Cambios relacionados con el ayuno y la carga cognitiva en el EEG
El ayuno puede afectar procesos atencionales, pero sus efectos en la actividad electroencefalográfica (qEEG) no son claros. Utilizamos una tarea n-back para evaluar el efecto de 18 horas de ayuno en el desempeño conductual y la potencia absoluta del qEEG. Veintiséis participantes respondieron la tar...
- Autores:
-
Ávila-Garibay, Adrián
González-Garrido, Andrés A.
Gómez-Velázquez, Fabiola R.
Brofman-Epelbaum, Jacobo J.
Vélez-Pérez, Hugo
Romo-Vázquez, Rebeca
Gallardo-Moreno, Geisa B.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2025
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/28980
- Acceso en línea:
- https://hdl.handle.net/10819/28980
https://doi.org/10.21500/20112084.6690
- Palabra clave:
- fasting
working memory
attention
qEEG
n-back
cognitive load
ayuno
memoria de trabajo
atención
qEEG
n-back
carga cognitiva
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
| id |
SANBUENAV2_37203a3a186c802c5f6e1c73c7c5804b |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/28980 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Cambios relacionados con el ayuno y la carga cognitiva en el EEG |
| dc.title.translated.spa.fl_str_mv |
Cambios relacionados con el ayuno y la carga cognitiva en el EEG |
| title |
Cambios relacionados con el ayuno y la carga cognitiva en el EEG |
| spellingShingle |
Cambios relacionados con el ayuno y la carga cognitiva en el EEG fasting working memory attention qEEG n-back cognitive load ayuno memoria de trabajo atención qEEG n-back carga cognitiva |
| title_short |
Cambios relacionados con el ayuno y la carga cognitiva en el EEG |
| title_full |
Cambios relacionados con el ayuno y la carga cognitiva en el EEG |
| title_fullStr |
Cambios relacionados con el ayuno y la carga cognitiva en el EEG |
| title_full_unstemmed |
Cambios relacionados con el ayuno y la carga cognitiva en el EEG |
| title_sort |
Cambios relacionados con el ayuno y la carga cognitiva en el EEG |
| dc.creator.fl_str_mv |
Ávila-Garibay, Adrián González-Garrido, Andrés A. Gómez-Velázquez, Fabiola R. Brofman-Epelbaum, Jacobo J. Vélez-Pérez, Hugo Romo-Vázquez, Rebeca Gallardo-Moreno, Geisa B. |
| dc.contributor.author.eng.fl_str_mv |
Ávila-Garibay, Adrián González-Garrido, Andrés A. Gómez-Velázquez, Fabiola R. Brofman-Epelbaum, Jacobo J. Vélez-Pérez, Hugo Romo-Vázquez, Rebeca Gallardo-Moreno, Geisa B. |
| dc.subject.eng.fl_str_mv |
fasting working memory attention qEEG n-back cognitive load |
| topic |
fasting working memory attention qEEG n-back cognitive load ayuno memoria de trabajo atención qEEG n-back carga cognitiva |
| dc.subject.spa.fl_str_mv |
ayuno memoria de trabajo atención qEEG n-back carga cognitiva |
| description |
El ayuno puede afectar procesos atencionales, pero sus efectos en la actividad electroencefalográfica (qEEG) no son claros. Utilizamos una tarea n-back para evaluar el efecto de 18 horas de ayuno en el desempeño conductual y la potencia absoluta del qEEG. Veintiséis participantes respondieron la tarea n-back con dos niveles de carga cognitiva durante ayuno y no-ayuno en sesiones diferentes. Para eliminar artefactos utilizamos separación ciega de fuentes y estimamos la potencia mediante la transformada rápida de Fourier. La precisión disminuyó ante mayor carga cognitiva, mientras que la potencia de theta frontal y parietal incrementó. Asimismo, hubo mayor potencia en región fronto-central izquierda y una interacción entre carga y región indicando mayor incremento en región parieto-central izquierda. Alfa incrementó en región fronto-central izquierda. Aunque no fue significativo, observamos un incremento relacionado con el ayuno en la potencia de theta, lo que podría reflejar cambios transitorios en mecanismos de control cognitivo. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-05-22T14:24:40Z 2025-08-22T16:59:26Z |
| dc.date.available.none.fl_str_mv |
2025-05-22T14:24:40Z 2025-08-22T16:59:26Z |
| dc.date.issued.none.fl_str_mv |
2025-05-22 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/20112084.6690 |
| dc.identifier.eissn.none.fl_str_mv |
2011-7922 |
| dc.identifier.issn.none.fl_str_mv |
2011-2084 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/28980 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/20112084.6690 |
| identifier_str_mv |
10.21500/20112084.6690 2011-7922 2011-2084 |
| url |
https://hdl.handle.net/10819/28980 https://doi.org/10.21500/20112084.6690 |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/download/6690/5670 |
| dc.relation.citationendpage.none.fl_str_mv |
68 |
| dc.relation.citationissue.eng.fl_str_mv |
1 |
| dc.relation.citationstartpage.none.fl_str_mv |
59 |
| dc.relation.citationvolume.eng.fl_str_mv |
18 |
| dc.relation.ispartofjournal.eng.fl_str_mv |
International Journal of Psychological Research |
| dc.relation.references.eng.fl_str_mv |
An, Y. J., Jung, K. Y., Kim, S. M., Lee, C., & Kim, D. W. (2015). Effects of blood glucose levels on resting-state EEG and attention in healthy volunteers. Journal of Clinical Neurophysiology, 32(1), 51–56. https://doi.org/10.1097/WNP.0000000000000119 Benton, D., & Parker, P. Y. (1998). Breakfast, blood glucose, and cognition. The American Journal of Clinical Nutrition, 67(4), 772S–778S. https://doi.org/10.1093/ajcn/67.4.772S Benton, D., & Nabb, S. (2003). Carbohydrate, memory, and mood. Nutrition Reviews, 61(5), S61–S67. https://doi.org/10.1301/nr.2003.may.S61-S67 Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nature Neuroscience, 19(1), 150-157. https://doi.org/10.1038/nn.4174 Bolo, N. R., Musen, G., Jacobson, A. M., Weinger, K., McCartney, R. L., Flores, V., Renshaw, P. F., & Simonson, D. C. (2011). Brain activation during working memory is altered in patients with type 1 diabetes during hypoglycemia. Diabetes, 60(12), 3256-3264. https://doi.org/10.2337/db11-0506 Cahill, G. F. Jr., Herrera, M. G., Morgan, A. P., Soelder, J. S., Steinke, J., Levy, P. L., Reichard, G. A. Jr., & Kipnis, D. M. (1966). Hormone-fuel interrelationships during fasting. Journal of Clinical Investigation, 45(11), 1751–1769. https://doi.org/10.1172/JCI105481 Chechko, N., Vocke, S., Habel, U., Toygar, T., Kuckartz, L., Berthold-Losleben, M., Laoutidis, Z. G., Orfanos, S., Wassenberg, A., Karges, W., Schneider, F., & Kohn, N. (2014). Effects of overnight fasting on working memory-related brain network: an fMRI study. Human Brain Mapping, 36(3), 839-851. https://doi.org/10.1002/hbm.22668 Christophel, T. B., Iamshchinina, P., Yan, C., Allefeld, C., & Haynes, J. -D. (2018). Cortical specialization for attended versus unattended working memory. Nature Neuroscience, 21(4), 494-496. https://doi.org/10.1038/s41593-018-0094-4 Cromheeke, S., & Mueller, S. C. (2016). The power of a smile: stronger working memory effects for happy faces in adolescents compared to adults. Cognition and Emotion, 30(2), 288–301. https://doi.org/10.1080/02699931.2014.997196 Dienel GA. (2019). Brain glucose metabolism: integration of energetics with function. Physiological Reviews, 99(1), 949-1045. https://doi.org/10.1152/physrev.00062.2017 Doniger, G. M., Simon, E. S., & Zivotofsky, A. Z. (2006). Comprehensive computerized assessment of cognitive sequelae of a complete 12-16 hour fast. Behavioral Neuroscience, 120(4), 804-16. https://doi.org/10.1037/0735-7044.120.4.804 Donohoe, R., & Benton, D. (1999). Cognitive functioning is susceptible to the level of blood glucose. Psychopharmacology, 145(4), 378-385. https://doi.org/10.1007/s002130051071 Dye, L., & Blundell, J. (2002). Functional foods: psychological and behavioural functions. British Journal of Nutrition, 88(S2), S187–S211. https://doi.org/10.1079/BJN2002684 Dye, L., Lluch, A., & Blundell, J. E. (2000). Macronutrients and mental performance. Nutrition, 16(10), 1021–1034. https://doi.org/10.1016/s0899-9007(00)00450-0 Fernández, A., Pinal, D., Díaz, F., & Zurrón, M. (2021). Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance. Neurobiology of Learning and Memory, 183, 107476. https://doi.org/10.1016/j.nlm.2021.107476 Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., & Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain Research, 1375, 93-102. https://doi.org/10.1016/j.brainres.2010.12.048 Galbo, H., Richter, E. A., Hilsted, J., Holst, J. J., Christensen, N. J., & Henriksson, J. (1977). Hormonal regulation during prolonged exercise. Annals of the New York Academy of Sciences, 301(1), 72–80. https://doi.org/10.1111/j.1749-6632.1977.tb38187.x Galioto, R., & Spitznagel, M. B. (2016). The effects of breakfast and breakfast composition on cognition in adults. Advances in Nutrition, 7(3), 576S-589S. https://doi.org/10.3945/an.115.010231 González-Garrido, A. A., Brofman-Epelbaum, J. J., Gómez-Velázquez, F. R., Balart-Sánchez, S. A., & Ramos-Loyo, J. (2019). Skipping breakfast affects the early steps of cognitive processing: An event-related brain potentials study. Journal of Psychophysiology, 33(2), 109-118. https://doi.org/10.1027/0269-8803/a000214 Green, M. W., Elliman, N. A., & Rogers, P. J. (1995). Lack of effect of short-term fasting on cognitive function. Journal of Psychiatric Research, 29(3), 245–253. https://doi.org/10.1016/0022-3956(95)00009-T Guan, K., Chai, X., Zhang, Z., Li, Q., & Niu, H. (2021). Evaluation of mental workload in working memory tasks with different information types based on EEG. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2021, 5682-5685. https://doi.org/10.1109/EMBC46164.2021.9630575 Güntekin, B., & Basar, E. (2007). Emotional face expressions are differentiated with brain oscillations. International Journal of Psychophysiology, 64(1), 91–100. https://doi.org/10.1016/j.ijpsycho.2006.07.003 Hoffman, L. D., & Polich, J. (1998). EEG, ERPs and food consumption. Biological Psychology, 48(2), 139-151. https://doi.org/10.1016/S0301-0511(98)00010-6 Horowitz, J. F., Mora-Rodriguez, R., Byerley, L. O., & Coyle, E. F. (1999). Substrate metabolism when subjects are fed carbohydrate during exercise. American Journal of Physiology, 276(5), E828–E835. https://doi.org/10.1152/ajpendo.1999.276.5.E828 Hoyland, A., Lawton, C. L., & Dye, L. (2008). Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: a systematic research review. Neuroscience and Biobehavioral Reviews, 32(1), 72–85. https://doi.org/10.1016/j.neubiorev.2007.05.006 Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15(8), 1395-1399. https://doi.org/10.1046/j.1460-9568.2002.01975.x Kesler/West, M. L., Andersen, A. H., Smith, C. D., Avison, M. J., Davis, C. E., Kryscio, R. J., & Blonder, L. X. (2001). Neural substrates of facial emotion processing using fMRI. Cognitive Brain Research, 11(2), 213–226. https://doi.org/10.1016/s0926-6410(00)00073-2 Knott, V., Messier, C., Mahoney, C., & Gagnon. M. (2001). Glucose and glucoregulatory modulation of memory scanning, event-related potentials and EEG in elderly subjects. Neuropsychobiology, 44(3), 156-166. https://doi.org/10.1159/000054936 Lazarev, V. V. (1998). On the intercorrelation of some frequency and amplitude parameters of the human EEG and its functional significance. Communication I: Multidimensional neurodynamic organization of functional states of the brain during intellectual, perceptive and motor activity in normal subjects. International Journal of Psychophysiology, 28(1), 77-98. https://doi.org/10.1016/S0167-8760(97)00068-8 Huang, L. Y., She, H. C., Chou, W. C., Chuang, M. H., Duann, J. R., & Jung, T. P. (2013). Brain oscillation and connectivity during a chemistry visual working memory task. International Journal of Psychophysiology, 90(2), 172-179. https://doi.org/10.1016/j.ijpsycho.2013.07.001 Messier, C., Durkin, T., Mrabet, O., & Destrade, C. (1990). Memory-improving action of glucose: Indirect evidence for a facilitation of hippocampal acetylcholine synthesis. Behavioural Brain Research, 39(2), 135–143. https://doi.org/10.1016/0166-4328(90)90100-S Michaud, C., Musse, N., Nicolas, J. P., & Mejean, L. (1991). Effects of breakfast-size on short-term memory, concentration, mood and blood glucose. Journal of Adolescent Health, 12(1), 53-57. https://doi.org/10.1016/0197-0070(91)90042-K Nilsson, L. H., & Hultman, E. (1973). Liver glycogen in man--the effect of total starvation or a carbohydrate-poor diet followed by carbohydrate refeeding. Scandinavian Journal of Clinical and Laboratory Investigation, 32(4), 325–330. https://doi.org/10.3109/00365517309084355 Okazaki, Y. O., De Weerd, P., Haegens, S., & Jensen, O. (2014). Hemispheric lateralization of posterior alpha reduces distracter interference during face matching. Brain Research, 1590, 56–64. https://doi.org/10.1016/j.brainres.2014.09.058 Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. https://doi.org/10.1002/hbm.20131 Peters, R., White, D., Cleeland, C., & Scholey, A. (2020). Fuel for thought? A systematic review of neuroimaging studies into glucose enhancement of cognitive performance. Neuropsychology Review, 30(2), 234-250. https://doi.org/10.1007/s11065-020-09431-x Rademaker, R. L., Chunharas, C., & Serences, J. T. (2019). Coexisting representations of sensory and mnemonic information in human visual cortex. Nature Neuroscience, 22(8), 1336-1344. https://doi.org/10.1038/s41593-019-0428-x Ratcliffe, O., Shapiro, K., & Staresina, B. P. (2022). Fronto-medial theta coordinates posterior maintenance of working memory content. Current Biology, 32(10), 2121-2129.e3. https://doi.org/10.1016/j.cub.2022.03.045 Reivich, M., & Alavi, A. (1983). Positron emission tomographic studies of local cerebral glucose metabolism in humans in physiological and pathophysiological conditions. Advances in Metabolic Disorders, 10, 135-176. https://doi.org/10.1016/B978-0-12-027310-2.50010-4 Rodriguez-Larios, J., ElShafei, A., Wiehe, M., & Haegens, S. (2022). Visual working memory recruits two functionally distinct alpha rhythms in posterior cortex. eNeuro, 9(5), NEURO.0159-22.2022. https://doi.org/10.1523/ENEURO.0159-22.2022 Romo Vázquez, R., Vélez-Pérez, H., Ranta, R., Louis Dorr, V., Maquin, D., & Maillard, L. (2012). Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. Biomedical Signal Processing and Control, 7(4), 389-400. https://doi.org/10.1016/j.bspc.2011.06.005 Rosenberg, M. D., Finn, E. S., Constable, R. T., & Chun, M. M. (2015). Predicting moment-to-moment attentional state. Neuroimage, 114, 249-256. https://doi.org/10.1016/j.neuroimage.2015.03.032 Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26(2), 148-155. https://doi.org/10.1002/hbm.20150 Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34(7), 1015-1022. https://doi.org/10.1016/j.neubiorev.2009.12.006 Sommerfield, A. J., Deary, I. J., McAulay, V., & Frier, B. M. (2003). Moderate hypoglycemia impairs multiple memory functions in healthy adults. Neuropsychology, 17(1), 125-132. https://doi.org/10.1037/0894-4105.17.1.125 Tang, Z., Zhang, N., Liu, A., Luan, D., Zhao, Y., Song, C., & Ma, G. (2017). The effects of breakfast on short-term cognitive function among Chinese white-collar workers: protocol for a three-phase crossover study. BMC Public Health, 17(1). https://doi.org/10.1186/s12889-017-4017-1 Vermeulen, N., Niedenthal, P. M., Pleyers, G., Bayot, M., & Corneille, O. (2014). Emotion-specific load disrupts concomitant affective processing. Quarterly Journal of Experimental Psychology, 67(9), 1655–1660. https://doi.org/10.1080/17470218.2014.905610 Weinreich, A., Stephani, T., & Schubert, T. (2016). Emotion effects within frontal alpha oscillation in a picture oddball paradigm. International Journal of Psychophysiology, 110, 200–206. https://doi.org/10.1016/j.ijpsycho.2016.07.517 Wesnes, K. A., Pincock, C., Richardson, D., Helm, G., & Hails, S. (2003). Breakfast reduces declines in attention and memory over the morning in schoolchildren. Appetite, 41(3), 329–331. https://doi.org/10.1016/j.appet.2003.08.009 Wewer Albrechtsen, N. J., Holst, J. J., Cherrington, A. D., Finan, B., Gluud, L. L., Dean, E. D., Campbell, J. E., Bloom, S. R., Tan, T. M., Knop, F. K., & Müller, T. D. (2023). 100 years of glucagon and 100 more. Diabetologia, 66(8), 1378-1394. https://doi.org/10.1007/s00125-023-05947-y Wiesman, A. I., Christopher-Hayes, N. J., & Wilson, T. W. (2021). Stairway to memory: Left-hemispheric alpha dynamics index the progressive loading of items into a short-term store. Neuroimage, 235, 118024. https://doi.org/10.1016/j.neuroimage.2021.118024 World Health Organization. (2023). Mean fasting blood glucose. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/2380#:~:text=When%20fasting%20blood%20glucose%20is,separate%20tests%2C%20diabetes%20is%20diagnosed. Yin, Z., Wang, Y., Dong, M., Wang, Y., Ren, S., & Liang, J. (2020). Short-range and long-range neuronal oscillatory coupling in multiple frequency bands during face perception. International Journal of Psychophysiology, 152, 26–35. https://doi.org/10.1016/j.ijpsycho.2020.04.003 Yordanova, J., & Kolev, V. (1998). Event-related alpha oscillations are functionally associated with P300 during information processing. NeuroReport, 9(14), 3159-3164. https://doi.org/10.1097/00001756-199810050-00007 Yordanova, J., Kolev, V., & Polich, J. (2001), P300 and alpha event-related desynchronization (ERD). Psychophysiology, 38(1), 143-152. https://doi.org/10.1111/1469-8986.3810143 |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 http://creativecommons.org/licenses/by-nc-nd/4.0 |
| dc.format.mimetype.eng.fl_str_mv |
application/pdf |
| dc.publisher.eng.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.eng.fl_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/view/6690 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/02efdc4b-3e44-4b9e-896f-62e1db1c952b/download |
| bitstream.checksum.fl_str_mv |
e1a8e31d5a50d829eae69d0b06508214 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053650493833216 |
| spelling |
Ávila-Garibay, AdriánGonzález-Garrido, Andrés A.Gómez-Velázquez, Fabiola R.Brofman-Epelbaum, Jacobo J.Vélez-Pérez, HugoRomo-Vázquez, RebecaGallardo-Moreno, Geisa B.2025-05-22T14:24:40Z2025-08-22T16:59:26Z2025-05-22T14:24:40Z2025-08-22T16:59:26Z2025-05-22El ayuno puede afectar procesos atencionales, pero sus efectos en la actividad electroencefalográfica (qEEG) no son claros. Utilizamos una tarea n-back para evaluar el efecto de 18 horas de ayuno en el desempeño conductual y la potencia absoluta del qEEG. Veintiséis participantes respondieron la tarea n-back con dos niveles de carga cognitiva durante ayuno y no-ayuno en sesiones diferentes. Para eliminar artefactos utilizamos separación ciega de fuentes y estimamos la potencia mediante la transformada rápida de Fourier. La precisión disminuyó ante mayor carga cognitiva, mientras que la potencia de theta frontal y parietal incrementó. Asimismo, hubo mayor potencia en región fronto-central izquierda y una interacción entre carga y región indicando mayor incremento en región parieto-central izquierda. Alfa incrementó en región fronto-central izquierda. Aunque no fue significativo, observamos un incremento relacionado con el ayuno en la potencia de theta, lo que podría reflejar cambios transitorios en mecanismos de control cognitivo.Fasting might affect attentional processes; however, its effects on quantitative electroencephalographic activity (qEEG) remain unclear. We used an n-back task to assess the effects of an 18-hour fasting period on behavior and qEEG absolute power. Twenty-six participants performed the experimental task with two cognitive load levels during fasting and regular breakfast in different sessions. Artifact-free epochs were selected for further analysis between conditions. The higher cognitive load affected accuracy, which decreased, while frontal and parietal theta power increased. We also found greater absolute theta power magnitudes for the left-frontocentral locations and a significant interaction between cognitive load and recording site, reflecting the greater increase in left-central parietal locations. Alpha increased in left-frontocentral locations. Although fasting did not considerably vary EEG power, there was a relevant fasting-related increase in theta power over frontal areas, probably reflecting transient changes in cognitive control mechanisms.application/pdf10.21500/20112084.66902011-79222011-2084https://hdl.handle.net/10819/28980https://doi.org/10.21500/20112084.6690engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/6690/56706815918International Journal of Psychological ResearchAn, Y. J., Jung, K. Y., Kim, S. M., Lee, C., & Kim, D. W. (2015). Effects of blood glucose levels on resting-state EEG and attention in healthy volunteers. Journal of Clinical Neurophysiology, 32(1), 51–56. https://doi.org/10.1097/WNP.0000000000000119 Benton, D., & Parker, P. Y. (1998). Breakfast, blood glucose, and cognition. The American Journal of Clinical Nutrition, 67(4), 772S–778S. https://doi.org/10.1093/ajcn/67.4.772S Benton, D., & Nabb, S. (2003). Carbohydrate, memory, and mood. Nutrition Reviews, 61(5), S61–S67. https://doi.org/10.1301/nr.2003.may.S61-S67 Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nature Neuroscience, 19(1), 150-157. https://doi.org/10.1038/nn.4174 Bolo, N. R., Musen, G., Jacobson, A. M., Weinger, K., McCartney, R. L., Flores, V., Renshaw, P. F., & Simonson, D. C. (2011). Brain activation during working memory is altered in patients with type 1 diabetes during hypoglycemia. Diabetes, 60(12), 3256-3264. https://doi.org/10.2337/db11-0506 Cahill, G. F. Jr., Herrera, M. G., Morgan, A. P., Soelder, J. S., Steinke, J., Levy, P. L., Reichard, G. A. Jr., & Kipnis, D. M. (1966). Hormone-fuel interrelationships during fasting. Journal of Clinical Investigation, 45(11), 1751–1769. https://doi.org/10.1172/JCI105481 Chechko, N., Vocke, S., Habel, U., Toygar, T., Kuckartz, L., Berthold-Losleben, M., Laoutidis, Z. G., Orfanos, S., Wassenberg, A., Karges, W., Schneider, F., & Kohn, N. (2014). Effects of overnight fasting on working memory-related brain network: an fMRI study. Human Brain Mapping, 36(3), 839-851. https://doi.org/10.1002/hbm.22668 Christophel, T. B., Iamshchinina, P., Yan, C., Allefeld, C., & Haynes, J. -D. (2018). Cortical specialization for attended versus unattended working memory. Nature Neuroscience, 21(4), 494-496. https://doi.org/10.1038/s41593-018-0094-4 Cromheeke, S., & Mueller, S. C. (2016). The power of a smile: stronger working memory effects for happy faces in adolescents compared to adults. Cognition and Emotion, 30(2), 288–301. https://doi.org/10.1080/02699931.2014.997196 Dienel GA. (2019). Brain glucose metabolism: integration of energetics with function. Physiological Reviews, 99(1), 949-1045. https://doi.org/10.1152/physrev.00062.2017 Doniger, G. M., Simon, E. S., & Zivotofsky, A. Z. (2006). Comprehensive computerized assessment of cognitive sequelae of a complete 12-16 hour fast. Behavioral Neuroscience, 120(4), 804-16. https://doi.org/10.1037/0735-7044.120.4.804 Donohoe, R., & Benton, D. (1999). Cognitive functioning is susceptible to the level of blood glucose. Psychopharmacology, 145(4), 378-385. https://doi.org/10.1007/s002130051071 Dye, L., & Blundell, J. (2002). Functional foods: psychological and behavioural functions. British Journal of Nutrition, 88(S2), S187–S211. https://doi.org/10.1079/BJN2002684 Dye, L., Lluch, A., & Blundell, J. E. (2000). Macronutrients and mental performance. Nutrition, 16(10), 1021–1034. https://doi.org/10.1016/s0899-9007(00)00450-0 Fernández, A., Pinal, D., Díaz, F., & Zurrón, M. (2021). Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance. Neurobiology of Learning and Memory, 183, 107476. https://doi.org/10.1016/j.nlm.2021.107476 Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., & Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain Research, 1375, 93-102. https://doi.org/10.1016/j.brainres.2010.12.048 Galbo, H., Richter, E. A., Hilsted, J., Holst, J. J., Christensen, N. J., & Henriksson, J. (1977). Hormonal regulation during prolonged exercise. Annals of the New York Academy of Sciences, 301(1), 72–80. https://doi.org/10.1111/j.1749-6632.1977.tb38187.x Galioto, R., & Spitznagel, M. B. (2016). The effects of breakfast and breakfast composition on cognition in adults. Advances in Nutrition, 7(3), 576S-589S. https://doi.org/10.3945/an.115.010231 González-Garrido, A. A., Brofman-Epelbaum, J. J., Gómez-Velázquez, F. R., Balart-Sánchez, S. A., & Ramos-Loyo, J. (2019). Skipping breakfast affects the early steps of cognitive processing: An event-related brain potentials study. Journal of Psychophysiology, 33(2), 109-118. https://doi.org/10.1027/0269-8803/a000214 Green, M. W., Elliman, N. A., & Rogers, P. J. (1995). Lack of effect of short-term fasting on cognitive function. Journal of Psychiatric Research, 29(3), 245–253. https://doi.org/10.1016/0022-3956(95)00009-T Guan, K., Chai, X., Zhang, Z., Li, Q., & Niu, H. (2021). Evaluation of mental workload in working memory tasks with different information types based on EEG. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2021, 5682-5685. https://doi.org/10.1109/EMBC46164.2021.9630575 Güntekin, B., & Basar, E. (2007). Emotional face expressions are differentiated with brain oscillations. International Journal of Psychophysiology, 64(1), 91–100. https://doi.org/10.1016/j.ijpsycho.2006.07.003 Hoffman, L. D., & Polich, J. (1998). EEG, ERPs and food consumption. Biological Psychology, 48(2), 139-151. https://doi.org/10.1016/S0301-0511(98)00010-6 Horowitz, J. F., Mora-Rodriguez, R., Byerley, L. O., & Coyle, E. F. (1999). Substrate metabolism when subjects are fed carbohydrate during exercise. American Journal of Physiology, 276(5), E828–E835. https://doi.org/10.1152/ajpendo.1999.276.5.E828 Hoyland, A., Lawton, C. L., & Dye, L. (2008). Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: a systematic research review. Neuroscience and Biobehavioral Reviews, 32(1), 72–85. https://doi.org/10.1016/j.neubiorev.2007.05.006 Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15(8), 1395-1399. https://doi.org/10.1046/j.1460-9568.2002.01975.x Kesler/West, M. L., Andersen, A. H., Smith, C. D., Avison, M. J., Davis, C. E., Kryscio, R. J., & Blonder, L. X. (2001). Neural substrates of facial emotion processing using fMRI. Cognitive Brain Research, 11(2), 213–226. https://doi.org/10.1016/s0926-6410(00)00073-2 Knott, V., Messier, C., Mahoney, C., & Gagnon. M. (2001). Glucose and glucoregulatory modulation of memory scanning, event-related potentials and EEG in elderly subjects. Neuropsychobiology, 44(3), 156-166. https://doi.org/10.1159/000054936 Lazarev, V. V. (1998). On the intercorrelation of some frequency and amplitude parameters of the human EEG and its functional significance. Communication I: Multidimensional neurodynamic organization of functional states of the brain during intellectual, perceptive and motor activity in normal subjects. International Journal of Psychophysiology, 28(1), 77-98. https://doi.org/10.1016/S0167-8760(97)00068-8 Huang, L. Y., She, H. C., Chou, W. C., Chuang, M. H., Duann, J. R., & Jung, T. P. (2013). Brain oscillation and connectivity during a chemistry visual working memory task. International Journal of Psychophysiology, 90(2), 172-179. https://doi.org/10.1016/j.ijpsycho.2013.07.001 Messier, C., Durkin, T., Mrabet, O., & Destrade, C. (1990). Memory-improving action of glucose: Indirect evidence for a facilitation of hippocampal acetylcholine synthesis. Behavioural Brain Research, 39(2), 135–143. https://doi.org/10.1016/0166-4328(90)90100-S Michaud, C., Musse, N., Nicolas, J. P., & Mejean, L. (1991). Effects of breakfast-size on short-term memory, concentration, mood and blood glucose. Journal of Adolescent Health, 12(1), 53-57. https://doi.org/10.1016/0197-0070(91)90042-K Nilsson, L. H., & Hultman, E. (1973). Liver glycogen in man--the effect of total starvation or a carbohydrate-poor diet followed by carbohydrate refeeding. Scandinavian Journal of Clinical and Laboratory Investigation, 32(4), 325–330. https://doi.org/10.3109/00365517309084355 Okazaki, Y. O., De Weerd, P., Haegens, S., & Jensen, O. (2014). Hemispheric lateralization of posterior alpha reduces distracter interference during face matching. Brain Research, 1590, 56–64. https://doi.org/10.1016/j.brainres.2014.09.058 Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. https://doi.org/10.1002/hbm.20131 Peters, R., White, D., Cleeland, C., & Scholey, A. (2020). Fuel for thought? A systematic review of neuroimaging studies into glucose enhancement of cognitive performance. Neuropsychology Review, 30(2), 234-250. https://doi.org/10.1007/s11065-020-09431-x Rademaker, R. L., Chunharas, C., & Serences, J. T. (2019). Coexisting representations of sensory and mnemonic information in human visual cortex. Nature Neuroscience, 22(8), 1336-1344. https://doi.org/10.1038/s41593-019-0428-x Ratcliffe, O., Shapiro, K., & Staresina, B. P. (2022). Fronto-medial theta coordinates posterior maintenance of working memory content. Current Biology, 32(10), 2121-2129.e3. https://doi.org/10.1016/j.cub.2022.03.045 Reivich, M., & Alavi, A. (1983). Positron emission tomographic studies of local cerebral glucose metabolism in humans in physiological and pathophysiological conditions. Advances in Metabolic Disorders, 10, 135-176. https://doi.org/10.1016/B978-0-12-027310-2.50010-4 Rodriguez-Larios, J., ElShafei, A., Wiehe, M., & Haegens, S. (2022). Visual working memory recruits two functionally distinct alpha rhythms in posterior cortex. eNeuro, 9(5), NEURO.0159-22.2022. https://doi.org/10.1523/ENEURO.0159-22.2022 Romo Vázquez, R., Vélez-Pérez, H., Ranta, R., Louis Dorr, V., Maquin, D., & Maillard, L. (2012). Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. Biomedical Signal Processing and Control, 7(4), 389-400. https://doi.org/10.1016/j.bspc.2011.06.005 Rosenberg, M. D., Finn, E. S., Constable, R. T., & Chun, M. M. (2015). Predicting moment-to-moment attentional state. Neuroimage, 114, 249-256. https://doi.org/10.1016/j.neuroimage.2015.03.032 Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26(2), 148-155. https://doi.org/10.1002/hbm.20150 Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34(7), 1015-1022. https://doi.org/10.1016/j.neubiorev.2009.12.006 Sommerfield, A. J., Deary, I. J., McAulay, V., & Frier, B. M. (2003). Moderate hypoglycemia impairs multiple memory functions in healthy adults. Neuropsychology, 17(1), 125-132. https://doi.org/10.1037/0894-4105.17.1.125 Tang, Z., Zhang, N., Liu, A., Luan, D., Zhao, Y., Song, C., & Ma, G. (2017). The effects of breakfast on short-term cognitive function among Chinese white-collar workers: protocol for a three-phase crossover study. BMC Public Health, 17(1). https://doi.org/10.1186/s12889-017-4017-1 Vermeulen, N., Niedenthal, P. M., Pleyers, G., Bayot, M., & Corneille, O. (2014). Emotion-specific load disrupts concomitant affective processing. Quarterly Journal of Experimental Psychology, 67(9), 1655–1660. https://doi.org/10.1080/17470218.2014.905610 Weinreich, A., Stephani, T., & Schubert, T. (2016). Emotion effects within frontal alpha oscillation in a picture oddball paradigm. International Journal of Psychophysiology, 110, 200–206. https://doi.org/10.1016/j.ijpsycho.2016.07.517 Wesnes, K. A., Pincock, C., Richardson, D., Helm, G., & Hails, S. (2003). Breakfast reduces declines in attention and memory over the morning in schoolchildren. Appetite, 41(3), 329–331. https://doi.org/10.1016/j.appet.2003.08.009 Wewer Albrechtsen, N. J., Holst, J. J., Cherrington, A. D., Finan, B., Gluud, L. L., Dean, E. D., Campbell, J. E., Bloom, S. R., Tan, T. M., Knop, F. K., & Müller, T. D. (2023). 100 years of glucagon and 100 more. Diabetologia, 66(8), 1378-1394. https://doi.org/10.1007/s00125-023-05947-y Wiesman, A. I., Christopher-Hayes, N. J., & Wilson, T. W. (2021). Stairway to memory: Left-hemispheric alpha dynamics index the progressive loading of items into a short-term store. Neuroimage, 235, 118024. https://doi.org/10.1016/j.neuroimage.2021.118024 World Health Organization. (2023). Mean fasting blood glucose. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/2380#:~:text=When%20fasting%20blood%20glucose%20is,separate%20tests%2C%20diabetes%20is%20diagnosed. Yin, Z., Wang, Y., Dong, M., Wang, Y., Ren, S., & Liang, J. (2020). Short-range and long-range neuronal oscillatory coupling in multiple frequency bands during face perception. International Journal of Psychophysiology, 152, 26–35. https://doi.org/10.1016/j.ijpsycho.2020.04.003 Yordanova, J., & Kolev, V. (1998). Event-related alpha oscillations are functionally associated with P300 during information processing. NeuroReport, 9(14), 3159-3164. https://doi.org/10.1097/00001756-199810050-00007 Yordanova, J., Kolev, V., & Polich, J. (2001), P300 and alpha event-related desynchronization (ERD). Psychophysiology, 38(1), 143-152. https://doi.org/10.1111/1469-8986.3810143info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.http://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IJPR/article/view/6690fastingworking memoryattentionqEEGn-backcognitive loadayunomemoria de trabajoatenciónqEEGn-backcarga cognitivaCambios relacionados con el ayuno y la carga cognitiva en el EEGCambios relacionados con el ayuno y la carga cognitiva en el EEGArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2862https://bibliotecadigital.usb.edu.co/bitstreams/02efdc4b-3e44-4b9e-896f-62e1db1c952b/downloade1a8e31d5a50d829eae69d0b06508214MD5110819/28980oai:bibliotecadigital.usb.edu.co:10819/289802025-08-22 11:59:26.743http://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
