Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami

Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a mane...

Full description

Autores:
Alzate Arias, Fredy Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/27433
Acceso en línea:
https://hdl.handle.net/10819/27433
https://doi.org/10.21500/20275846.4495
Palabra clave:
Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño
Rights
openAccess
License
Ingenierías USBMed - 2022
id SANBUENAV2_35ab19c53686a9d594c1f8195d2cbdca
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/27433
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
dc.title.translated.eng.fl_str_mv Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
spellingShingle Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño
title_short Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_full Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_fullStr Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_full_unstemmed Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_sort Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
dc.creator.fl_str_mv Alzate Arias, Fredy Alberto
dc.contributor.author.spa.fl_str_mv Alzate Arias, Fredy Alberto
dc.subject.eng.fl_str_mv Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
topic Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño
dc.subject.spa.fl_str_mv Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño
description Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte  sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmuchas aéras de conocimiento como son los materiales, la ingeniería civil, la física y el diseño, combinando la ciencia,  el arte, la tecnología e innovación como vertientes principales del grupo de investigacón de la Facultad be Artes y Humanidades del Intesituto Técnológico Metropolitano  
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-27T00:00:00Z
2025-08-21T22:05:06Z
dc.date.available.none.fl_str_mv 2022-09-27T00:00:00Z
2025-08-21T22:05:06Z
dc.date.issued.none.fl_str_mv 2022-09-27
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20275846.4495
dc.identifier.eissn.none.fl_str_mv 2027-5846
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/27433
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20275846.4495
identifier_str_mv 10.21500/20275846.4495
2027-5846
url https://hdl.handle.net/10819/27433
https://doi.org/10.21500/20275846.4495
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4495/4858
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2022 : Ingenierías USBMed
dc.relation.citationendpage.none.fl_str_mv 47
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 35
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.ispartofjournal.spa.fl_str_mv Ingenierías USBMed
dc.relation.references.spa.fl_str_mv R.Walser, “Metamaterials: What are they? What are they good for?,” ene. 2000.
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-L5B9XI-82878 (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f92d0e0bdd5bafb137f428f41c13be35&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++metamaterials+nanomaterials%29&sort=plf-f&sdt=b&sot=b&sl=53&count=7&analyzeResults=Analyze+results&txGid=16f5a0d320ad451bb028fedb0d988f15 (accessed May 16, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=39d348ee250df998cc73d949b8cddfc8&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++materials%29&sort=plff&sdt=b&sot=b&sl=35&count=80940&analyzeResults=Analyze+results&txGid=475d8e8395612e632983b3068e786e1a (accessed May 20, 2019).
“ScienceDirect Search Results - Keywords (materials acoustics)”. https://sciencedirect.bibliotecaitm.elogim.com/search?qs=materials%20acoustics&years=2003%2C2004%2C2005%2C2006%2C2007%2C2008%2C2009%2C2018%2C2017%2C2016%2C2015%2C2014%2C2013%2C2012%2C2011%2C2010&articleTypes=FLA&sortBy=relevance&publicationTitles=271440&lastSelectedFacet=publicationTitles (accessed June 7, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=acoustics++AND+materials++AND+noise&sid=353ba33aa82f014c50e0 26dc7896c4c4&sot=b&sdt=b&sl=50&s=TITLEABS-KEY%28acoustics++AND+materials++AND+noise%29&origin=searchbasic&editSaveSea rch=&yearFrom=Before+1960&yearTo=Present(accessed July 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=513058b33fa3cdacd83338d8f8731e8d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics+panels+noise%29&sort=plf-f&sdt=b&sot=b&sl=37&count=3472&analyzeResults=Analyze+results&txGid=f0e5c2f110ccc9cbce18f68f9c383594 (accessed May 24, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f432f78bb8622fb777103db09bfbedb0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Acoustics+and+panels%29&sort=plf-f&sdt=b&sot=b&sl=35&count=7906&analyzeResults=Analyze+results&txGid=8c9ba5666cab7dbc8b3cfda01 6e6f20c (accessed May 25, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=origami+acoustics&sid=33d374daffc103b360e9a3ad606af6cf&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28origami+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid =60d2b163e3c397db07502e7ceb2fccf0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+folded+acoustics%29&sort=plf-f&sdt=b&s ot=b&sl=39&count=11&analyzeResults=Analyze+results&txGid=6d4b15dbd99a0625b6692527e055603d (accessed May 13, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=c7e795144faed70b5f055b88bf062332&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+panel+acoustics%29&sort=plff&sdt=b&sot=b&sl=38&count=7&analyzeResults=Analyze+results&txGid=e185430da799838902091b86750e43a (accessed May 14, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=origami++architectural+geometry&sid=0a16d1c1f15117de1cc89234aee6d30b&sot=b&sdt=b&sl=46&s=TITLE-ABS-KE Y%28origami++architectural+geometry%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 8, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=0a16d1c1f15117de1cc89234aee6d30b&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami++architectural+geometry%29&sort=plf-f&sdt=b&sot=b&sl=46&count=39&analyzeResults=Analyze+results&txGid=8de4da2290832e5ae1b2236f0c02a041 (accessed June 8, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sor t=plf-f&src=s&st1=metamaterials+acoustics&sid=715a1bca93a42908f79df5b09c9024d1&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2020).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=715a1bca93a42908f79df5b09c9024d1&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&sort=plf-f&sdt=b&sot=b&sl=38&count=3460&analyzeResults=Analyze+results&txGid=73d3f72662e040249175e177eee7a6df(accessed June 7, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=acoustic+metamaterials+resonator&sid=62ff9286413a9c8fd79469f1c0ca6257&sot=b&sdt=b&sl=47&s=TITLE-ABS-KEY%28acoustic+metamaterials+resonator%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 9, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=metamaterials+acoustics+origami&sid=8a446aa1d280c011d6d8903c53dc060d&sot=b&sdt=b&sl=46&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 6, 2020).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=8a446aa1d280c011d6d8903c53dc060d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&sort=plf-f&sdt=b&sot=b&sl=46&count=25&analyzeResult s=Analyze+results&txGid=dfce0edd4e066583197151a673a210bf (accessed June 6, 2020).
“OMPI - Búsqueda en las colecciones de patentesnacionales e internacionales”. https://patentscope.wipo.int/search/es/result.jsf?_vid=P21-L3AN78-25698 (accessed May 15, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANF7-27516 (accessed May 16, 2021).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANJT-28555 (accessed May 20, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANMC-29031 (accessed May 21, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P12-L3AQ1B-59073 (accessed May 22, 2019).
M. Schenk y S. Guest, “Origami folding: A structural engineering approach”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available http://www2.eng.cam. ac.uk/~sdg/preprint/5OSME.pdf.
M. Schenk, J. M. Allwood y S. D. Guest, “Cold gas-pressure folding of Miura-ori sheets”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available: http://www2. eng.cam.ac.uk/~sdg/preprint/MiuraForming. pdf.
T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami”, presented at the International Association for Shell and Spatial Structures (ASS) Symposium 2009, Valencia, España, Sept. 28 – Oct. 2, 2009. Available: https://iam.tug raz.at/workshop_rijeka/wp-content/uploads/201 2/09/RigidFoldableQuadMeshOrigami_tachi_IA SS2009.pdf.
Tachi Lab, “Software. Freeform Origami”. Available https://origami.c.u- tokyo.ac.jp/~tachi/ software/
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG. 2017.34.
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi esperimentazione”. Ph. D. dissertation, Sapienza Università di Rom, 2017. Available: https://core.ac.uk/display/127586956? recSetID=.
H. Buri e Y.Weinand, “ORIGAMI - Folded Plate Structures, Architecture”, presented at the 10th World Conference on Timber Engineering, Miyazaki, Japón, June 2-5, 2017.
X. Yang, “Adaptive acoustic origami”. M.S. Thesis, Universidad de Melbourne, 2017. Available: https://www.youtube.com/watch v=RKOUn-J6HL4&feature=share.
Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang y L. Mahadevan, “Geometric mechanics of periodic pleated origami,” Physical Review Letters, vol. 110, n◦. 21, 2013. https://doi.org/10.1103/ PhysRevLett.110.215501.
C. Samuelsson y B. Vestlund, “Structural folding. A parametric design method for origami architecture”. M.S. Thesis, Chalmers University of Technology, Gotemburgo, Suecia, 2015. Available: https://odr.chalmers.se/handle/20.500.12380/222002.
M. Thota y K. W. Wang, “Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation,” Journal of Applied Physics, n◦ 122, 2017. https://doi.org/10.1063/1.4991026.
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4–7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org / 10 .1115/1.4035558.
R. Resch y E. Armstrong, “The Ron Resch paper and stick film”, 1992 [Online]. Available: https://www.youtube.com/watch v=imlMspPKfNo.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
Robert J. Lang Origami TASON, “TreeMaker” [Online]. Available: https : / / langorigami .com/ article/treemaker/
Tachi Lab, “Software. Freeform Origami” [Online]. Available: https://origami.c.u-tokyo.ac.jp/~tachi/software/
E. Demaine y T. Tachi, “Origamizer: A ractical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
P. Wang-Inverson, R. J. Lang and M. Yim (eds.), Origami 5. Proceedings to the Fifth International Meeting of Origami Science, Mathematics and Education, Ciudad de Nueva York, NY: AK Peters / CRC Press, 2011.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org/ 10 .1115/1.4035558.
J. Mitani y T. Igarashi, “Interactive design of planar curved folding by reection”, presented at the 19th Pacific Conference on Computer Graphics and Applications, Pacific Graphics, Kaohsiung, Taiwán, Sept. 21-23. Available: https://www.jst. go.jp/erato/igarashi/publications/001/PG2011. pdf.
Origamisimulator.org [Online]. Available http:// apps.amandaghassaei.com/OrigamiSimulator/
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. Thesis, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottora to/8871.
J. M. Gattas y Z. You, “Design and digital fabrication of folded sandwich structures,” Automation in Construction, n◦ 63, pp. 79-87, March, 2016. https://doi.org/10.1016/j.autcon.2015.12.002.
G. Epps, “RoboFold and Robots.IO,” Architectural Design, vol. 84, n◦. 3, pp. 68–69, 2014. https: //doi.org/10.1002/ad.1757.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. P.h. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi e sperimentazione”. P.h. D. dissertation, Sapienza Università di Roma, 2017. https://core.ac.uk/display/127586956?recSetID=.
dc.rights.spa.fl_str_mv Ingenierías USBMed - 2022
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
rights_invalid_str_mv Ingenierías USBMed - 2022
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.spa.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/093acead-764d-4a6f-b5ab-356396d9b371/download
bitstream.checksum.fl_str_mv edb5ec33710c1459548bcc3e515e4cc9
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053598741364736
spelling Alzate Arias, Fredy Alberto2022-09-27T00:00:00Z2025-08-21T22:05:06Z2022-09-27T00:00:00Z2025-08-21T22:05:06Z2022-09-27Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte  sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmuchas aéras de conocimiento como son los materiales, la ingeniería civil, la física y el diseño, combinando la ciencia,  el arte, la tecnología e innovación como vertientes principales del grupo de investigacón de la Facultad be Artes y Humanidades del Intesituto Técnológico Metropolitano  This work does a comprehensive look in academic database on projects that have to do with structures, active acoustic devices inspired by metamaterials and in forms created from patterns seen in nature, the focus of the work is to give a forward-looking look at the different scenarios that result from the different projects that innovative in architectural acoustics, also as a contribution of technological vigilance and art strait on this type of device. A detailed report of what is the current state of scientific production in this field and as is our country with review to other countries considering that architectural acoustics converge in many fields of knowledge such as materials, the civil engineering, physics and design, combining science, art, technology and innovation as the main aspects of the research group of the Faculty be Arts and Humanities of the Metropolitan Technological Institute.application/pdf10.21500/20275846.44952027-5846https://hdl.handle.net/10819/27433https://doi.org/10.21500/20275846.4495spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4495/4858Núm. 2 , Año 2022 : Ingenierías USBMed4723513Ingenierías USBMedR.Walser, “Metamaterials: What are they? What are they good for?,” ene. 2000.“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-L5B9XI-82878 (accessed June 7, 2019).“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f92d0e0bdd5bafb137f428f41c13be35&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++metamaterials+nanomaterials%29&sort=plf-f&sdt=b&sot=b&sl=53&count=7&analyzeResults=Analyze+results&txGid=16f5a0d320ad451bb028fedb0d988f15 (accessed May 16, 2019).“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=39d348ee250df998cc73d949b8cddfc8&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++materials%29&sort=plff&sdt=b&sot=b&sl=35&count=80940&analyzeResults=Analyze+results&txGid=475d8e8395612e632983b3068e786e1a (accessed May 20, 2019).“ScienceDirect Search Results - Keywords (materials acoustics)”. https://sciencedirect.bibliotecaitm.elogim.com/search?qs=materials%20acoustics&years=2003%2C2004%2C2005%2C2006%2C2007%2C2008%2C2009%2C2018%2C2017%2C2016%2C2015%2C2014%2C2013%2C2012%2C2011%2C2010&articleTypes=FLA&sortBy=relevance&publicationTitles=271440&lastSelectedFacet=publicationTitles (accessed June 7, 2019).“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=acoustics++AND+materials++AND+noise&sid=353ba33aa82f014c50e0 26dc7896c4c4&sot=b&sdt=b&sl=50&s=TITLEABS-KEY%28acoustics++AND+materials++AND+noise%29&origin=searchbasic&editSaveSea rch=&yearFrom=Before+1960&yearTo=Present(accessed July 7, 2019).“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=513058b33fa3cdacd83338d8f8731e8d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics+panels+noise%29&sort=plf-f&sdt=b&sot=b&sl=37&count=3472&analyzeResults=Analyze+results&txGid=f0e5c2f110ccc9cbce18f68f9c383594 (accessed May 24, 2019).“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f432f78bb8622fb777103db09bfbedb0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Acoustics+and+panels%29&sort=plf-f&sdt=b&sot=b&sl=35&count=7906&analyzeResults=Analyze+results&txGid=8c9ba5666cab7dbc8b3cfda01 6e6f20c (accessed May 25, 2019).“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=origami+acoustics&sid=33d374daffc103b360e9a3ad606af6cf&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28origami+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2019).“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid =60d2b163e3c397db07502e7ceb2fccf0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+folded+acoustics%29&sort=plf-f&sdt=b&s ot=b&sl=39&count=11&analyzeResults=Analyze+results&txGid=6d4b15dbd99a0625b6692527e055603d (accessed May 13, 2019).“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=c7e795144faed70b5f055b88bf062332&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+panel+acoustics%29&sort=plff&sdt=b&sot=b&sl=38&count=7&analyzeResults=Analyze+results&txGid=e185430da799838902091b86750e43a (accessed May 14, 2019).“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=origami++architectural+geometry&sid=0a16d1c1f15117de1cc89234aee6d30b&sot=b&sdt=b&sl=46&s=TITLE-ABS-KE Y%28origami++architectural+geometry%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 8, 2019).“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=0a16d1c1f15117de1cc89234aee6d30b&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami++architectural+geometry%29&sort=plf-f&sdt=b&sot=b&sl=46&count=39&analyzeResults=Analyze+results&txGid=8de4da2290832e5ae1b2236f0c02a041 (accessed June 8, 2019).“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sor t=plf-f&src=s&st1=metamaterials+acoustics&sid=715a1bca93a42908f79df5b09c9024d1&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2020).“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=715a1bca93a42908f79df5b09c9024d1&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&sort=plf-f&sdt=b&sot=b&sl=38&count=3460&analyzeResults=Analyze+results&txGid=73d3f72662e040249175e177eee7a6df(accessed June 7, 2020).“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=acoustic+metamaterials+resonator&sid=62ff9286413a9c8fd79469f1c0ca6257&sot=b&sdt=b&sl=47&s=TITLE-ABS-KEY%28acoustic+metamaterials+resonator%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 9, 2020).“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=metamaterials+acoustics+origami&sid=8a446aa1d280c011d6d8903c53dc060d&sot=b&sdt=b&sl=46&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 6, 2020).“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=8a446aa1d280c011d6d8903c53dc060d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&sort=plf-f&sdt=b&sot=b&sl=46&count=25&analyzeResult s=Analyze+results&txGid=dfce0edd4e066583197151a673a210bf (accessed June 6, 2020).“OMPI - Búsqueda en las colecciones de patentesnacionales e internacionales”. https://patentscope.wipo.int/search/es/result.jsf?_vid=P21-L3AN78-25698 (accessed May 15, 2019).“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANF7-27516 (accessed May 16, 2021).“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANJT-28555 (accessed May 20, 2019).“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANMC-29031 (accessed May 21, 2019).“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P12-L3AQ1B-59073 (accessed May 22, 2019).M. Schenk y S. Guest, “Origami folding: A structural engineering approach”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available http://www2.eng.cam. ac.uk/~sdg/preprint/5OSME.pdf.M. Schenk, J. M. Allwood y S. D. Guest, “Cold gas-pressure folding of Miura-ori sheets”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available: http://www2. eng.cam.ac.uk/~sdg/preprint/MiuraForming. pdf.T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami”, presented at the International Association for Shell and Spatial Structures (ASS) Symposium 2009, Valencia, España, Sept. 28 – Oct. 2, 2009. Available: https://iam.tug raz.at/workshop_rijeka/wp-content/uploads/201 2/09/RigidFoldableQuadMeshOrigami_tachi_IA SS2009.pdf.Tachi Lab, “Software. Freeform Origami”. Available https://origami.c.u- tokyo.ac.jp/~tachi/ software/E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG. 2017.34.M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi esperimentazione”. Ph. D. dissertation, Sapienza Università di Rom, 2017. Available: https://core.ac.uk/display/127586956? recSetID=.H. Buri e Y.Weinand, “ORIGAMI - Folded Plate Structures, Architecture”, presented at the 10th World Conference on Timber Engineering, Miyazaki, Japón, June 2-5, 2017.X. Yang, “Adaptive acoustic origami”. M.S. Thesis, Universidad de Melbourne, 2017. Available: https://www.youtube.com/watch v=RKOUn-J6HL4&feature=share.Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang y L. Mahadevan, “Geometric mechanics of periodic pleated origami,” Physical Review Letters, vol. 110, n◦. 21, 2013. https://doi.org/10.1103/ PhysRevLett.110.215501.C. Samuelsson y B. Vestlund, “Structural folding. A parametric design method for origami architecture”. M.S. Thesis, Chalmers University of Technology, Gotemburgo, Suecia, 2015. Available: https://odr.chalmers.se/handle/20.500.12380/222002.M. Thota y K. W. Wang, “Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation,” Journal of Applied Physics, n◦ 122, 2017. https://doi.org/10.1063/1.4991026.E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4–7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org / 10 .1115/1.4035558.R. Resch y E. Armstrong, “The Ron Resch paper and stick film”, 1992 [Online]. Available: https://www.youtube.com/watch v=imlMspPKfNo.R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.Robert J. Lang Origami TASON, “TreeMaker” [Online]. Available: https : / / langorigami .com/ article/treemaker/Tachi Lab, “Software. Freeform Origami” [Online]. Available: https://origami.c.u-tokyo.ac.jp/~tachi/software/E. Demaine y T. Tachi, “Origamizer: A ractical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.P. Wang-Inverson, R. J. Lang and M. Yim (eds.), Origami 5. Proceedings to the Fifth International Meeting of Origami Science, Mathematics and Education, Ciudad de Nueva York, NY: AK Peters / CRC Press, 2011.T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org/ 10 .1115/1.4035558.J. Mitani y T. Igarashi, “Interactive design of planar curved folding by reection”, presented at the 19th Pacific Conference on Computer Graphics and Applications, Pacific Graphics, Kaohsiung, Taiwán, Sept. 21-23. Available: https://www.jst. go.jp/erato/igarashi/publications/001/PG2011. pdf.Origamisimulator.org [Online]. Available http:// apps.amandaghassaei.com/OrigamiSimulator/R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. Thesis, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottora to/8871.J. M. Gattas y Z. You, “Design and digital fabrication of folded sandwich structures,” Automation in Construction, n◦ 63, pp. 79-87, March, 2016. https://doi.org/10.1016/j.autcon.2015.12.002.G. Epps, “RoboFold and Robots.IO,” Architectural Design, vol. 84, n◦. 3, pp. 68–69, 2014. https: //doi.org/10.1002/ad.1757.R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. P.h. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi e sperimentazione”. P.h. D. dissertation, Sapienza Università di Roma, 2017. https://core.ac.uk/display/127586956?recSetID=.Ingenierías USBMed - 2022info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, DiseñoOrigamimetamaterialesAcústica arquitectónicacinéticaplegadodiseñoProspectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origamiProspectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origamiArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2552https://bibliotecadigital.usb.edu.co/bitstreams/093acead-764d-4a6f-b5ab-356396d9b371/downloadedb5ec33710c1459548bcc3e515e4cc9MD5110819/27433oai:bibliotecadigital.usb.edu.co:10819/274332025-08-21 17:05:06.858https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com