi: 10.1016/j.chemosphere.2022.133709.M. Chanda, “Chemical aspects of polymer recycling”, Advanced Industrial and Engineering Polymer Research, vol. 4, no 3, pp. 133–150, 2021, doi: 10.1016/j.aiepr.2021.06.002.A. Kulakovskaya, M. Wiprächtiger, C. Knoeri, y C. R. Bening, “Integrated environmental-economic circular economy assessment: Application to the case of expanded polystyrene”, Resour Conserv Recycl, vol. 197, 2023, doi: 10.1016/j.resconrec.2023.107069.J. Hidalgo-Crespo, F. X. Jervis, C. M. Moreira, M. Soto, y J. L. Amaya, “Introduction of the circular economy to expanded polystyrene household waste: A case study from an Ecuadorian plastic manufacturer”, en Procedia CIRP, 2020, pp. 49–54. doi: 10.1016/j.procir.2020.01.089.R. Banu y G. Sharmila, “Review on food waste valorisation for bioplastic production towards a circular economy: sustainable approaches and biodegradability assessment”, 2023, doi: 10.1039/d3se00500c.L. D. Vera-Acevedo, E. Raufllet, L. D. Vera-Acevedo, y E. Raufllet, “Análisis de la Estrategia Nacional de Economía Circular de Colombia a partir de dos modelos”, Estudios Políticos, no 64, pp. 27–52, may 2022, doi: 10.17533/UDEA.ESPO.N64A02.B. C. Rojas y E. Vivares, “COLOMBIA AND OECD: How Institutional Imperialism Shapes the Global Order and National Development”, The Oxford Handbook of Economic Imperialism, pp. 567–588, ene. 2022, doi: 10.1093/OXFORDHB/9780197527085.013.42.Ministerio de Ambiente y Desarrollo Sostenible, “Ley 2111 de 2021”, 2021, Accedido: 12 de octubre de 2023. [En línea]. Disponible en: https://www.minambiente.gov.co/wp-content/uploads/2021/06/ley-2111-2021.pdf“Decreto 1630 de 2021 -”. Accedido: 1 de julio de 2024. [En línea]. Disponible en: https://www.minambiente.gov.co/documento-normativa/decreto-1630-de-2021/A. Saravanan, P. Thamarai, P. Senthil Kumar, y G. Rangasamy, “Recent advances in polymer composite, extraction, and their application for wastewater treatment: A review”, 2022, doi: 10.1016/j.chemosphere.2022.136368.C. Blümel y A. Schniedermann, “Studying review articles in scientometrics and beyond: a research agenda”, Scientometrics, vol. 124, no 1, pp. 711–728, jul. 2020, doi: 10.1007/S11192-020-03431-7/METRICS.M. K. Lazarides, G. S. Georgiadis, y N. Papanas, “Do’s and Don’ts for a Good Reviewer of Scientific Papers: A Beginner’s Brief Decalogue”, https://recursosdigitales.usb.edu.co:2082/10.1177/1534734620924349, vol. 19, no 3, pp. 227–229, jun. 2020, doi: 10.1177/1534734620924349.J. I. Seeman y M. C. House, “Peer review experiences of academic chemists in Ph.D. granting institutions in the United States”, Account Res, vol. 30, no 2, pp. 63–76, feb. 2023, doi: 10.1080/08989621.2021.1962714.M. Bahl, “A Step-by-Step Guide to Writing a Scientific Review Article”, J Breast Imaging, pp. 480–485, 2023, doi: 10.1093/jbi/wbad028.J. Hidalgo-Crespo, C. M. Moreira, F. X. Jervis, M. Soto, J. L. Amaya, y L. Banguera, “Circular economy of expanded polystyrene container production: Environmental benefits of household waste recycling considering renewable energies”, pp. 13–17, doi: 10.1016/j.egyr.2022.01.071.S. C. H. Rives, S. Bautista, Z. N. Correa, y R. I. Ventura, “Situación actual de los envases utilizados para la conservación postcosecha de productos hortofrutícolas”, Revista Iberoamericana de Tecnología Postcosecha, vol. 21, no 1, 2020.C. G. Otoni, H. M. C. Azeredo, B. D. Mattos, M. Beaumont, D. S. Correa, y O. J. Rojas, “The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues”, Advanced Materials, vol. 33, no 43, 2021, doi: 10.1002/adma.202102520.M. Waqas, A. S. Nizami, A. S. Aburiazaiza, M. A. Barakat, I. M. I. Ismail, y M. I. Rashid, “Optimization of food waste compost with the use of biochar”, J Environ Manage, vol. 216, pp. 70–81, 2018, doi: 10.1016/j.jenvman.2017.06.015.S. Adamczyk et al., “Polystyrene nanoparticles induce concerted response of plant defense mechanisms in plant cells”, Scientific Reports 2023 13:1, vol. 13, no 1, pp. 1–9, dic. 2023, doi: 10.1038/S41598-023-50104-5.I. E. Gilani, S. Sayadi, N. Zouari, y M. A. Al-Ghouti, “Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications”, Bioresour Technol Rep, vol. 24, 2023, doi: 10.1016/j.biteb.2023.101606.J. Lee y S. Jeong, “Approach to an answer to ‘How dangerous microplastics are to the human body’: A systematic review of the quantification of MPs and simultaneously exposed chemicals”, J Hazard Mater, vol. 460, 2023, doi: 10.1016/j.jhazmat.2023.132404.K. Rani y K. Senthil, “Potential of industrial waste and plastic nanomaterials as a danger or a way to create a sustainable environment: a critical review”, Nanotechnology for Environmental Engineering, vol. 8, no 4, pp. 879–890, 2023, doi: 10.1007/s41204-023-00330-z.F. Belblidia, M. H. Gabr, J. F. T. Pittman, y A. Rajkumar, “Recycling high impact polystyrene: Material properties and reprocessing in a circular economy business model”, Progress in Rubber, Plastics and Recycling Technology, 2023, doi: 10.1177/14777606231168653.J. M. Millican y S. Agarwal, “Plastic Pollution: A Material Problem?”, Macromolecules, vol. 54, no 10, pp. 4455–4469, may 2021, doi: 10.1021/ACS.MACROMOL.0C02814/ASSET/IMAGES/MEDIUM/MA0C02814_0014.GIF.K. Jaidev, M. Biswal, S. Mohanty, y S. K. Nayak, “Sustainable Waste Management of Engineering Plastics Generated from E-Waste: A Critical Evaluation of Mechanical, Thermal and Morphological Properties”, J Polym Environ, vol. 29, no 6, pp. 1763–1776, jun. 2021, doi: 10.1007/S10924-020-01998-Z/TABLES/4.M. Biron, “Recycling Plastics: Advantages and Limitations of Use”, A Practical Guide to Plastics Sustainability, pp. 411–467, ene. 2020, doi: 10.1016/B978-0-12-821539-5.00009-4.J. Samaniego, C. Salina, J. A. Ruette, J. P. Sanguinetti, y M. L. Allen, “Trazabilidad y contabilidad del plástico mediante el sistema A.P.A.”, jun. 2021, Accedido: 2 de agosto de 2023. [En línea]. Disponible en: https://repositorio.cepal.org/handle/11362/46950J. A. Rodríguez-Liébana et al., “Morpho-structural and thermo-mechanical characterization of recycled polypropylene and polystyrene from mixed post-consumer plastic waste”, J Environ Chem Eng, vol. 10, no 5, p. 108332, 2022, doi: 10.1016/j.jece.2022.108332.M. E. Grigore, “Methods of recycling, properties and applications of recycled thermoplastic polymers”, Recycling, vol. 2, no 4, 2017, doi: 10.3390/RECYCLING2040024.H. El Bhilat, K. El Had, H. Salmi, y A. Hachim, “Thermo-mechanical characterization of post-consumer recycled high impact polystyrene from disposable cups: Influence of the number of processing cycles”, Journal of Computational and Applied Research in Mechanical Engineering, vol. 10, no 2, pp. 427–436, 2021, doi: 10.22061/jcarme.2019.5187.1643.H. El Bhilat, H. Mabchour, H. Salmi, A. Hachim, y K. El Had, “EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF MULTI-RECYCLING ON THE FRACTURE BEHAVIOR OF POST CONSUMER HIGH IMPACT POLYSTYRENE FROM DISPOSABLE CUPS EVALUATED BY THE J-INTEGRAL APPROACH.”, IIUM Engineering Journal, vol. 23, no 1, pp. 268–281, ene. 2022, doi: 10.31436/IIUMEJ.V23I1.1693.E. W. Hanitio, N. R. Lutfhyansyah, B. M. Efendi, Y. Mardiyati, y S. Steven, “From Electronic Waste to 3D-Printed Product, How Multiple Recycling Affects High-Impact Polystyrene (HIPS) Filament Performances”, Materials 2023, Vol. 16, Page 3412, vol. 16, no 9, p. 3412, abr. 2023, doi: 10.3390/MA16093412.L. M. Garcia Gonçalves, T. R. Rigolin, B. M. Frenhe, y S. H. Prado Bettini, “On the recycling of a biodegradable polymer: Multiple extrusion of poly (Lactic acid)”, Materials Research, vol. 23, no 5, 2020, doi: 10.1590/1980-5373-MR-2020-0274.A. H. Bahremand, S. M. Mousavi, A. Ahmadpour, y M. Taherian, “Biodegradable blend membranes of poly (butylene succinate)/cellulose acetate/dextran: Preparation, characterization and performance”, Carbohydr Polym, vol. 173, pp. 497–507, 2017, doi: 10.1016/j.carbpol.2017.06.010.J. Shojaeiarani, D. S. Bajwa, C. Rehovsky, S. G. Bajwa, y G. Vahidi, “Deterioration in the physico-mechanical and thermal properties of biopolymers due to reprocessing”, Polymers (Basel), vol. 11, no 1, 2019, doi: 10.3390/polym11010058.E. Brepohl, M. Paschetag, y S. Scholl, “Monomer Recycling as Complementary Technology in a Circular Economy”, Chemie Ingenieur Technik, vol. 95, no 8, pp. 1282–1289, ago. 2023, doi: 10.1002/CITE.202300052.E. Franco-Urquiza, H. E. Ferrando, D. P. Luis, y M. L. I. Maspoch, “Mechanical recycling of plastic wastes. Case of study: High impact polystyrene for manufacturing TV components shelf | Reciclado mecánico de residuos plásticos. Caso práctico: Poliestireno de alto impacto para la fabricación de componentes de TV”, Afinidad, vol. 73, no 575, pp. 227–236, 2016.F. da S. M. Teixeira, A. C. de C. Peres, y E. B. A. V. Pacheco, “Mechanical recycling of acrylonitrile-butadiene-styrene copolymer and high impact polystyrene from waste electrical and electronic equipment to comply with the circular economy”, Frontiers in Sustainability, vol. 4, p. 1203457, jun. 2023, doi: 10.3389/FRSUS.2023.1203457/BIBTEX.B. A. M. e Silva, D. dos S. Aguiar, I. de O. Mota, C. F. Bandeira, y S. R. Montoro, “Avaliação das características reológicas de compósitos de matriz termoplástica de HIPS reforçados com biomassa lignocelulósica proveniente da casca do açaí”, Congresso Brasileiro de Ciências e Saberes Multidisciplinares, no 2, dic. 2023, Accedido: 3 de febrero de 2024. [En línea]. Disponible en: https://conferenciasunifoa.emnuvens.com.br/tc/article/view/1061D. Lewicka et al., “Circular Economy in the European Union: Organisational Practice and Future Directions in Germany, Poland and Spain”, Circular Economy in the European Union: Organisational Practice and Future Directions in Germany, Poland and Spain, pp. 1–267, dic. 2023, doi: 10.4324/9781003411239/CIRCULAR-ECONOMY-EUROPEAN-UNION-DAGMARA-LEWICKA-JOANNA-ZAR.K. Samaniego-Aguilar et al., “Valorization of Agricultural Waste Lignocellulosic Fibers for Poly(3-Hydroxybutyrate-Co-Valerate)-Based Composites in Short Shelf-Life Applications”, Polymers (Basel), vol. 15, no 23, 2023, doi: 10.3390/polym15234507.A. Adeniyi, S. Abdulkareem, M. Ndagi, M. Abdulkareem, y J. Ighalo, “Effect of fiber content on the physical and mechanical properties of plantain fiber reinforced polystyrene composite”, Advances in Materials and Processing Technologies, vol. 8, no 4, pp. 4244–4256, oct. 2022, doi: 10.1080/2374068X.2022.2054583.S. Sharma, S. R. Asolekar, V. Kumar Thakur, y P. Asokan, “Valorization of cellulosic fiber derived from waste biomass of constructed wetland as a potential reinforcement in polymeric composites: A technological approach to achieve circular economy”, J Environ Manage, vol. 340, p. 117850, 2023, doi: 10.1016/j.jenvman.2023.117850.N. V. Santos y D. C. T. Cardoso, “3D printing of vegetable yarn-reinforced polymer components”, J Clean Prod, vol. 415, p. 137870, ago. 2023, doi: 10.1016/J.JCLEPRO.2023.137870.A. V. García Barrera, Diseño innovador para la obtención y caracterización de un bioplástico utilizando como materia base la fibra de la cáscara de coco y papaya. ITCA Editores, 2020. [En línea]. Disponible en: http://redicces.org.sv/jspui/handle/10972/4209J. Eduardo Mejia-Ballesteros, L. Rodier, R. Filomeno, H. Savastano, J. Fiorelli, y M. Frias Rojas, “Effect of activated coal waste and treated Pinus fibers on the physico-mechanical properties and durability of fibercement composites”, Constr Build Mater, vol. 392, 2023, doi: 10.1016/j.conbuildmat.2023.132038.K. Cristina Coelho de Carvalho Benini, H. Jacobus Cornelis Voorwald, y M. Odila Hilário Cioffi, “Manufacturing and Characterization of High Impact Polystyrene (HIPS) Reinforced with Treated Sugarcane Bagasse”, Journal of Research Updates in Polymer Science, vol. 6, no 1, pp. 2–11, abr. 2017, doi: 10.6000/1929-5995.2017.06.01.1.E. C. Silva et al., “Ecocomposites Based on High-Impact Polystyrene (HIPS) and Amazon Açaí (Euterpe oleracea) Fibers: Influence of NaOH Treatment on Its Structural, Thermal, and Mechanical Properties”, Mechanics of Composite Materials, vol. 59, no 1, pp. 147–158, 2023, doi: 10.1007/s11029-023-10087-w.G. Brandão Pereira et al., “Featuring High Impact Polystyrene Composites Strengthened with Green Coconut Fiber Developed for Automotive Industry Application”, Journal of Research Updates in Polymer Science, vol. 6, no 1, pp. 17–20, abr. 2017, doi: 10.6000/1929-5995.2017.06.01.3.Silva y J. R. S. da, “Obtenção e caracterização de um material compósito produzido com resíduos da castanha-do-brasil e poliestireno de alto impacto”, sep. 2019, Accedido: 4 de febrero de 2024. [En línea]. Disponible en: https://tede.ufam.edu.br/handle/tede/7496D. Kusić, U. Božič, M. Monzón, R. Paz, y P. Bordón, “Thermal and mechanical characterization of banana fiber reinforced composites for its application in injection molding”, Materials, vol. 13, no 16, 2020, doi: 10.3390/MA13163581.Vegetable Fiber Composites and their Technological Applications. 2023. [En línea]. Disponible en: https://recursosdigitales.usb.edu.co:2160/book/10.1007/978-981-16-1854-3S. K. Bhaskaran, K. Boga, R. Arukula, y S. K. Gaddam, “Natural fibre reinforced vegetable-oil based polyurethane composites: a review”, Journal of Polymer Research, vol. 30, no 8, 2023, doi: 10.1007/s10965-023-03703-9.A. D. Gudayu, L. Steuernagel, D. Meiners, y A. M. Woubou, “Sisal fiber reinforced polyethylene terephthalate composites; Fabrication, characterization and possible application”, Polymers and Polymer Composites, vol. 30, may 2022, doi: 10.1177/09673911221103317/ASSET/IMAGES/LARGE/10.1177_09673911221103317-FIG12.JPEG.Y. Chen, C. Zang, y X. Zhu, “Toughening and Strengthening Modification of Flame-Retardant High-Impact Polystyrene”, en Journal of Physics: Conference Series, 2023. doi: 10.1088/1742-6596/2468/1/012098.M. Touil, A. Lachheb, R. Saadani, M. R. Kabiri, y M. Rahmoune, “A new experimental strategy assessing the optimal thermo-mechanical properties of plaster composites containing Alfa fibers”, Energy Build, vol. 262, p. 111984, 2022, doi: 10.1016/j.enbuild.2022.111984.D. Kusi´ckusi´c, U. Božič, M. Monzón, R. Paz, y P. Bordón, “materials Thermal and Mechanical Characterization of Banana Fiber Reinforced Composites for Its Application in Injection Molding”, doi: 10.3390/ma13163581.L. Zhao et al., “Properties of Low-Exothermic polymer grouting materials and its application on highway”, Constr Build Mater, vol. 408, p. 133771, dic. 2023, doi: 10.1016/J.CONBUILDMAT.2023.133771.M. A. Acquavia, R. Pascale, G. Martelli, M. Bondoni, y G. Bianco, “Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector”, Polymers 2021, Vol. 13, Page 158, vol. 13, no 1, p. 158, ene. 2021, doi: 10.3390/POLYM13010158.B. Corona, L. Shen, D. Reike, J. Rosales Carreón, y E. Worrell, “Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics”, Resour Conserv Recycl, vol. 151, dic. 2019, doi: 10.1016/j.resconrec.2019.104498.D. Marin, L. M. Chiarello, V. R. Wiggers, A. D. de Oliveira, y V. Botton, “Effect of coupling agents on properties of vegetable fiber polymeric composites: review”, Polímeros, vol. 33, no 1, p. e20230012, jun. 2023, doi: 10.1590/0104-1428.20220118.F. J. Castillo-Díaz, L. J. Belmonte-Ureña, A. Batlles-delaFuente, y F. Camacho-Ferre, “Impact of the new measures related to the circular economy on the management of agrochemical packaging in Spanish agriculture and the use of biodegradable plastics”, Environ Sci Eur, vol. 34, no 1, pp. 1–17, dic. 2022, doi: 10.1186/S12302-022-00671-7/TABLES/6.T. C. Vulpes y C. G. Opran, “Risk-Based Decision System for Reducing Random Events in the Plastics Industry”, Macromol Symp, vol. 404, no 1, p. 2100489, ago. 2022, doi: 10.1002/MASY.202100489.P. R. Jadhao, A. Preetam, R. Panda, S. Mishra, K. K. Pant, y K. D. P. Nigam, Recovery and conversion of e-waste plastic via physical and chemical routes, vol. 1. 2023.J. Duch Guillot, “Economía circular: definición, importancia y beneficios”, Parlamento Europeo. Accedido: 12 de octubre de 2023. [En línea]. Disponible en: https://www.europarl.europa.eu/news/es/headlines/economy/20151201STO05603/economia-circular-definicion-importancia-y-beneficiosS. Musivand, M. P. Bracciale, M. Damizia, P. De Filippis, y B. de Caprariis, “Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis”, Energies (Basel), vol. 16, no 13, p. 4917, jul. 2023, doi: 10.3390/EN16134917/S1.G. Urgoitia, M. T. Herrero, y R. SanMartin, “Metal-Catalyzed, Photo-Assisted Selective Transformation of Tertiary Alkylbenzenes and Polystyrenes into Carbonyl Compounds”, ChemSusChem, vol. 15, no 17, p. e202200940, sep. 2022, doi: 10.1002/CSSC.202200940.B. T. N. C. Andrade, A. C. D. S. Bezerra, y C. R. Calado, “Adding value to polystyrene waste by chemically transforming it into sulfonated polystyrene”, Matéria (Rio de Janeiro), vol. 24, no 3, p. e12417, sep. 2019, doi: 10.1590/S1517-707620190003.0732.Z. Xu et al., “Cascade degradation and upcycling of polystyrene waste to high-value chemicals”, Proc Natl Acad Sci U S A, vol. 119, no 34, p. e2203346119, ago. 2022, doi: 10.1073/PNAS.2203346119/SUPPL_FILE/PNAS.2203346119.SAPP.PDF.J. Huang, X. Cheng, H. Meng, G. Pan, S. Wang, y D. Wang, “Density functional theory study on the catalytic degradation mechanism of polystyrene”, AIP Adv, vol. 10, no 8, p. 85004, ago. 2020, doi: 10.1063/5.0013211/990044.R. Li et al., “Polystyrene Waste Thermochemical Hydrogenation to Ethylbenzene by a N-Bridged Co, Ni Dual-Atom Catalyst”, J Am Chem Soc, vol. 145, no 29, pp. 16218–16227, jul. 2023, doi: 10.1021/JACS.3C05184/SUPPL_FILE/JA3C05184_SI_001.PDF.Z. Kara Ali, J.-M. Pin, y C. Pellerin, “ Quantification of p -Cymene and Heptane in a Solvent-Based Green Process of Polystyrene Recycling ”, Applied Spectroscopy Practica, vol. 1, no 1, sep. 2023, doi: 10.1177/27551857231179982.K. V Khopade, S. H. Chikkali, y N. Barsu, “Metal-catalyzed plastic depolymerization”, doi: 10.1016/j.xcrp.2023.101341.M. Biron, “The Plastics Industry: Economic Overview”, Thermoplastics and Thermoplastic Composites, pp. 31–132, ene. 2018, doi: 10.1016/B978-0-08-102501-7.00002-3.S. Thakur, A. Verma, B. Sharma, J. Chaudhary, S. Tamulevicius, y V. K. Thakur, “Recent developments in recycling of polystyrene based plastics”, Curr Opin Green Sustain Chem, vol. 13, pp. 32–38, oct. 2018, doi: 10.1016/J.COGSC.2018.03.011.B. Ciuffi, L. Rosi, E. Miliotti, G. Lotti, A. M. Rizzo, y D. Chiaramonti, “Batch Hydrothermal liquefaction of end-of-life plastic and oil characterization”, E3S Web of Conferences, vol. 238, p. 08004, feb. 2021, doi: 10.1051/E3SCONF/202123808004.J. Baena-González, A. Santamaria-Echart, J. L. Aguirre, y S. González, “Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil”, Waste Management, vol. 118, pp. 139–149, dic. 2020, doi: 10.1016/J.WASMAN.2020.08.035.A. Thi -Kim Tran, N. Thi-Tuyet Hoang, y P. Thao Nguyen, “Optimizing sulfonation process of polystyrene waste for hardness and heavy metal removal”, 2023, doi: 10.1016/j.cscee.2023.100396.C. Feng, Q. Wang, F. Liu, y B. Zhang, “Synthesis and application of novel benzophenone photoinitiators”, jun. 2023, doi: 10.21203/RS.3.RS-3026798/V1.W. W. Sułkowski et al., “Chemical Recycling of Polystyrene. Sulfonation with Different Sulfonation Agents”, Molecular Crystals and Liquid Crystals, vol. 523, pp. 218/[790]-227/[799], 2010, doi: 10.1080/15421401003720140.N. E. Munyaneza et al., “A Generic Platform for Upcycling Polystyrene to Aryl Ketones and Organosulfur Compounds”, Angewandte Chemie International Edition, vol. 62, no 36, p. e202307042, sep. 2023, doi: 10.1002/ANIE.202307042.D. I. Collias, M. I. James, y J. M. Layman, “Introduction - Circular Economy of Polymers and Recycling Technologies”, ACS Symposium Series, vol. 1391, pp. 1–21, 2021, doi: 10.1021/BK-2021-1391.CH001/ASSET/IMAGES/LARGE/BK-2021-00144M_G013.JPEG.R. Shanker et al., “Plastic waste recycling: existing Indian scenario and future opportunities”, International Journal of Environmental Science and Technology, vol. 20, no 5, pp. 5895–5912, may 2023, doi: 10.1007/S13762-022-04079-X/TABLES/4.T. Thiounn y R. C. Smith, “Advances and approaches for chemical recycling of plastic waste”, Journal of Polymer Science, vol. 58, no 10, pp. 1347–1364, may 2020, doi: 10.1002/POL.20190261.C. Marquez, C. Martin, N. Linares, y D. De Vos, “Catalytic routes towards polystyrene recycling”, Mater Horiz, vol. 10, no 5, pp. 1625–1640, 2023, doi: 10.1039/d2mh01215d. “Quantum Mechanical Study on the Effect of Solvent in the Properties of Benzophenone”. Accedido: 24 de abril de 2024. [En línea]. Disponible en: https://www.longdom.org/open-access/quantum-mechanical-study-on-the-effect-of-solvent-in-the-properties-ofbenzophenone-2329-6798-1000259.pdfP. R. Jadhao, A. Preetam, R. Panda, S. Mishra, K. K. Pant, y K. D. P. Nigam, Recovery and conversion of e-waste plastic via physical and chemical routes, vol. 1. 2023.C. Shan, A. H. Pandyaswargo, y H. Onoda, “Environmental Impact of Plastic Recycling in Terms of Energy Consumption: A Comparison of Japan’s Mechanical and Chemical Recycling Technologies”, Energies (Basel), vol. 16, no 5, 2023, doi: 10.3390/en16052199.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/660 - Ingeniería químicaTesis - ingeniería químicaEconomía circularPoliestirenoProtección del medio ambienteProcesos químicosEconomía circularPoliestireno alto impactoMedio ambienteProcesos fisicoquímicosCircular economyExpanded polystyreneEnvironmentPhysicochemical processesEl papel de la economía circular en la reducción del impacto ambiental del poliestireno alto impactoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_dcae04bcTextinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/acceptedVersionComunidad científica y académicaPublicationhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001836805virtual::1401-10000-0002-1652-6838virtual::1401-1d18e278a-f27a-4360-a3fd-9b73eb4b3110virtual::1401-1d18e278a-f27a-4360-a3fd-9b73eb4b3110virtual::1401-1TEXTEl papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdf.txtEl papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdf.txtExtracted texttext/plain78021https://bibliotecadigital.usb.edu.co/bitstreams/f502e440-5d74-4f87-aa0a-e9d5b599a7d2/download49afabb897b3dc379ddfbc41affb3c00MD55Formato_Publicación_El papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdf.txtFormato_Publicación_El papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdf.txtExtracted texttext/plain7119https://bibliotecadigital.usb.edu.co/bitstreams/79394b6f-12e3-4e06-a682-da1c87e05aad/downloadbca3fdcf357049b7c262602cf2a8c9deMD57THUMBNAILEl papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdf.jpgEl papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdf.jpgGenerated Thumbnailimage/jpeg7288https://bibliotecadigital.usb.edu.co/bitstreams/a5a88781-5944-4b14-97a9-4be7b6eeced5/download959608d4b24d20ffe3519f0921023015MD56Formato_Publicación_El papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdf.jpgFormato_Publicación_El papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdf.jpgGenerated Thumbnailimage/jpeg15222https://bibliotecadigital.usb.edu.co/bitstreams/58af2638-9716-4bd9-89c7-f783dbba9dcd/downloadaefae7d2c848cf71ce9bcfa7687f41c2MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bibliotecadigital.usb.edu.co/bitstreams/193c2912-2c12-4a88-8a2e-83f2f7c7fbe9/download3b6ce8e9e36c89875e8cf39962fe8920MD53ORIGINALEl papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdfEl papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdfapplication/pdf595359https://bibliotecadigital.usb.edu.co/bitstreams/3713d08f-681a-4c91-aaa7-703ba8e16de4/downloadaf5ca55cd5a4804292323504145d56edMD51Formato_Publicación_El papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdfFormato_Publicación_El papel de la economía circular en la reducción_Daniel Ordosgoitia N_2024.pdfapplication/pdf217003https://bibliotecadigital.usb.edu.co/bitstreams/ebee8974-6c20-4ce1-b947-4b75febbfcc2/download320ec0b40786d8802bf197a592c7c2f8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82079https://bibliotecadigital.usb.edu.co/bitstreams/b14e37b1-0ea1-44b5-9cba-6c7fe6973de6/downloadce8fd7f912f132cbeb263b9ddc893467MD5410819/22655oai:bibliotecadigital.usb.edu.co:10819/226552024-11-02 11:00:00.676http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPlJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5JVkVSU0lEQUQgREUgU0FOIEJVRU5BVkVOVFVSQSAtIENPTE9NQklBPC9oMz4KPHA+ClTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBnZW5lcmFsIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWw8L3A+PC9jZW50ZXI+CjxQIEFMSUdOPWNlbnRlcj4KUG9yIG1lZGlvIGRlIGVzdGUgZm9ybWF0byBtYW5pZmllc3RvIG1pIHZvbHVudGFkIGRlIEFVVE9SSVpBUiBhIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIFNlZGUgQm9nb3TDoSB5IDxCUj5TZWNjaW9uYWxlcyBNZWRlbGzDrW4sIENhbGkgeSBDYXJ0YWdlbmEsIGxhIGRpZnVzacOzbiBlbiB0ZXh0byBjb21wbGV0byBkZSBtYW5lcmEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gZW4gZWw8QlI+IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgZWwgZG9jdW1lbnRvIGFjYWTDqW1pY28gLSBpbnZlc3RpZ2F0aXZvIG9iamV0byBkZSBsYSBwcmVzZW50ZSA8QlI+YXV0b3JpemFjacOzbiwgY29uIGZpbmVzIGVzdHJpY3RhbWVudGUgZWR1Y2F0aXZvcywgY2llbnTDrcKtZmljb3MgeSBjdWx0dXJhbGVzLCBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgPEJSPiAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGRlcmVjaG9zPEJSPiBkZSBhdXRvci4gPEJSPiAKIApDb21vIGF1dG9yIG1hbmlmaWVzdG8gcXVlIGVsIHByZXNlbnRlIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBlcyBvcmlnaW5hbCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyA8QlI+IHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrcKtYSB5IHBvc2VvIGxhIHRpdHVsYXJpZGFkIDxCUj4gc29icmUgbGEgbWlzbWEuIExhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZGUgbmluZ3VuYSB1dGlsaXphY2nDs24gaW5kZWJpZGEgZGVsIGRvY3VtZW50byA8QlI+cG9yIHBhcnRlIGRlIHRlcmNlcm9zIHkgc2Vyw6EgZXhjbHVzaXZhbWVudGUgbWkgcmVzcG9uc2FiaWxpZGFkIGF0ZW5kZXIgcGVyc29uYWxtZW50ZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSBwdWVkYTxCUj4gcHJlc2VudGFyc2UgYSBsYSBVbml2ZXJzaWRhZC4gPEJSPgogCkF1dG9yaXpvIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGFsIGZvcm1hdG8gcXVlIDxCUj5yZXF1aWVyYSAoaW1wcmVzbywgZGlnaXRhbCwgZWxlY3Ryw7NuaWNvIG8gY3VhbHF1aWVyIG90cm8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgbyBjb24gZmluZXMgZGU8QlI+IHByZXNlcnZhY2nDs24gZGlnaXRhbC4gPEJSPgogCkVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHBvc3Rlcmlvcm1lbnRlIGxhIG9icmEsIGVuIGZvcm1hIHRvdGFsIG8gPEJSPnBhcmNpYWwsIHBvciBsbyBjdWFsIHBvZHLDqSwgZGFuZG8gYXZpc28gcG9yIGVzY3JpdG8gY29uIG5vIG1lbm9zIGRlIHVuIG1lcyBkZSBhbnRlbGFjacOzbiwgc29saWNpdGFyIHF1ZSBlbCA8QlI+ZG9jdW1lbnRvIGRlamUgZGUgZXN0YXIgZGlzcG9uaWJsZSBwYXJhIGVsIHDDumJsaWNvIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgPEJSPiBhc8Otwq0gbWlzbW8sIGN1YW5kbyBzZSByZXF1aWVyYSBwb3IgcmF6b25lcyBsZWdhbGVzIHkvbyByZWdsYXMgZGVsIGVkaXRvciBkZSB1bmEgcmV2aXN0YS4gPEJSPjwvUD4K