Modulación del cerebro basal en la codificación olfatoria in vivo
La percepción sensorial es una de las funciones cerebrales más fundamentales, permitiendo a los individuos interactuar de manera apropiada con el entorno y adaptarse a un ambiente en constante cambio. Este proceso requiere la integración de la actividad neuronal ascendente y descendente, que es medi...
- Autores:
-
Venegas, Juan Pablo
Navarrete, Marcela
Orellana-Garcia, Laura
Rojas, Marcelo
Avello-Duarte, Felipe
Nunez-Parra, Alexia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/28972
- Acceso en línea:
- https://hdl.handle.net/10819/28972
https://doi.org/10.21500/20112084.6486
- Palabra clave:
- sensory processing;
olfactory bulb;
neuromodulation
acetylcholine
GABA,
optogenetic
electrophysiological recording
Procesamiento sensorial
neuromodulación
bulbo olfatorio
acetilcolina
GABA
optogenética
registros electrofisiológicos
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
| id |
SANBUENAV2_3147eff34322ee0f39e5e17ab4428294 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/28972 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Modulación del cerebro basal en la codificación olfatoria in vivo |
| dc.title.translated.spa.fl_str_mv |
Modulación del cerebro basal en la codificación olfatoria in vivo |
| title |
Modulación del cerebro basal en la codificación olfatoria in vivo |
| spellingShingle |
Modulación del cerebro basal en la codificación olfatoria in vivo sensory processing; olfactory bulb; neuromodulation acetylcholine GABA, optogenetic electrophysiological recording Procesamiento sensorial neuromodulación bulbo olfatorio acetilcolina GABA optogenética registros electrofisiológicos |
| title_short |
Modulación del cerebro basal en la codificación olfatoria in vivo |
| title_full |
Modulación del cerebro basal en la codificación olfatoria in vivo |
| title_fullStr |
Modulación del cerebro basal en la codificación olfatoria in vivo |
| title_full_unstemmed |
Modulación del cerebro basal en la codificación olfatoria in vivo |
| title_sort |
Modulación del cerebro basal en la codificación olfatoria in vivo |
| dc.creator.fl_str_mv |
Venegas, Juan Pablo Navarrete, Marcela Orellana-Garcia, Laura Rojas, Marcelo Avello-Duarte, Felipe Nunez-Parra, Alexia |
| dc.contributor.author.eng.fl_str_mv |
Venegas, Juan Pablo Navarrete, Marcela Orellana-Garcia, Laura Rojas, Marcelo Avello-Duarte, Felipe Nunez-Parra, Alexia |
| dc.subject.eng.fl_str_mv |
sensory processing; olfactory bulb; neuromodulation acetylcholine GABA, optogenetic electrophysiological recording |
| topic |
sensory processing; olfactory bulb; neuromodulation acetylcholine GABA, optogenetic electrophysiological recording Procesamiento sensorial neuromodulación bulbo olfatorio acetilcolina GABA optogenética registros electrofisiológicos |
| dc.subject.spa.fl_str_mv |
Procesamiento sensorial neuromodulación bulbo olfatorio acetilcolina GABA optogenética registros electrofisiológicos |
| description |
La percepción sensorial es una de las funciones cerebrales más fundamentales, permitiendo a los individuos interactuar de manera apropiada con el entorno y adaptarse a un ambiente en constante cambio. Este proceso requiere la integración de la actividad neuronal ascendente y descendente, que es mediada por el cerebro basal (BF), una región cerebral que ha sido asociada a una serie de procesos cognitivos, como estados de atención y alerta.En este trabajo revisamos las últimas investigaciones que han utilizado optogenética y registros electrofisiológicos in vivo que han iluminado el rol del BF en el procesamiento olfatorio y la toma de decisiones.Además, resumimos la literatura que destaca las alteraciones fisiológicas y anatómicas del BF de individuos con trastornos del espectro autista, que podrían subyacer las anormalidades en la percepción que presentan,y proponemos esta línea de investigación como una posible oportunidad para entender las bases neurobiológicas de este trastorno. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-07-24T00:00:00Z 2025-08-22T16:59:22Z |
| dc.date.available.none.fl_str_mv |
2023-07-24T00:00:00Z 2025-08-22T16:59:22Z |
| dc.date.issued.none.fl_str_mv |
2023-07-24 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/20112084.6486 |
| dc.identifier.eissn.none.fl_str_mv |
2011-7922 |
| dc.identifier.issn.none.fl_str_mv |
2011-2084 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/28972 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/20112084.6486 |
| identifier_str_mv |
10.21500/20112084.6486 2011-7922 2011-2084 |
| url |
https://hdl.handle.net/10819/28972 https://doi.org/10.21500/20112084.6486 |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/download/6486/5200 |
| dc.relation.citationedition.eng.fl_str_mv |
Núm. 2 , Año 2023 : Psychophysiology and Experimental Psychology |
| dc.relation.citationendpage.none.fl_str_mv |
86 |
| dc.relation.citationissue.eng.fl_str_mv |
2 |
| dc.relation.citationstartpage.none.fl_str_mv |
62 |
| dc.relation.citationvolume.eng.fl_str_mv |
16 |
| dc.relation.ispartofjournal.eng.fl_str_mv |
International Journal of Psychological Research |
| dc.relation.references.eng.fl_str_mv |
Agostinelli, L. J., Geerling, J. C., & Scammell, T. E. (2019). Basal forebrain subcortical projections. Brain Structure and Function, 224(3), 1097–1117. https://doi.org/10.1007/s00429-018-01820-6 Alitto, H. J., & Dan, Y. (2012). Cell-type-specific modulation of neocortical activity by basal forebrain input. Frontiers in Systems Neuroscience, 6(DEC), 1–12. https://doi.org/10.3389/fnsys.2012.00079 Alonso, M., Lepousez, G., Wagner, S., Bardy, C., Gabellec, M. M., Torquet, N., & Lledo, P. M. (2012). Activation of adult-born neurons facilitates learning and memory. Nature Neuroscience, 15(6), 897–904. https://doi.org/10.1038/nn.3108 Alonso, M., Viollet, C., Gabellec, M. M., Meas-Yedid, V., Olivo-Marin, J. C., & Lledo, P. M. (2006). Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. Journal of Neuroscience, 26(41), 10508–10513. https://doi.org/10.1523/JNEUROSCI.2633-06.2006 Altman, J., & Das, G. D. (1965). Post-Natal Origin of Microneurones in the Rat Brain. Nature, 207(5000), 953–956. https://doi.org/10.1038/207953a0 American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR) (American Psychiatric Publishing (ed.); Fifth Edit). https://doi.org/https://doi.org/10.1176/appi.books.9780890425596 Apicella, A., Yuan, Q., Scanziani, M., & Isaacson, J. S. (2010). Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli. Journal of Neuroscience, 30(42), 14255–14260. https://doi.org/10.1523/JNEUROSCI.2747-10.2010 Arruda, D., Publio, R., & Roque, A. C. (2013). The Periglomerular Cell of the Olfactory Bulb and its Role in Controlling Mitral Cell Spiking: A Computational Model. PLoS ONE, 8(2), e56148. https://doi.org/10.1371/journal.pone.0056148 Ashwin, C., Chapman, E., Howells, J., Rhydderch, D., Walker, I., & Baron-Cohen, S. (2014). Enhanced olfactory sensitivity in autism spectrum conditions. Molecular Autism, 5(1), 1–9. https://doi.org/10.1186/2040-2392-5-53 Bacchelli, E., Battaglia, A., Cameli, C., Lomartire, S., Tancredi, R., Thomson, S., Sutcliffe, J. S., & Maestrini, E. (2015). Analysis of CHRNA7 rare variants in autism spectrum disorder susceptibility. American Journal of Medical Genetics, Part A, 167(4), 715–723. https://doi.org/10.1002/ajmg.a.36847 Bangerter, A., Ness, S., Aman, M. G., Esbensen, A. J., Goodwin, M. S., Dawson, G., Hendren, R., Leventhal, B., Khan, A., Opler, M., Harris, A., & Pandina, G. (2017). Autism Behavior Inventory: A Novel Tool for Assessing Core and Associated Symptoms of Autism Spectrum Disorder. Journal of Child and Adolescent Psychopharmacology, 27(9), 814–822. https://doi.org/10.1089/cap.2017.0018 Bastiaansen, M. C. M., & Brunia, C. H. M. (2001). Anticipatory attention: An event-related desynchronization approach. International Journal of Psychophysiology, 43(1), 91–107. https://doi.org/10.1016/S0167-8760(01)00181-7 Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35(6), 866–874. https://doi.org/10.1212/wnl.35.6.866 Bendahmane, M., Ogg, M. C., Ennis, M., & Fletcher, M. L. (2016). Increased olfactory bulb acetylcholine bi-directionally modulates glomerular odor sensitivity. Scientific Reports, 6(April), 1–13. https://doi.org/10.1038/srep25808 Bennetto, L., Kuschner, E. S., & Hyman, S. L. (2007). Olfaction and Taste Processing in Autism. Biological Psychiatry, 62(9), 1015–1021. https://doi.org/10.1016/j.biopsych.2007.04.019 Bodaleo, F., Tapia-Monsalves, C., Cea-Del Rio, C., Gonzalez-Billault, C., & Nunez-Parra, A. (2019). Structural and functional abnormalities in the olfactory system of fragile x syndrome models. In Frontiers in Molecular Neuroscience (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fnmol.2019.00135 Böhm, E., Brunert, D., & Rothermel, M. (2020). Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-67276-z Boudjarane, M. A., Grandgeorge, M., Marianowski, R., Misery, L., & Lemonnier, É. (2017). Perception of odors and tastes in autism spectrum disorders: A systematic review of assessments. Autism Research, 10(6), 1045–1057. https://doi.org/10.1002/aur.1760 Bouret, S., & Sara, S. J. (2004). Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. European Journal of Neuroscience, 20(3), 791–802. https://doi.org/10.1111/j.1460-9568.2004.03526.x Bowles, S., Hickman, J., Peng, X., Williamson, W. R., Huang, R., Washington, K., Donegan, D., & Welle, C. G. (2022). Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron, 110(17), 2867-2885.e7. https://doi.org/10.1016/j.neuron.2022.06.017 Boyd, A. M., Sturgill, J. F., Poo, C., & Isaacson, J. S. (2012). Cortical Feedback Control of Olfactory Bulb Circuits. Neuron, 76(6), 1161–1174. https://doi.org/10.1016/j.neuron.2012.10.020 Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9), 1263–1268. https://doi.org/10.1038/nn1525 Broadbent, D. E. (1958). Perception and communication. In Perception and communication. Pergamon Press. https://doi.org/10.1037/10037-000 Bronshteín, A. A., & Minor, A. V. (1977). [Regeneration of olfactory flagella and restoration of the electroolfactogram following application of triton X-100 to the olfactory mucosa of frogs]. Tsitologiia, 19(1), 33–39. Brunert, D., & Rothermel, M. (2019). Neuromodulation of early sensory processing in the olfactory system. Neuroforum, 25(1), 25–38. https://doi.org/10.1515/nf-2018-0021 Buck, L. B. (1992). A novel multigene family may encode odorant receptors. Society of General Physiologists Series, 65(1), 175–187. https://doi.org/10.1016/0092-8674(91)90418-x Burton, S. D. (2017). Inhibitory circuits of the mammalian main olfactory bulb. Journal of Neurophysiology, 118(4), 2034–2051. https://doi.org/10.1152/jn.00109.2017 Burton, S. D., LaRocca, G., Liu, A., Cheetham, C. E. J., & Urban, N. N. (2017). Olfactory bulb deep short-axon cells mediate widespread inhibition of tufted cell apical dendrites. Journal of Neuroscience, 37(5), 1117–1138. https://doi.org/10.1523/JNEUROSCI.2880-16.2016 Buzsaki, G., Bickford, R. G., Ponomareff, G., Thal, L. J., Mandel, R., & Gage, F. H. (1988). Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. Journal of Neuroscience, 8(11), 4007–4026. https://doi.org/10.1523/jneurosci.08-11-04007.1988 Cang, J., & Isaacson, J. S. (2003). In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. Journal of Neuroscience, 23(10), 4108–4116. https://doi.org/10.1523/jneurosci.23-10-04108.2003 Cascio, C. J., Gu, C., Schauder, K. B., Key, A. P., & Yoder, P. (2015). Somatosensory Event-Related Potentials and Association with Tactile Behavioral Responsiveness Patterns in Children with ASD. Brain Topography, 28(6), 895–903. https://doi.org/10.1007/s10548-015-0439-1 Case, D. T., Burton, S. D., Gedeon, J. Y., Williams, S. P. G., Urban, N. N., & Seal, R. P. (2017). Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb. Nature Communications, 8(1), 652. https://doi.org/10.1038/s41467-017-00765-4 Castillo, P. E., Carleton, A., Vincent, J. D., & Lledo, P. M. (1999). Multiple and opposing roles of cholinergic transmission in the main olfactory bulb. Journal of Neuroscience, 19(21), 9180–9191. https://doi.org/10.1523/jneurosci.19-21-09180.1999 Caulfield, M. P. (1993). Muscarinic Receptors—Characterization, coupling and function. Pharmacology & Therapeutics, 58(3), 319–379. https://doi.org/https://doi.org/10.1016/0163-7258(93)90027-B Chaves-Coira, I., Martín-Cortecero, J., Nuñez, A., & Rodrigo-Angulo, M. L. (2018a). Basal Forebrain Nuclei Display Distinct Projecting Pathways and Functional Circuits to Sensory Primary and Prefrontal Cortices in the Rat. Frontiers in Neuroanatomy, 12(August), 1–15. https://doi.org/10.3389/fnana.2018.00069 Chaves-Coira, I., Rodrigo-Angulo, M. L., & Nuñez, A. (2018b). Bilateral Pathways from the Basal Forebrain to Sensory Cortices May Contribute to Synchronous Sensory Processing. Frontiers in Neuroanatomy, 12, 5. https://doi.org/10.3389/fnana.2018.00005 Chen, Y., Chen, X., Baserdem, B., Zhan, H., Li, Y., Davis, M. B., Kebschull, J. M., Zador, A. M., Koulakov, A. A., & Albeanu, D. F. (2022). High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell, 185(22), 4117-4134.e28. https://doi.org/10.1016/j.cell.2022.09.038 Chez, M. G., Aimonovitch, M., Buchanan, T., Mrazek, S., & Tremb, R. J. (2004). Treating autistic spectrum disorders in children: utility of the cholinesterase inhibitor rivastigmine tartrate. Journal of Child Neurology, 19(3), 165–169. Chien, Y. L., Gau, S. S. F., Shang, C. Y., Chiu, Y. N., Tsai, W. C., & Wu, Y. Y. (2015). Visual memory and sustained attention impairment in youths with autism spectrum disorders. Psychological Medicine, 45(11), 2263–2273. https://doi.org/10.1017/S0033291714003201 Chilian, B., Abdollahpour, H., Bierhals, T., Haltrich, I., Fekete, G., Nagel, I., Rosenberger, G., & Kutsche, K. (2013). Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. Clinical Genetics, 84(6), 560–565. https://doi.org/10.1111/cge.12105 Chong, E., Moroni, M., Wilson, C., Shoham, S., Panzeri, S., & Rinberg, D. (2020). Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science, 368(6497). https://doi.org/10.1126/science.aba2357 Chung, S., & Son, J. W. (2020). Visual perception in autism spectrum disorder: A review of neuroimaging studies. Journal of the Korean Academy of Child and Adolescent Psychiatry, 31(3), 105–120. https://doi.org/10.5765/jkacap.200018 Constanti, A., & Sim, J. A. (1987). Muscarinic receptors mediating suppression of the M-current in guinea-pig olfactory cortex neurones may be of the M2-subtype. British Journal of Pharmacology, 90(1), 3–5. https://doi.org/10.1111/j.1476-5381.1987.tb16818.x D’Souza, R. D., & Vijayaraghavan, S. (2012). Nicotinic Receptor-Mediated Filtering of Mitral Cell Responses to Olfactory Nerve Inputs Involves the α3β4 Subtype. The Journal of Neuroscience, 32(9), 3261 LP – 3266. https://doi.org/10.1523/JNEUROSCI.5024-11.2012 D’Souza, R. D., & Vijayaraghavan, S. (2014). Paying attention to smell: Cholinergic signaling in the olfactory bulb. Frontiers in Synaptic Neuroscience, 6(SEP), 1–11. https://doi.org/10.3389/fnsyn.2014.00021 de Almeida, L., Idiart, M., & Linster, C. (2013). A model of cholinergic modulation in olfactory bulb and piriform cortex. Journal of Neurophysiology, 109(5), 1360–1377. https://doi.org/10.1152/jn.00577.2012 De Rosa, E., & Hasselmo, M. E. (2000). Muscarinic cholinergic neuromodulation reduces proactive interference between stored odor memories during associative learning in rats. Behavioral Neuroscience, 114(1), 32–41. https://doi.org/10.1037/0735-7044.114.1.32 De Rosa, E., Hasselmo, M. E., & Baxtera, M. G. (2001). Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behavioral Neuroscience, 115(2), 314–327. https://doi.org/10.1037/0735-7044.115.2.314 Devore, S., de Almeida, L., & Linster, C. (2014). Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning. Journal of Neuroscience, 34(34), 11244–11260. https://doi.org/10.1523/JNEUROSCI.1499-14.2014 Devore, S., & Linster, C. (2012). Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Frontiers in Behavioral Neuroscience, 6, 52. https://doi.org/10.3389/fnbeh.2012.00052 Devore, S., Pender-Morris, N., Dean, O., Smith, D., & Linster, C. (2016). Basal forebrain dynamics during nonassociative and associative olfactory learning. Journal of Neurophysiology, 115(1), 423–433. https://doi.org/10.1152/jn.00572.2015 Do, J. P., Xu, M., Lee, S. H., Chang, W. C., Zhang, S., Chung, S., Yung, T. J., Fan, J. L., Miyamichi, K., Luo, L., & Dan, Y. (2016). Cell type-specific long-range connections of basal forebrain circuit. ELife, 5(September), 1–18. https://doi.org/10.7554/eLife.13214 Doty, R. L. (1986). Odour-guided behaviour in mammals. Experientia, 42(3), 257–271. https://doi.org/10.1007/BF01942506 Doucette, W., Gire, D. H., Whitesell, J., Carmean, V., Lucero, M. T., & Restrepo, D. (2011). Associative cortex features in the first olfactory brain relay station. Neuron, 69(6), 1176–1187. https://doi.org/10.1016/j.neuron.2011.02.024 Doucette, W., & Restrepo, D. (2008). Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biology, 6(10), 2266–2285. https://doi.org/10.1371/journal.pbio.0060258 Dudova, I., Vodicka, J., Havlovicova, M., Sedlacek, Z., Urbanek, T., & Hrdlicka, M. (2011). Odor detection threshold, but not odor identification, is impaired in children with autism. European Child and Adolescent Psychiatry, 20(7), 333–340. https://doi.org/10.1007/s00787-011-0177-1 Ergaz, Z., Weinstein-Fudim, L., & Ornoy, A. (2016). Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reproductive Toxicology, 64, 116–140. https://doi.org/10.1016/j.reprotox.2016.04.024 Eyre, M. D., Antal, M., & Nusser, Z. (2008). Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar gabaergic connections. Journal of Neuroscience, 28(33), 8217–8229. https://doi.org/10.1523/JNEUROSCI.2490-08.2008 Fletcher, M. L., & Chen, W. R. (2010). Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation. Learning and Memory, 17(11), 561–570. https://doi.org/10.1101/lm.941510 Foss-Feig, J. H., Heacock, J. L., & Cascio, C. J. (2012). Tactile responsiveness patterns and their association with core features in autism spectrum disorders. Research in Autism Spectrum Disorders, 6(1), 337–344. https://doi.org/10.1016/j.rasd.2011.06.007 Friedman, S. D., Shaw, D. W. W., Artru, A. A., Dawson, G., Petropoulos, H., & Dager, S. R. (2006). Gray and white matter brain chemistry in young children with autism. Archives of General Psychiatry, 63(7), 786–794. https://doi.org/10.1001/archpsyc.63.7.786 Friedman, Shaw, D. W., Artru, A. A., Richards, T. L., Gardner, J., Dawson, G., Posse, S., & Dager, S. R. (2003). Regional brain chemical alterations in young children with autism spectrum disorder. Neurology, 60(1), 100–107. https://doi.org/10.1212/WNL.60.1.100 Friedrich, R. W., & Korsching, S. I. (1997). Combinatorial and Chemotopic Odorant Coding in the Zebrafish Olfactory Bulb Visualized by Optical Imaging. Neuron, 18(5), 737–752. https://doi.org/10.1016/S0896-6273(00)80314-1 Fukunaga, I., Herb, J. T., Kollo, M., Boyden, E. S., & Schaefer, A. T. (2014). Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb. Nature Neuroscience, 17(9), 1208–1216. https://doi.org/10.1038/nn.3760 Gadziola, M. A., Stetzik, L. A., Wright, K. N., Milton, A. J., Arakawa, K., del Mar Cortijo, M., & Wesson, D. W. (2020). A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement. Cell Reports, 32(3). https://doi.org/10.1016/j.celrep.2020.107919 Ghaleiha, A., Ghyasvand, M., Mohammadi, M. R., Farokhnia, M., Yadegari, N., Tabrizi, M., Hajiaghaee, R., Yekehtaz, H., & Akhondzadeh, S. (2014). Galantamine efficacy and tolerability as an augmentative therapy in autistic children: A randomized, double-blind, placebo-controlled trial. Journal of Psychopharmacology, 28(7), 677–685. https://doi.org/10.1177/0269881113508830 Gheusi, G., Lepousez, G., & Lledo, P. (2013). Adult-Born Neurons in the Olfactory Bulb : Integration and Functional Consequences. Current Topics in Behavioral Neurosciences, 15, 49–72. https://doi.org/10.1007/7854 Ghosh, S., Larson, S. D., Hefzi, H., Marnoy, Z., Cutforth, T., Dokka, K., & Baldwin, K. K. (2011). Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature, 472(7342), 217–222. https://doi.org/10.1038/nature09945 Gielow, M. R., & Zaborszky, L. (2017). The Input-Output Relationship of the Cholinergic Basal Forebrain. Cell Reports, 18(7), 1817–1830. https://doi.org/10.1016/j.celrep.2017.01.060 Gill, J. V., Lerman, G. M., Zhao, H., Stetler, B. J., Rinberg, D., & Shoham, S. (2020). Precise Holographic Manipulation of Olfactory Circuits Reveals Coding Features Determining Perceptual Detection. Neuron, 108(2), 382-393.e5. https://doi.org/10.1016/j.neuron.2020.07.034 Gire, D. H., & Schoppa, N. E. (2009). Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb. Journal of Neuroscience, 29(43), 13454–13464. https://doi.org/10.1523/JNEUROSCI.2368-09.2009 Gire, D. H., Whitesell, J. D., Doucette, W., & Restrepo, D. (2013). Information for decision-making and stimulus identification is multiplexed in sensory cortex. Nature Neuroscience, 16(8), 991–993. https://doi.org/10.1038/nn.3432 Goard, M., & Dan, Y. (2009). Basal forebrain activation enhances cortical coding of natural scenes. Nature Neuroscience, 12(11), 1444–1449. https://doi.org/10.1038/nn.2402 Gracia-Llanes, F. J., Crespo, C., Blasco-Ibáñez, J. M., Nacher, J., Varea, E., Rovira-Esteban, L., & Martínez-Guijarro, F. J. (2010). GABAergic basal forebrain afferents innervate selectively GABAergic targets in the main olfactory bulb. Neuroscience, 170(3), 913–922. https://doi.org/10.1016/j.neuroscience.2010.07.046 Gritti, I., Henny, P., Galloni, F., Mainville, L., Mariotti, M., & Jones, B. E. (2006). Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience, 143(4), 1051–1064. https://doi.org/10.1016/j.neuroscience.2006.09.024 Gritti, I., Mainville, L., Mancia, M., & Jones, B. E. (1997). GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. Journal of Comparative Neurology, 383(2), 163–177. https://doi.org/10.1002/(SICI)1096-9861(19970630)383:2<163::AID-CNE4>3.0.CO;2-Z Grossberg, S., Palma, J., & Versace, M. (2016). Resonant cholinergic dynamics in cognitive and motor decision-making: Attention, category learning, and choice in neocortex, superior colliculus, and optic tectum. Frontiers in Neuroscience, 9(JAN), 1–26. https://doi.org/10.3389/fnins.2015.00501 Gschwend, O., Beroud, J., & Carleton, A. (2012). Encoding odorant identity by spiking packets of Rate-Invariant neurons in awake mice. PLoS ONE, 7(1), e30155. https://doi.org/10.1371/journal.pone.0030155 Guo, W., Robert, B., & Polley, D. B. (2019). The Cholinergic Basal Forebrain Links Auditory Stimuli with Delayed Reinforcement to Support Learning. Neuron, 103(6), 1164-1177.e6. https://doi.org/10.1016/j.neuron.2019.06.024 Gupta, R., Koscik, T. R., Bechara, A., & Tranel, D. (2011). The amygdala and decision-making. Neuropsychologia, 49(4), 760–766. https://doi.org/10.1016/j.neuropsychologia.2010.09.029 Han, Y., Shi, Y. F., Xi, W., Zhou, R., Tan, Z. B., Wang, H., Li, X. M., Chen, Z., Feng, G., Luo, M., Huang, Z. L., Duan, S., & Yu, Y. Q. (2014). Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Current Biology, 24(6), 693–698. https://doi.org/10.1016/j.cub.2014.02.011 Hangya, B., Ranade, S. P., Lorenc, M., & Kepecs, A. (2015). Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback. Cell, 162(5), 1155–1168. https://doi.org/10.1016/j.cell.2015.07.057 Hanson, E., Brandel-Ankrapp, K. L., & Arenkiel, B. R. (2021). Dynamic Cholinergic Tone in the Basal Forebrain Reflects Reward-Seeking and Reinforcement During Olfactory Behavior. Frontiers in Cellular Neuroscience, 15(February), 1–14. https://doi.org/10.3389/fncel.2021.635837 Hanson, E., Swanson, J., & Arenkiel, B. R. (2020). GABAergic Input From the Basal Forebrain Promotes the Survival of Adult-Born Neurons in the Mouse Olfactory Bulb. Frontiers in Neural Circuits, 14(April), 1–12. https://doi.org/10.3389/fncir.2020.00017 Hardan, A. Y., & Handen, B. L. (2002). A retrospective open trial of adjunctive donepezil in children and adolescents with autistic disorder. Journal of Child and Adolescent Psychopharmacology, 12(3), 237–241. https://doi.org/10.1089/104454602760386923 Hasselmo, M. E., & Bower, J. M. (1992). Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. Journal of Neurophysiology, 67(5), 1222–1229. https://doi.org/10.1152/jn.1992.67.5.1222 Hasselmo, Michael E., & Barkai, E. (1995). Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. Journal of Neuroscience, 15(10), 6592–6604. https://doi.org/10.1523/jneurosci.15-10-06592.1995 Hasselmo, Michael E., & Sarter, M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology, 36(1), 52–73. https://doi.org/10.1038/npp.2010.104 Hernández-Peón, R., Scherrer, H., & Jouvet, M. (1956). Modification of electric activity in cochlear nucleus during “attention” in unanesthetized cats. Science, 123(3191), 331–332. https://doi.org/10.1126/science.123.3191.331 Hodges, H., Fealko, C., & Soares, N. (2020). Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Translational Pediatrics, 9(S1), S55–S65. https://doi.org/10.21037/tp.2019.09.09 Hoover, K. C. (2010). Smell with inspiration: The evolutionary significance of olfaction. American Journal of Physical Anthropology, 143(SUPPL. 51), 63–74. https://doi.org/10.1002/ajpa.21441 Hur, E. E., & Zaborszky, L. (2005). Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: A combined retrograde tracing in situ hybridization. Journal of Comparative Neurology, 483(3), 351–373. https://doi.org/10.1002/cne.20444 Igarashi, K. M., Ieki, N., An, M., Yamaguchi, Y., Nagayama, S., Kobayakawa, K., Kobayakawa, R., Tanifuji, M., Sakano, H., Chen, W. R., & Mori, K. (2012). Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. Journal of Neuroscience, 32(23), 7970–7985. https://doi.org/10.1523/JNEUROSCI.0154-12.2012 Isaacson, J. S., & Strowbridge, B. W. (1998). Olfactory Reciprocal Synapses: Dendritic Signaling in the CNS Electron microscopic evidence indicates that mitral cell dendrites contain synaptic vesicles clustered around active zones (Rall et al. Neuron, 20(4), 749–761. Jahr, B. Y. C. E., & Nicoll, R. A. (1982). An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. The Journal of Physiology, 326, 213–234. https://doi.org/10.1113/jphysiol.1982.sp014187 Jaramillo, S., & Zador, A. M. (2011). The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nature Neuroscience, 14(2), 246–253. https://doi.org/10.1038/nn.2688 Johnson, B., & Leon, M. (2007). Chemotopic Odorant Coding in a Mammalian Olfactory System. Journal of Comparative Neurology, 503(1), 1–34. https://doi.org/10.1002/cne.21396 Karvat, G., & Kimchi, T. (2014). Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology, 39(4), 831–840. https://doi.org/10.1038/npp.2013.274 Kay, L. M. (2005). Theta oscillations and sensorimotor performance. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3863–3868. https://doi.org/10.1073/pnas.0407920102 Kemper, T., & Bauman, M. (1998). Neuropathology of Infantile Austism. Journal of Neuropathology and Experimenta Neurology, 57(7), 645–652. https://doi.org/10.1097/00005072-199807000-00001 Khalighinejad, N., Priestley, L., Jbabdi, S., & Rushworth, M. F. S. (2020). Human decisions about when to act originate within a basal forebrain-nigral circuit. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11799–11810. https://doi.org/10.1073/pnas.1921211117 Klinkenberg, I., Sambeth, A., & Blokland, A. (2011). Acetylcholine and attention. Behavioural Brain Research, 221(2), 430–442. https://doi.org/10.1016/j.bbr.2010.11.033 Koehler, L., Fournel, A., Albertowski, K., Roessner, V., Gerber, J., Hummel, C., Hummel, T., & Bensafi, M. (2018). Impaired odor perception in autism spectrum disorder is associated with decreased activity in olfactory cortex. Chemical Senses, 43(8), 627–634. https://doi.org/10.1093/chemse/bjy051 Koevoet, D., Deschamps, P. K. H., & Kenemans, J. L. (2021). Catecholaminergic and Cholinergic Neuromodulation in Autism Spectrum Disorder : A Comparison to Attention-Deficit Hyperactivity Disorder. PsyArXiv. https://doi.org/10.31234/osf.io/nb5j8 Kondo, H., & Zaborszky, L. (2016). Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. Journal of Comparative Neurology, 524(12), 2503–2515. https://doi.org/https://doi.org/10.1002/cne.23967 Kudryavitskaya, E., Marom, E., Shani-Narkiss, H., Pash, D., & Mizrahi, A. (2021). Flexible categorization in the mouse olfactory bulb. Current Biology, 31(8), 1616-1631.e4. https://doi.org/10.1016/j.cub.2021.01.063 Lagier, S., Carleton, A., & Lledo, P. M. (2004). Interplay between Local GABAergic Interneurons and Relay Neurons Generates γ Oscillations in the Rat Olfactory Bulb. Journal of Neuroscience, 24(18), 4382–4392. https://doi.org/10.1523/JNEUROSCI.5570-03.2004 Lam, K. S. L., Bodfish, J. W., & Piven, J. (2008). Evidence for three subtypes of repetitive behavior in autism that differ in familiality and association with other symptoms. Journal of Child Psychology and Psychiatry and Allied Disciplines, 49(11), 1193–1200. https://doi.org/10.1111/j.1469-7610.2008.01944.x Laszlovszky, T., Schlingloff, D., Hegedüs, P., Freund, T. F., Gulyás, A., Kepecs, A., & Hangya, B. (2020). Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types. Nature Neuroscience, 23(8), 992–1003. https://doi.org/10.1038/s41593-020-0648-0 Leach, N. D., Nodal, F. R., Cordery, P. M., King, A. J., & Bajo, V. M. (2013). Cortical cholinergic input is required for normal auditory perception and experience-dependent plasticity in adult ferrets. Journal of Neuroscience, 33(15), 6659–6671. https://doi.org/10.1523/JNEUROSCI.5039-12.2013 Lee, S. H., & Dan, Y. (2012). Neuromodulation of Brain States. Neuron, 76(1), 209–222. https://doi.org/10.1016/j.neuron.2012.09.012 Lewis, A. S., van Schalkwyk, G. I., Lopez, M. O., Volkmar, F. R., Picciotto, M. R., & Sukhodolsky, D. G. (2018). An Exploratory Trial of Transdermal Nicotine for Aggression and Irritability in Adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 48(8), 2748–2757. https://doi.org/10.1007/s10803-018-3536-7 Li, G., & Cleland, T. (2013). A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. Journal of Neuroscience, 33(7), 3037–3058. https://doi.org/10.1523/JNEUROSCI.2831-12.2013 Li, X., Yu, B., Sun, Q., Zhang, Y., Ren, M., Zhang, X., Li, A., Yuan, J., Madisen, L., Luo, Q., Zeng, H., Gong, H., & Qiu, Z. (2018). Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 115(2), 415–420. https://doi.org/10.1073/pnas.1703601115 Lim, D., & Alvarez-Buylla, A. (2016). The Adult Ventricular – Subventricular Zone and Olfactory bulb Neurogenesis. Cold Spring Harbor Perspectives in Biology, 8(5), a018820. https://www.ncbi.nlm.nih.gov/pubmed/27048191 Lin, S. C., Brown, R. E., Shuler, M. G. H., Petersen, C. C. H., & Kepecs, A. (2015). Optogenetic dissection of the basal forebrain neuromodulatory control of cortical activation, plasticity, and cognition. Journal of Neuroscience, 35(41), 13896–13903. https://doi.org/10.1523/JNEUROSCI.2590-15.2015 Lin, S. C., & Nicolelis, M. A. L. (2008). Neuronal Ensemble Bursting in the Basal Forebrain Encodes Salience Irrespective of Valence. Neuron, 59(1), 138–149. https://doi.org/10.1016/j.neuron.2008.04.031 Linster, C., Wyble, B. P., & Hasselmo, M. E. (1999). Electrical stimulation of the horizontal limb of the diagonal band of broca modulates population EPSPs in piriform cortex. Journal of Neurophysiology, 81(6), 2737–2742. https://doi.org/10.1152/jn.1999.81.6.2737 Liu, S., Shao, Z., Puche, A., Wachowiak, M., Rothermel, M., & Shipley, M. T. (2015). Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output. Journal of Neuroscience, 35(14), 5680–5692. https://doi.org/10.1523/JNEUROSCI.4953-14.2015 Lledo, P. M., & Valley, M. (2016). Adult olfactory bulb neurogenesis. Cold Spring Harbor Perspectives in Biology, 8(8). https://doi.org/10.1101/cshperspect.a018945 Lois, C., & Alvarez-Buylla, A. (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proceedings of the National Academy of Sciences of the United States of America, 90(5), 2074–2077. https://doi.org/10.1073/pnas.90.5.2074 Lois, C., & Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science (New York, N.Y.), 264(5162), 1145–1148. https://doi.org/10.1126/science.8178174 Lowther, C., Costain, G., Stavropoulos, D. J., Melvin, R., Silversides, C. K., Andrade, D. M., So, J., Faghfoury, H., Lionel, A. C., Marshall, C. R., Scherer, S. W., & Bassett, A. S. (2015). Delineating the 15q13.3 microdeletion phenotype: A case series and comprehensive review of the literature. Genetics in Medicine, 17(2), 149–157. https://doi.org/10.1038/gim.2014.83 Luchicchi, A., Bloem, B., Viaña, J. N. M., Mansvelder, H. D., & Role, L. W. (2014). Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors. Frontiers in Synaptic Neuroscience, 6(OCT), 1–10. https://doi.org/10.3389/fnsyn.2014.00024 Luskin, M. B., & Price, J. L. (1982). The distribution of axon collaterals from the olfactory bulb and the nucleus of the horizontal limb of the diagonal band to the olfactory cortex, demonstrated by double retrograde labeling techniques. Journal of Comparative Neurology, 209(3), 249–263. https://doi.org/10.1002/cne.902090304 Lyons-Warren, A. M., Herman, I., Hunt, P. J., & Arenkiel, B. (2021). A systematic-review of olfactory deficits in neurodevelopmental disorders: From mouse to human. Neuroscience and Biobehavioral Reviews, 125(January), 110–121. https://doi.org/10.1016/j.neubiorev.2021.02.024 Ma, M., & Luo, M. (2012). Optogenetic activation of basal forebrain cholinergic neurons modulates neuronal excitability and sensory responses in the main olfactory bulb. Journal of Neuroscience, 32(30), 10105–10116. https://doi.org/10.1523/JNEUROSCI.0058-12.2012 Malnic, B., Hirono, J., Sato, T., & Buck, L. B. (1999). Combinatorial receptor codes for odors. Cell, 96(5), 713–723. https://doi.org/10.1016/S0092-8674(00)80581-4 Malun, D., & Brunjes, P. C. (1996). Development of olfactory glomeruli: Temporal and spatial interactions between olfactory receptor axons and mitral cells in opossums and rats. Journal of Comparative Neurology, 368(1), 1–16. https://doi.org/10.1002/(SICI)1096-9861(19960422)368:1<1::AID-CNE1>3.0.CO;2-7 Mandairon, N., Sacquet, J., Garcia, S., Ravel, N., Jourdan, F., & Didier, A. (2006). Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. European Journal of Neuroscience, 24(12), 3578–3588. https://doi.org/10.1111/j.1460-9568.2006.05235.x Manns, I. D., Mainville, L., & Jones, B. E. (2001). Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience, 107(2), 249–263. https://doi.org/https://doi.org/10.1016/S0306-4522(01)00302-5 Mark, G. P., Shabani, S., Dobbs, L. K., & Hansen, S. T. (2011). Cholinergic modulation of mesolimbic dopamine function and reward. Physiology and Behavior, 104(1), 76–81. https://doi.org/10.1016/j.physbeh.2011.04.052 Martin-Ruiz, C. M., Lee, M., Perry, R. H., Baumann, M., Court, J. A., & Perry, E. K. (2004). Molecular analysis of nicotinic receptor expression in autism. Molecular Brain Research, 123(1), 81–90. https://doi.org/10.1016/j.molbrainres.2004.01.003 Matsutani, S. (2010). Trajectory and terminal distribution of single centrifugal axons from olfactory cortical areas in the rat olfactory bulb. Neuroscience, 169(1), 436–448. https://doi.org/10.1016/j.neuroscience.2010.05.001 Matsutani, S., & Yamamoto, N. (2008). Centrifugal innervation of the mammalian olfactory bulb. Anatomical Science International, 83(4), 218–227. https://doi.org/10.1111/j.1447-073x.2007.00223.x Minces, V., Pinto, L., Dan, Y., & Chiba, A. A. (2017). Cholinergic shaping of neural correlations. Proceedings of the National Academy of Sciences of the United States of America, 114(22), 5725–5730. https://doi.org/10.1073/pnas.1621493114 Miura, K., Mainen, Z. F., & Uchida, N. (2012). Odor Representations in Olfactory Cortex: Distributed Rate Coding and Decorrelated Population Activity. Neuron, 74(6), 1087–1098. https://doi.org/10.1016/j.neuron.2012.04.021 Moyano, H. F., & Molina, J. C. (1982). Olfactory connections of substantia innominata and nucleus of the horizontal limb of the diagonal band in the rat: An electrophysiological study. Neuroscience Letters, 34(3), 241–246. https://doi.org/10.1016/0304-3940(82)90182-3 Murphy, C. M., Christakou, A., Daly, E. M., Ecker, C., Giampietro, V., Brammer, M., Smith, A. B., Johnston, P., Robertson, D. M., Murphy, D. G., Rubia, K., Bailey, A. J., Baron-Cohen, S., Bolton, P. F., Bullmore, E. T., Carrington, S., Chakrabarti, B., Deoni, S. C., Happe, F., … Williams, S. C. (2014). Abnormal functional activation and maturation of fronto-striato-temporal and cerebellar regions during sustained attention in autism spectrum disorder. American Journal of Psychiatry, 171(10), 1107–1116. https://doi.org/10.1176/appi.ajp.2014.12030352 Murphy, D., Critchley, H., Schmitz, N., McAlonan, G., van Amelsvoort, T., Robertson, D., Daly, E., Rowe, A., Russell, A., Simmons, A., Murphy, K., & Howlin, P. (2002). Asperger Syndrome: A Proton Magnetic Resonance Spectroscopy Study of Brain. Archives of General Psychiatry, 59(10), 885–891. https://doi.org/10.1001/archpsyc.59.10.885 Nagayama, S., Enerva, A., Fletcher, M. L., Masurkar, A. V., Igarashi, K. M., Mori, K., & Chen, W. R. (2010). Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Frontiers in Neural Circuits, 4, 1–8. https://doi.org/10.3389/fncir.2010.00120 Nobre, A., Correa, A., & Coull, J. (2007). The hazards of time. Current Opinion in Neurobiology, 17(4), 465–470. https://doi.org/10.1016/j.conb.2007.07.006 Nunez-Parra, A., Cea-Del Rio, C. A., Huntsman, M. M., & Restrepo, D. (2020). The Basal Forebrain Modulates Neuronal Response in an Active Olfactory Discrimination Task. Frontiers in Cellular Neuroscience, 14(June), 1–14. https://doi.org/10.3389/fncel.2020.00141 Nunez-Parra, A., Li, A., & Restrepo, D. (2014). Coding odor identity and odor value in awake rodents. Progress in Brain Research, 208, 205–222. https://doi.org/10.1016/B978-0-444-63350-7.00008-5 Nunez-Parra, A., Maurer, R. K., Krahe, K., Smith, R. S., & Araneda, R. C. (2013). Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14777–14782. https://doi.org/10.1073/pnas.1310686110 Nusser, Z., Kay, L. M., Laurent, G., Homanics, G. E., & Mody, I. (2001). Disruption of GABAA receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. Journal of Neurophysiology, 86(6), 2823–2833. https://doi.org/10.1152/jn.2001.86.6.2823 Ogg, M. C., Ross, J. M., Bendahmane, M., & Fletcher, M. L. (2018). Olfactory bulb acetylcholine release dishabituates odor responses and reinstates odor investigation. Nature Communications, 9(1), 1868. https://doi.org/10.1038/s41467-018-04371-w Oikonomakis, V., Kosma, K., Mitrakos, A., Sofocleous, C., Pervanidou, P., Syrmou, A., Pampanos, A., Psoni, S., Fryssira, H., Kanavakis, E., Kitsiou-Tzeli, S., & Tzetis, M. (2016). Recurrent copy number variations as risk factors for autism spectrum disorders: Analysis of the clinical implications. Clinical Genetics, 89(6), 708–718. https://doi.org/10.1111/cge.12740 Okumura, T., Kumazaki, H., Singh, A. K., Touhara, K., & Okamoto, M. (2020). Individuals with Autism Spectrum Disorder Show Altered Event-Related Potentials in the Late Stages of Olfactory Processing. Chemical Senses, 45(1), 45–58. https://doi.org/10.1093/chemse/bjz070 Olender, T., Waszak, S. M., Viavant, M., Khen, M., Ben-Asher, E., Reyes, A., Nativ, N., Wysocki, C. J., Ge, D., & Lancet, D. (2012). Personal receptor repertoires: olfaction as a model. BMC Genomics, 13(1). https://doi.org/10.1186/1471-2164-13-414 Olincy, A., Blakeley-Smith, A., Johnson, L., Kem, W. R., & Freedman, R. (2016). Brief Report: Initial Trial of Alpha7-Nicotinic Receptor Stimulation in Two Adult Patients with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 46(12), 3812–3817. https://doi.org/10.1007/s10803-016-2890-6 Oswald, A. M., & Urban, N. N. (2012). There and Back Again: The Corticobulbar Loop. Neuron, 76(6), 1045–1047. https://doi.org/10.1016/j.neuron.2012.12.006 Pashkovski, S. L., Iurilli, G., Brann, D., Chicharro, D., Drummey, K., Franks, K., Panzeri, S., & Datta, S. R. (2020). Structure and flexibility in cortical representations of odour space. Nature, 583(7815), 253–258. https://doi.org/10.1038/s41586-020-2451-1 Patil, M. M., Linster, C., Lubenov, E., & Hasselmo, M. E. (1998). Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. Journal of Neurophysiology, 80(5), 2467–2474. https://doi.org/10.1152/jn.1998.80.5.2467 Perry, E. K., Lee, M. L. W., Martin-Ruiz, C. M., Court, J. A., Volsen, S. G., Merrit, J., Folly, E., Iversen, P. E., Bauman, M. L., Perry, R. H., & Wenk, G. L. (2001). Cholinergic activity in autism: Abnormalities in the cerebral cortex and basal forebrain. American Journal of Psychiatry, 158(7), 1058–1066. https://doi.org/10.1176/appi.ajp.158.7.1058 Petreanu, L., & Alvarez-Buylla, A. (2002). Maturation and Death of Adult-Born Olfactory Bulb Granule Neurons: Role of Olfaction. The Journal of Neuroscience, 22(14), 6106 LP – 6113. https://doi.org/10.1523/JNEUROSCI.22-14-06106.2002 Pinto, L., Goard, M. J., Estandian, D., Xu, M., Kwan, A. C., Lee, S. H., Harrison, T. C., Feng, G., & Dan, Y. (2013). Fast modulation of visual perception by basal forebrain cholinergic neurons. Nature Neuroscience, 16(12), 1857–1863. https://doi.org/10.1038/nn.3552 Price, J. L. (1973). An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. Journal of Comparative Neurology, 150(1), 87–108. https://doi.org/10.1002/cne.901500105 Quast, K. B., Ung, K., Froudarakis, E., Huang, L., Herman, I., Addison, A. P., Ortiz-Guzman, J., Cordiner, K., Saggau, P., Tolias, A. S., & Arenkiel, B. R. (2017). Developmental broadening of inhibitory sensory maps. Nature Neuroscience, 20(2), 189–199. https://doi.org/10.1038/nn.4467 Rajkowski, J., Majczynski, H., Clayton, E., & Aston-Jones, G. (2004). Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. Journal of Neurophysiology, 92(1), 361–371. https://doi.org/10.1152/jn.00673.2003 Rall, W., Shepherd, G. M., Reese, T. S., & Brightman, M. W. (1966). Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Experimental Neurology, 14(1), 44–56. https://doi.org/10.1016/0014-4886(66)90023-9 Rauss, K., & Pourtois, G. (2013). What is bottom-up and what is top-down in predictive coding. Frontiers in Psychology, 4(MAY), 1–8. https://doi.org/10.3389/fpsyg.2013.00276 Ressler, K. J., Sullivan, S. L., & Buck, L. B. (1994). A molecular dissection of spatial patterning in the olfactory system. Current Opinion in Neurobiology, 4(4), 588–596. https://doi.org/10.1016/0959-4388(94)90061-2 Richardson, R. T., & DeLong, M. R. (1990). Context-dependent responses of primate nucleus basalis neurons in a go/no-go task. Journal of Neuroscience, 10(8), 2528–2540. https://doi.org/10.1523/jneurosci.10-08-02528.1990 Riva, D., Bulgheroni, S., Aquino, D., Di Salle, F., Savoiardo, M., & Erbetta, A. (2011). Basal forebrain involvement in low-functioning autistic children: A voxel-based morphometry study. American Journal of Neuroradiology, 32(8), 1430–1435. https://doi.org/10.3174/ajnr.A2527 Robertson, C. E., & Baron-Cohen, S. (2017). Sensory perception in autism. Nature Reviews Neuroscience, 18(11), 671–684. https://doi.org/10.1038/nrn.2017.112 Robinson, L., Platt, B., & Riedel, G. (2011). Involvement of the cholinergic system in conditioning and perceptual memory. Behavioural Brain Research, 221(2), 443–465. https://doi.org/10.1016/j.bbr.2011.01.055 Roman, F. S., Simonetto, I., & Soumireu-Mourat, B. (1993). Learning and Memory of Odor-Reward Association: Selective Impairment Following Horizontal Diagonal Band Lesions. Behavioral Neuroscience, 107(1), 72–81. https://doi.org/10.1037/0735-7044.107.1.72 Rosin, J. F., Datiche, F., & Cattarelli, M. (1999). Modulation of the piriform cortex activity by the basal forebrain: An optical recording study in the rat. Brain Research, 820(1–2), 105–111. https://doi.org/10.1016/S0006-8993(98)01369-9 Rothermel, M., Carey, R. M., Puche, A., Shipley, M. T., & Wachowiak, M. (2014). Cholinergic inputs from basal forebrain add an excitatory bias to odor coding in the olfactory bulb. Journal of Neuroscience, 34(13), 4654–4664. https://doi.org/10.1523/JNEUROSCI.5026-13.2014 Saar, D., Dadon, M., Leibovich, M., Sharabani, H., Grossman, Y., & Heldman, E. (2007). Opposing effects on muscarinic acetylcholine receptors in the piriform cortex of odor-trained rats. Learning and Memory, 14(3), 224–228. https://doi.org/10.1101/lm.452307 Saar, D., Grossman, Y., & Barkai, E. (2001). Long-lasting cholinergic modulation underlies rule learning in rats. Journal of Neuroscience, 21(4), 1385–1392. https://doi.org/10.1523/jneurosci.21-04-01385.2001 Salcedo, E., Tran, T., Ly, X., Lopez, R., Barbica, C., Restrepo, D., & Vijayaraghavan, S. (2011). Activity-dependent changes in cholinergic innervation of the mouse olfactory bulb. PLoS ONE, 6(10), e25441. https://doi.org/10.1371/journal.pone.0025441 Sanz Diez, A., Najac, M., & De Saint Jan, D. (2019). Basal forebrain GABAergic innervation of olfactory bulb periglomerular interneurons. Journal of Physiology, 597(9), 2547–2563. https://doi.org/10.1113/JP277811 Saper, C. B. (1984). Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. Journal of Comparative Neurology, 222(3), 313–342. https://doi.org/10.1002/cne.902220302 Saper, C. B. (1987). Diffuse Cortical Projection Systems: Anatomical Organization and Role in Cortical Function. Comprehensive Physiology, 217, 169–210. https://doi.org/10.1002/cphy.cp010506 Schoppa, N. E., Kinzie, J. M., Sahara, Y., Segerson, T. P., & Westbrook, G. L. (1998). Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. Journal of Neuroscience, 18(17), 6790–6802. https://doi.org/10.1523/jneurosci.18-17-06790.1998 Semba, K. (2000). Multiple output pathways of the basal forebrain: Organization, chemical heterogeneity, and roles in vigilance. Behavioural Brain Research, 115(2), 117–141. https://doi.org/10.1016/S0166-4328(00)00254-0 Senut, M. C., Menetrey, D., & Lamour, Y. (1989). Cholinergic and peptidergic projections from the medial septum and the nucleus of the diagonal band of broca to dorsal hippocampus, cingulate cortex and olfactory bulb: A combined wheatgerm agglutinin-apohorseradish peroxidase-gold immunohistochemical stu. Neuroscience, 30(2), 385–403. https://doi.org/10.1016/0306-4522(89)90260-1 Shah, A., & Frith, U. (1983). an Islet of Ability in Autistic Children: a Research Note. Journal of Child Psychology and Psychiatry, 24(4), 613–620. https://doi.org/10.1111/j.1469-7610.1983.tb00137.x Shao, Z., Puche, A. C., Kiyokage, E., Szabo, G., & Shipley, M. T. (2009). Two GABAergic intraglomerular circuits differentially regulate tonic and phasic presynaptic inhibition of olfactory nerve terminals. Journal of Neurophysiology, 101(4), 1988–2001. https://doi.org/10.1152/jn.91116.2008 Shepherd, G. M., Chen, W. R., Willhite, D., Migliore, M., & Greer, C. A. (2007). The olfactory granule cell: From classical enigma to central role in olfactory processing. Brain Research Reviews, 55(2), 373–382. https://doi.org/10.1016/j.brainresrev.2007.03.005 Shi, Y. F., Han, Y., Su, Y. T., Yang, J. H., & Yu, Y. Q. (2015). Silencing of cholinergic basal forebrain neurons using archaerhodopsin prolongs slow-wave sleep in mice. PLoS ONE, 10(7), 1–18. https://doi.org/10.1371/journal.pone.0130130 Shipley, M. T., & Adamek, G. D. (1984). the connections of the mouse olfactory bulb: A study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Research Bulletin, 12(6), 669–688. https://doi.org/10.1016/0361-9230(84)90148-5 Slotnick, B., & Weiler, E. (2009). Olfactory Perception. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of Neuroscience (pp. 3007–3010). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_4192 Smith, R. S., & Araneda, R. C. (2010). Cholinergic modulation of neuronal excitability in the accessory olfactory bulb. Journal of Neurophysiology, 104(6), 2963–2974. https://doi.org/10.1152/jn.00446.2010 Smith, R. S., Hu, R., DeSouza, A., Eberly, C. L., Krahe, K., Chan, W., & Araneda, R. C. (2015). Differential muscarinic modulation in the olfactory bulb. Journal of Neuroscience, 35(30), 10773–10785. https://doi.org/10.1523/JNEUROSCI.0099-15.2015 Soucy, E. R., Albeanu, D. F., Fantana, A. L., Murthy, V. N., & Meister, M. (2009). Precision and diversity in an odor map on the olfactory bulb. Nature Neuroscience, 12(2), 210–220. https://doi.org/10.1038/nn.2262 Soudry, Y., Lemogne, C., Malinvaud, D., Consoli, S. M., & Bonfils, P. (2011). Olfactory system and emotion: Common substrates. European Annals of Otorhinolaryngology, Head and Neck Diseases, 128(1), 18–23. https://doi.org/10.1016/j.anorl.2010.09.007 Spors, H., & Grinvald, A. (2002). Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron, 34(2), 301–315. https://doi.org/10.1016/S0896-6273(02)00644-X Steriade, M. (2004). Acetylcholine systems and rhythmic activities during the waking-sleep cycle. Progress in Brain Research, 145, 179–196. https://doi.org/10.1016/S0079-6123(03)45013-9 Stevenson, R. A., Philipp-Muller, A., Hazlett, N., Wang, Z. Y., Luk, J., Lee, J., Black, K. R., Yeung, L. K., Shafai, F., Segers, M., Feber, S., & Barense, M. D. (2019). Conjunctive visual processing appears abnormal in Autism. Frontiers in Psychology, 9, 1–7. https://doi.org/10.3389/fpsyg.2018.02668 Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Tsujii, M., Futatsubashi, M., Iwata, Y., Tsuchiya, K. J., Matsumoto, K., Takebayashi, K., Wakuda, T., Yoshihara, Y., Suda, S., Kikuchi, M., Takei, N., Sugiyama, T., Irie, T., & Mori, N. (2011). Reduced acetylcholinesterase activity in the fusiform gyrus in adults with autism spectrum disorders (Archives of General Psychiatry (2011) 68, 3 (306-313)). Archives of General Psychiatry, 68(5), 306–313. https://doi.org/10.1001/archgenpsychiatry.2011.33 Suzuki, Y., Critchley, H. D., Rowe, A., Howlin, P., & Murphy, D. G. M. (2003). Impaired olfactory identification in Asperger’s syndrome. Journal of Neuropsychiatry and Clinical Neurosciences, 15(1), 105–107. https://doi.org/10.1176/jnp.15.1.105 Tan, J., Savigner, A., Ma, M., & Luo, M. (2010). Odor Information Processing by the Olfactory Bulb Analyzed in Gene-Targeted Mice. Neuron, 65(6), 912–926. https://doi.org/10.1016/j.neuron.2010.02.011 Thomas, A. P., & Westrum, L. E. (1989). Plasticity-related binding of GABA and muscarinic receptor sites in piriform cortex of rat: An autoradiographic study. Experimental Neurology, 105(3), 265–271. https://doi.org/10.1016/0014-4886(89)90129-5 Thomson, E., Lou, J., Sylvester, K., McDonough, A., Tica, S., & Nicolelis, M. A. (2014). Basal forebrain dynamics during a tactile discrimination task. Journal of Neurophysiology, 112(5), 1179–1191. https://doi.org/10.1152/jn.00040.2014 Uchida, N., Poo, C., & Haddad, R. (2014). Coding and transformations in the olfactory system. Annual Review of Neuroscience, 37, 363–385. https://doi.org/10.1146/annurev-neuro-071013-013941 Uchida, N., Takahashi, Y. K., Tanifuji, M., & Mori, K. (2000). Odor maps in the mammalian olfactory bulb: Domain organization and odorant structural features. Nature Neuroscience, 3(10), 1035–1043. https://doi.org/10.1038/79857 van Hoorn, A., Carpenter, T., Oak, K., Laugharne, R., Ring, H., & Shankar, R. (2019). Neuromodulation of autism spectrum disorders using vagal nerve stimulation. Journal of Clinical Neuroscience : Official Journal of the Neurosurgical Society of Australasia, 63, 8–12. https://doi.org/10.1016/j.jocn.2019.01.042 Vassar, R., Chao, S. K., Sitcheran, R., Nuiiez, M., Vosshall, L. B., & Axel, R. (1994). Topographic O rganization of Sensory Projection to the O lfactory Bulb. Cell, 79(6), 981–991. https://doi.org/10.1016/0092-8674(94)90029-9 Villar, P. S., Hu, R., & Araneda, R. C. (2021). Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb. The Journal of Neuroscience, 41(16), 3610–3621. https://doi.org/10.1523/jneurosci.1498-20.2021 Voytko, M. Lou, Olton, D. S., Richardson, R. T., Gorman, L. K., Tobin, J. R., & Price, D. L. (1994). Basal forebrain lesions in monkeys disrupt attention but not learning and memory. Journal of Neuroscience, 14(1), 167–186. https://doi.org/10.1523/jneurosci.14-01-00167.1994 Wang, L., Almeida, L. E. F., Spornick, N. A., Kenyon, N., Kamimura, S., Khaibullina, A., Nouraie, M., & Quezado, Z. M. N. (2015). Modulation of social deficits and repetitive behaviors in a mouse model of autism: The role of the nicotinic cholinergic system. Psychopharmacology, 232(23), 4303–4316. https://doi.org/10.1007/s00213-015-4058-z Wegiel, J., Flory, M., Kuchna, I., Nowicki, K., Ma, S. Y., Imaki, H., Wegiel, J., Cohen, I. L., London, E., Brown, W. T., & Wisniewski, T. (2014). Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathologica Communications, 2(1), 1–18. https://doi.org/10.1186/2051-5960-2-28 Wesson, D. W., & Wilson, D. A. (2011). Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neuroscience and Biobehavioral Reviews, 35(3), 655–668. https://doi.org/10.1016/j.neubiorev.2010.08.004 Wilson, C. D., Serrano, G. O., Koulakov, A. A., & Rinberg, D. (2017). A primacy code for odor identity. Nature Communications, 8(1), 1477. https://doi.org/10.1038/s41467-017-01432-4 Wilson, D., & Sullivan, R. (2011). Cortical processing of odor objects. Neuron, 72(4), 506–519. https://doi.org/10.1016/j.neuron.2011.10.027 Wilson, F. A. W., & Rolls, E. T. (1990). Learning and memory is reflected in the responses of reinforcement-related neurons in the primate basal forebrain. Journal of Neuroscience, 10(4), 1254–1267. https://doi.org/10.1523/jneurosci.10-04-01254.1990 Xiong, W., & Chen, W. R. (2002). Dynamic gating of spike propagation in the mitral cell lateral dendrites. Neuron, 34(1), 115–126. https://doi.org/10.1016/S0896-6273(02)00628-1 Yamaguchi, M., & Mori, K. (2005). Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9697–9702. https://doi.org/10.1073/pnas.0406082102 Yang, C., McKenna, J. T., Zant, J. C., Winston, S., Basheer, R., & Brown, R. E. (2014). Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. Journal of Neuroscience, 34(8), 2832–2844. https://doi.org/10.1523/JNEUROSCI.3235-13.2014 Yang, C., Thankachan, S., McCarley, R. W., & Brown, R. E. (2017). The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Current Opinion in Neurobiology, 44, 159–166. https://doi.org/10.1016/j.conb.2017.05.004 Yokoi, M., Mori, K., & Nakanishi, S. (1995). Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 92(8), 3371–3375. https://doi.org/10.1073/pnas.92.8.3371 Yu, J., & Frank, L. (2015). Hippocampal-cortical interaction in decision making. Neurobiology of Learning and Memory, 117, 34–41. https://doi.org/10.1016/j.nlm.2014.02.002 Yu, L., & Wang, S. (2021). Aberrant auditory system and its developmental implications for autism. Science China Life Sciences, 64(6), 861–878. https://doi.org/10.1007/s11427-020-1863-6 Záborszky, L., Carlsen, J., Brashear, H. R., & Heimer, L. (1986a). Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. Journal of Comparative Neurology, 243(4), 488–509. https://doi.org/10.1002/cne.902430405 Záborszky, L., Heimer, L., Eckenstein, F., & Leranth, C. (1986b). GABAergic input to cholinergic forebrain neurons: An ultrastructural study using retrograde tracing of HRP and double immunolabeling. Journal of Comparative Neurology, 250(3), 282–295. https://doi.org/10.1002/cne.902500303 Zaborszky, L., & Duque, A. (2000). Local synaptic connections of basal forebrain neurons. Behavioural Brain Research, 115(2), 143–158. https://doi.org/10.1016/S0166-4328(00)00255-2 Zaborszky, L., & Duque, A. (2000). Local synaptic connections of basal forebrain neurons. Behavioural Brain Research, 115(2), 143–158. https://doi.org/10.1016/S0166-4328(00)00255-2 Zaborszky, L. (2002). The modular organization of brain systems. Basal forebrain: The last frontier. Progress in Brain Research, 136, 359–372. https://doi.org/10.1016/S0079-6123(02)36030-8 Zaborszky, L., van den Pol, A. N., & Gyengesi, E. (2012). The Basal Forebrain Cholinergic Projection System in Mice. In The Mouse Nervous System. https://doi.org/10.1016/B978-0-12-369497-3.10028-7 Zaborszky, L., Csordas, A., Mosca, K., Kim, J., Gielow, M. R., Vadasz, C., & Nadasdy, Z. (2015). Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: An experimental study based on retrograde tracing and 3D reconstruction. Cerebral Cortex, 25(1), 118–137. https://doi.org/10.1093/cercor/bht210 Zaborszky, L., & Gombkoto, P. (2018). The Cholinergic Multicompartmental Basal Forebrain Microcircuit. In G. M. Shepherd, S. Grillner, G. M. Shepherd, & S. Grillner (Eds.), Handbook of Brain Microcircuits (2nd ed., pp. 163–184). Oxford University Press. https://doi.org/10.1093/med/9780190636111.003.0015 Záborszky, L., Gombkoto, P., Varsanyi, P., Gielow, M. R., Poe, G., Role, L. W., Ananth, M., Rajebhosale, P., Talmage, D. A., Hasselmo, M. E., Dannenberg, H., Minces, V. H., & Chiba, A. A. (2018). Specific basal forebrain–cortical cholinergic circuits coordinate cognitive operations. Journal of Neuroscience, 38(44), 9446–9458. https://doi.org/10.1523/JNEUROSCI.1676-18.2018 Zheng, Y., Feng, S., Zhu, X., Jiang, W., Wen, P., Ye, F., Rao, X., Jin, S., He, X., & Xu, F. (2018). Different Subgroups of Cholinergic Neurons in the Basal Forebrain Are Distinctly Innervated by the Olfactory Regions and Activated Differentially in Olfactory Memory Retrieval . In Frontiers in Neural Circuits (Vol. 12). https://www.frontiersin.org/articles/10.3389/fncir.2018.00099 |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 http://creativecommons.org/licenses/by-nc-nd/4.0 |
| dc.format.mimetype.eng.fl_str_mv |
application/pdf |
| dc.publisher.eng.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.eng.fl_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/view/6486 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/e50a6407-a558-4ead-9011-058ee2bc8a13/download |
| bitstream.checksum.fl_str_mv |
adbc107aa75c31d48b1dca5e00205c6b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053495156736000 |
| spelling |
Venegas, Juan PabloNavarrete, MarcelaOrellana-Garcia, LauraRojas, MarceloAvello-Duarte, FelipeNunez-Parra, Alexia2023-07-24T00:00:00Z2025-08-22T16:59:22Z2023-07-24T00:00:00Z2025-08-22T16:59:22Z2023-07-24La percepción sensorial es una de las funciones cerebrales más fundamentales, permitiendo a los individuos interactuar de manera apropiada con el entorno y adaptarse a un ambiente en constante cambio. Este proceso requiere la integración de la actividad neuronal ascendente y descendente, que es mediada por el cerebro basal (BF), una región cerebral que ha sido asociada a una serie de procesos cognitivos, como estados de atención y alerta.En este trabajo revisamos las últimas investigaciones que han utilizado optogenética y registros electrofisiológicos in vivo que han iluminado el rol del BF en el procesamiento olfatorio y la toma de decisiones.Además, resumimos la literatura que destaca las alteraciones fisiológicas y anatómicas del BF de individuos con trastornos del espectro autista, que podrían subyacer las anormalidades en la percepción que presentan,y proponemos esta línea de investigación como una posible oportunidad para entender las bases neurobiológicas de este trastorno.Sensory perception is one of the most fundamental brain functions allowing individuals to properly interact and adapt to a constantly changing environment. This process requires the integration of bottom-up and top-down neuronal activity that is centrally mediated by the basal forebrain, a brain region that has been linked to a series of cognitive processes such as attention and alertness. Here, we review the latest research using optogenetic approaches in rodents and in vivo electrophysiological recordings that are shedding light into the role of this region regulating olfactory processing and decision-making. Moreover, we summarize evidence highlighting the anatomical and physiological differences in the basal forebrain of individuals with autism spectrum disorder, which could underpin the sensory perception abnormalities they exhibit and propose this research line as a potential opportunity to understand the neurobiological basis of this disorder.application/pdf10.21500/20112084.64862011-79222011-2084https://hdl.handle.net/10819/28972https://doi.org/10.21500/20112084.6486engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IJPR/article/download/6486/5200Núm. 2 , Año 2023 : Psychophysiology and Experimental Psychology8626216International Journal of Psychological ResearchAgostinelli, L. J., Geerling, J. C., & Scammell, T. E. (2019). Basal forebrain subcortical projections. Brain Structure and Function, 224(3), 1097–1117. https://doi.org/10.1007/s00429-018-01820-6Alitto, H. J., & Dan, Y. (2012). Cell-type-specific modulation of neocortical activity by basal forebrain input. Frontiers in Systems Neuroscience, 6(DEC), 1–12. https://doi.org/10.3389/fnsys.2012.00079Alonso, M., Lepousez, G., Wagner, S., Bardy, C., Gabellec, M. M., Torquet, N., & Lledo, P. M. (2012). Activation of adult-born neurons facilitates learning and memory. Nature Neuroscience, 15(6), 897–904. https://doi.org/10.1038/nn.3108Alonso, M., Viollet, C., Gabellec, M. M., Meas-Yedid, V., Olivo-Marin, J. C., & Lledo, P. M. (2006). Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. Journal of Neuroscience, 26(41), 10508–10513. https://doi.org/10.1523/JNEUROSCI.2633-06.2006Altman, J., & Das, G. D. (1965). Post-Natal Origin of Microneurones in the Rat Brain. Nature, 207(5000), 953–956. https://doi.org/10.1038/207953a0American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR) (American Psychiatric Publishing (ed.); Fifth Edit). https://doi.org/https://doi.org/10.1176/appi.books.9780890425596Apicella, A., Yuan, Q., Scanziani, M., & Isaacson, J. S. (2010). Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli. Journal of Neuroscience, 30(42), 14255–14260. https://doi.org/10.1523/JNEUROSCI.2747-10.2010Arruda, D., Publio, R., & Roque, A. C. (2013). The Periglomerular Cell of the Olfactory Bulb and its Role in Controlling Mitral Cell Spiking: A Computational Model. PLoS ONE, 8(2), e56148. https://doi.org/10.1371/journal.pone.0056148Ashwin, C., Chapman, E., Howells, J., Rhydderch, D., Walker, I., & Baron-Cohen, S. (2014). Enhanced olfactory sensitivity in autism spectrum conditions. Molecular Autism, 5(1), 1–9. https://doi.org/10.1186/2040-2392-5-53Bacchelli, E., Battaglia, A., Cameli, C., Lomartire, S., Tancredi, R., Thomson, S., Sutcliffe, J. S., & Maestrini, E. (2015). Analysis of CHRNA7 rare variants in autism spectrum disorder susceptibility. American Journal of Medical Genetics, Part A, 167(4), 715–723. https://doi.org/10.1002/ajmg.a.36847Bangerter, A., Ness, S., Aman, M. G., Esbensen, A. J., Goodwin, M. S., Dawson, G., Hendren, R., Leventhal, B., Khan, A., Opler, M., Harris, A., & Pandina, G. (2017). Autism Behavior Inventory: A Novel Tool for Assessing Core and Associated Symptoms of Autism Spectrum Disorder. Journal of Child and Adolescent Psychopharmacology, 27(9), 814–822. https://doi.org/10.1089/cap.2017.0018Bastiaansen, M. C. M., & Brunia, C. H. M. (2001). Anticipatory attention: An event-related desynchronization approach. International Journal of Psychophysiology, 43(1), 91–107. https://doi.org/10.1016/S0167-8760(01)00181-7Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35(6), 866–874. https://doi.org/10.1212/wnl.35.6.866Bendahmane, M., Ogg, M. C., Ennis, M., & Fletcher, M. L. (2016). Increased olfactory bulb acetylcholine bi-directionally modulates glomerular odor sensitivity. Scientific Reports, 6(April), 1–13. https://doi.org/10.1038/srep25808Bennetto, L., Kuschner, E. S., & Hyman, S. L. (2007). Olfaction and Taste Processing in Autism. Biological Psychiatry, 62(9), 1015–1021. https://doi.org/10.1016/j.biopsych.2007.04.019Bodaleo, F., Tapia-Monsalves, C., Cea-Del Rio, C., Gonzalez-Billault, C., & Nunez-Parra, A. (2019). Structural and functional abnormalities in the olfactory system of fragile x syndrome models. In Frontiers in Molecular Neuroscience (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fnmol.2019.00135Böhm, E., Brunert, D., & Rothermel, M. (2020). Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-67276-zBoudjarane, M. A., Grandgeorge, M., Marianowski, R., Misery, L., & Lemonnier, É. (2017). Perception of odors and tastes in autism spectrum disorders: A systematic review of assessments. Autism Research, 10(6), 1045–1057. https://doi.org/10.1002/aur.1760Bouret, S., & Sara, S. J. (2004). Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. European Journal of Neuroscience, 20(3), 791–802. https://doi.org/10.1111/j.1460-9568.2004.03526.xBowles, S., Hickman, J., Peng, X., Williamson, W. R., Huang, R., Washington, K., Donegan, D., & Welle, C. G. (2022). Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron, 110(17), 2867-2885.e7. https://doi.org/10.1016/j.neuron.2022.06.017Boyd, A. M., Sturgill, J. F., Poo, C., & Isaacson, J. S. (2012). Cortical Feedback Control of Olfactory Bulb Circuits. Neuron, 76(6), 1161–1174. https://doi.org/10.1016/j.neuron.2012.10.020Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9), 1263–1268. https://doi.org/10.1038/nn1525Broadbent, D. E. (1958). Perception and communication. In Perception and communication. Pergamon Press. https://doi.org/10.1037/10037-000Bronshteín, A. A., & Minor, A. V. (1977). [Regeneration of olfactory flagella and restoration of the electroolfactogram following application of triton X-100 to the olfactory mucosa of frogs]. Tsitologiia, 19(1), 33–39.Brunert, D., & Rothermel, M. (2019). Neuromodulation of early sensory processing in the olfactory system. Neuroforum, 25(1), 25–38. https://doi.org/10.1515/nf-2018-0021Buck, L. B. (1992). A novel multigene family may encode odorant receptors. Society of General Physiologists Series, 65(1), 175–187. https://doi.org/10.1016/0092-8674(91)90418-xBurton, S. D. (2017). Inhibitory circuits of the mammalian main olfactory bulb. Journal of Neurophysiology, 118(4), 2034–2051. https://doi.org/10.1152/jn.00109.2017Burton, S. D., LaRocca, G., Liu, A., Cheetham, C. E. J., & Urban, N. N. (2017). Olfactory bulb deep short-axon cells mediate widespread inhibition of tufted cell apical dendrites. Journal of Neuroscience, 37(5), 1117–1138. https://doi.org/10.1523/JNEUROSCI.2880-16.2016Buzsaki, G., Bickford, R. G., Ponomareff, G., Thal, L. J., Mandel, R., & Gage, F. H. (1988). Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. Journal of Neuroscience, 8(11), 4007–4026. https://doi.org/10.1523/jneurosci.08-11-04007.1988Cang, J., & Isaacson, J. S. (2003). In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. Journal of Neuroscience, 23(10), 4108–4116. https://doi.org/10.1523/jneurosci.23-10-04108.2003Cascio, C. J., Gu, C., Schauder, K. B., Key, A. P., & Yoder, P. (2015). Somatosensory Event-Related Potentials and Association with Tactile Behavioral Responsiveness Patterns in Children with ASD. Brain Topography, 28(6), 895–903. https://doi.org/10.1007/s10548-015-0439-1Case, D. T., Burton, S. D., Gedeon, J. Y., Williams, S. P. G., Urban, N. N., & Seal, R. P. (2017). Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb. Nature Communications, 8(1), 652. https://doi.org/10.1038/s41467-017-00765-4Castillo, P. E., Carleton, A., Vincent, J. D., & Lledo, P. M. (1999). Multiple and opposing roles of cholinergic transmission in the main olfactory bulb. Journal of Neuroscience, 19(21), 9180–9191. https://doi.org/10.1523/jneurosci.19-21-09180.1999Caulfield, M. P. (1993). Muscarinic Receptors—Characterization, coupling and function. Pharmacology & Therapeutics, 58(3), 319–379. https://doi.org/https://doi.org/10.1016/0163-7258(93)90027-BChaves-Coira, I., Martín-Cortecero, J., Nuñez, A., & Rodrigo-Angulo, M. L. (2018a). Basal Forebrain Nuclei Display Distinct Projecting Pathways and Functional Circuits to Sensory Primary and Prefrontal Cortices in the Rat. Frontiers in Neuroanatomy, 12(August), 1–15. https://doi.org/10.3389/fnana.2018.00069Chaves-Coira, I., Rodrigo-Angulo, M. L., & Nuñez, A. (2018b). Bilateral Pathways from the Basal Forebrain to Sensory Cortices May Contribute to Synchronous Sensory Processing. Frontiers in Neuroanatomy, 12, 5. https://doi.org/10.3389/fnana.2018.00005Chen, Y., Chen, X., Baserdem, B., Zhan, H., Li, Y., Davis, M. B., Kebschull, J. M., Zador, A. M., Koulakov, A. A., & Albeanu, D. F. (2022). High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell, 185(22), 4117-4134.e28. https://doi.org/10.1016/j.cell.2022.09.038Chez, M. G., Aimonovitch, M., Buchanan, T., Mrazek, S., & Tremb, R. J. (2004). Treating autistic spectrum disorders in children: utility of the cholinesterase inhibitor rivastigmine tartrate. Journal of Child Neurology, 19(3), 165–169.Chien, Y. L., Gau, S. S. F., Shang, C. Y., Chiu, Y. N., Tsai, W. C., & Wu, Y. Y. (2015). Visual memory and sustained attention impairment in youths with autism spectrum disorders. Psychological Medicine, 45(11), 2263–2273. https://doi.org/10.1017/S0033291714003201Chilian, B., Abdollahpour, H., Bierhals, T., Haltrich, I., Fekete, G., Nagel, I., Rosenberger, G., & Kutsche, K. (2013). Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. Clinical Genetics, 84(6), 560–565. https://doi.org/10.1111/cge.12105Chong, E., Moroni, M., Wilson, C., Shoham, S., Panzeri, S., & Rinberg, D. (2020). Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science, 368(6497). https://doi.org/10.1126/science.aba2357Chung, S., & Son, J. W. (2020). Visual perception in autism spectrum disorder: A review of neuroimaging studies. Journal of the Korean Academy of Child and Adolescent Psychiatry, 31(3), 105–120. https://doi.org/10.5765/jkacap.200018Constanti, A., & Sim, J. A. (1987). Muscarinic receptors mediating suppression of the M-current in guinea-pig olfactory cortex neurones may be of the M2-subtype. British Journal of Pharmacology, 90(1), 3–5. https://doi.org/10.1111/j.1476-5381.1987.tb16818.xD’Souza, R. D., & Vijayaraghavan, S. (2012). Nicotinic Receptor-Mediated Filtering of Mitral Cell Responses to Olfactory Nerve Inputs Involves the α3β4 Subtype. The Journal of Neuroscience, 32(9), 3261 LP – 3266. https://doi.org/10.1523/JNEUROSCI.5024-11.2012D’Souza, R. D., & Vijayaraghavan, S. (2014). Paying attention to smell: Cholinergic signaling in the olfactory bulb. Frontiers in Synaptic Neuroscience, 6(SEP), 1–11. https://doi.org/10.3389/fnsyn.2014.00021de Almeida, L., Idiart, M., & Linster, C. (2013). A model of cholinergic modulation in olfactory bulb and piriform cortex. Journal of Neurophysiology, 109(5), 1360–1377. https://doi.org/10.1152/jn.00577.2012De Rosa, E., & Hasselmo, M. E. (2000). Muscarinic cholinergic neuromodulation reduces proactive interference between stored odor memories during associative learning in rats. Behavioral Neuroscience, 114(1), 32–41. https://doi.org/10.1037/0735-7044.114.1.32De Rosa, E., Hasselmo, M. E., & Baxtera, M. G. (2001). Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behavioral Neuroscience, 115(2), 314–327. https://doi.org/10.1037/0735-7044.115.2.314Devore, S., de Almeida, L., & Linster, C. (2014). Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning. Journal of Neuroscience, 34(34), 11244–11260. https://doi.org/10.1523/JNEUROSCI.1499-14.2014Devore, S., & Linster, C. (2012). Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Frontiers in Behavioral Neuroscience, 6, 52. https://doi.org/10.3389/fnbeh.2012.00052Devore, S., Pender-Morris, N., Dean, O., Smith, D., & Linster, C. (2016). Basal forebrain dynamics during nonassociative and associative olfactory learning. Journal of Neurophysiology, 115(1), 423–433. https://doi.org/10.1152/jn.00572.2015Do, J. P., Xu, M., Lee, S. H., Chang, W. C., Zhang, S., Chung, S., Yung, T. J., Fan, J. L., Miyamichi, K., Luo, L., & Dan, Y. (2016). Cell type-specific long-range connections of basal forebrain circuit. ELife, 5(September), 1–18. https://doi.org/10.7554/eLife.13214Doty, R. L. (1986). Odour-guided behaviour in mammals. Experientia, 42(3), 257–271. https://doi.org/10.1007/BF01942506Doucette, W., Gire, D. H., Whitesell, J., Carmean, V., Lucero, M. T., & Restrepo, D. (2011). Associative cortex features in the first olfactory brain relay station. Neuron, 69(6), 1176–1187. https://doi.org/10.1016/j.neuron.2011.02.024Doucette, W., & Restrepo, D. (2008). Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biology, 6(10), 2266–2285. https://doi.org/10.1371/journal.pbio.0060258Dudova, I., Vodicka, J., Havlovicova, M., Sedlacek, Z., Urbanek, T., & Hrdlicka, M. (2011). Odor detection threshold, but not odor identification, is impaired in children with autism. European Child and Adolescent Psychiatry, 20(7), 333–340. https://doi.org/10.1007/s00787-011-0177-1Ergaz, Z., Weinstein-Fudim, L., & Ornoy, A. (2016). Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reproductive Toxicology, 64, 116–140. https://doi.org/10.1016/j.reprotox.2016.04.024Eyre, M. D., Antal, M., & Nusser, Z. (2008). Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar gabaergic connections. Journal of Neuroscience, 28(33), 8217–8229. https://doi.org/10.1523/JNEUROSCI.2490-08.2008 Fletcher, M. L., & Chen, W. R. (2010). Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation. Learning and Memory, 17(11), 561–570. https://doi.org/10.1101/lm.941510Foss-Feig, J. H., Heacock, J. L., & Cascio, C. J. (2012). Tactile responsiveness patterns and their association with core features in autism spectrum disorders. Research in Autism Spectrum Disorders, 6(1), 337–344. https://doi.org/10.1016/j.rasd.2011.06.007Friedman, S. D., Shaw, D. W. W., Artru, A. A., Dawson, G., Petropoulos, H., & Dager, S. R. (2006). Gray and white matter brain chemistry in young children with autism. Archives of General Psychiatry, 63(7), 786–794. https://doi.org/10.1001/archpsyc.63.7.786Friedman, Shaw, D. W., Artru, A. A., Richards, T. L., Gardner, J., Dawson, G., Posse, S., & Dager, S. R. (2003). Regional brain chemical alterations in young children with autism spectrum disorder. Neurology, 60(1), 100–107. https://doi.org/10.1212/WNL.60.1.100Friedrich, R. W., & Korsching, S. I. (1997). Combinatorial and Chemotopic Odorant Coding in the Zebrafish Olfactory Bulb Visualized by Optical Imaging. Neuron, 18(5), 737–752. https://doi.org/10.1016/S0896-6273(00)80314-1Fukunaga, I., Herb, J. T., Kollo, M., Boyden, E. S., & Schaefer, A. T. (2014). Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb. Nature Neuroscience, 17(9), 1208–1216. https://doi.org/10.1038/nn.3760Gadziola, M. A., Stetzik, L. A., Wright, K. N., Milton, A. J., Arakawa, K., del Mar Cortijo, M., & Wesson, D. W. (2020). A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement. Cell Reports, 32(3). https://doi.org/10.1016/j.celrep.2020.107919Ghaleiha, A., Ghyasvand, M., Mohammadi, M. R., Farokhnia, M., Yadegari, N., Tabrizi, M., Hajiaghaee, R., Yekehtaz, H., & Akhondzadeh, S. (2014). Galantamine efficacy and tolerability as an augmentative therapy in autistic children: A randomized, double-blind, placebo-controlled trial. Journal of Psychopharmacology, 28(7), 677–685. https://doi.org/10.1177/0269881113508830Gheusi, G., Lepousez, G., & Lledo, P. (2013). Adult-Born Neurons in the Olfactory Bulb : Integration and Functional Consequences. Current Topics in Behavioral Neurosciences, 15, 49–72. https://doi.org/10.1007/7854Ghosh, S., Larson, S. D., Hefzi, H., Marnoy, Z., Cutforth, T., Dokka, K., & Baldwin, K. K. (2011). Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature, 472(7342), 217–222. https://doi.org/10.1038/nature09945Gielow, M. R., & Zaborszky, L. (2017). The Input-Output Relationship of the Cholinergic Basal Forebrain. Cell Reports, 18(7), 1817–1830. https://doi.org/10.1016/j.celrep.2017.01.060Gill, J. V., Lerman, G. M., Zhao, H., Stetler, B. J., Rinberg, D., & Shoham, S. (2020). Precise Holographic Manipulation of Olfactory Circuits Reveals Coding Features Determining Perceptual Detection. Neuron, 108(2), 382-393.e5. https://doi.org/10.1016/j.neuron.2020.07.034Gire, D. H., & Schoppa, N. E. (2009). Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb. Journal of Neuroscience, 29(43), 13454–13464. https://doi.org/10.1523/JNEUROSCI.2368-09.2009Gire, D. H., Whitesell, J. D., Doucette, W., & Restrepo, D. (2013). Information for decision-making and stimulus identification is multiplexed in sensory cortex. Nature Neuroscience, 16(8), 991–993. https://doi.org/10.1038/nn.3432Goard, M., & Dan, Y. (2009). Basal forebrain activation enhances cortical coding of natural scenes. Nature Neuroscience, 12(11), 1444–1449. https://doi.org/10.1038/nn.2402Gracia-Llanes, F. J., Crespo, C., Blasco-Ibáñez, J. M., Nacher, J., Varea, E., Rovira-Esteban, L., & Martínez-Guijarro, F. J. (2010). GABAergic basal forebrain afferents innervate selectively GABAergic targets in the main olfactory bulb. Neuroscience, 170(3), 913–922. https://doi.org/10.1016/j.neuroscience.2010.07.046Gritti, I., Henny, P., Galloni, F., Mainville, L., Mariotti, M., & Jones, B. E. (2006). Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience, 143(4), 1051–1064. https://doi.org/10.1016/j.neuroscience.2006.09.024Gritti, I., Mainville, L., Mancia, M., & Jones, B. E. (1997). GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. Journal of Comparative Neurology, 383(2), 163–177. https://doi.org/10.1002/(SICI)1096-9861(19970630)383:2<163::AID-CNE4>3.0.CO;2-ZGrossberg, S., Palma, J., & Versace, M. (2016). Resonant cholinergic dynamics in cognitive and motor decision-making: Attention, category learning, and choice in neocortex, superior colliculus, and optic tectum. Frontiers in Neuroscience, 9(JAN), 1–26. https://doi.org/10.3389/fnins.2015.00501Gschwend, O., Beroud, J., & Carleton, A. (2012). Encoding odorant identity by spiking packets of Rate-Invariant neurons in awake mice. PLoS ONE, 7(1), e30155. https://doi.org/10.1371/journal.pone.0030155Guo, W., Robert, B., & Polley, D. B. (2019). The Cholinergic Basal Forebrain Links Auditory Stimuli with Delayed Reinforcement to Support Learning. Neuron, 103(6), 1164-1177.e6. https://doi.org/10.1016/j.neuron.2019.06.024Gupta, R., Koscik, T. R., Bechara, A., & Tranel, D. (2011). The amygdala and decision-making. Neuropsychologia, 49(4), 760–766. https://doi.org/10.1016/j.neuropsychologia.2010.09.029Han, Y., Shi, Y. F., Xi, W., Zhou, R., Tan, Z. B., Wang, H., Li, X. M., Chen, Z., Feng, G., Luo, M., Huang, Z. L., Duan, S., & Yu, Y. Q. (2014). Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Current Biology, 24(6), 693–698. https://doi.org/10.1016/j.cub.2014.02.011Hangya, B., Ranade, S. P., Lorenc, M., & Kepecs, A. (2015). Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback. Cell, 162(5), 1155–1168. https://doi.org/10.1016/j.cell.2015.07.057Hanson, E., Brandel-Ankrapp, K. L., & Arenkiel, B. R. (2021). Dynamic Cholinergic Tone in the Basal Forebrain Reflects Reward-Seeking and Reinforcement During Olfactory Behavior. Frontiers in Cellular Neuroscience, 15(February), 1–14. https://doi.org/10.3389/fncel.2021.635837Hanson, E., Swanson, J., & Arenkiel, B. R. (2020). GABAergic Input From the Basal Forebrain Promotes the Survival of Adult-Born Neurons in the Mouse Olfactory Bulb. Frontiers in Neural Circuits, 14(April), 1–12. https://doi.org/10.3389/fncir.2020.00017Hardan, A. Y., & Handen, B. L. (2002). A retrospective open trial of adjunctive donepezil in children and adolescents with autistic disorder. Journal of Child and Adolescent Psychopharmacology, 12(3), 237–241. https://doi.org/10.1089/104454602760386923 Hasselmo, M. E., & Bower, J. M. (1992). Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. Journal of Neurophysiology, 67(5), 1222–1229. https://doi.org/10.1152/jn.1992.67.5.1222Hasselmo, Michael E., & Barkai, E. (1995). Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. Journal of Neuroscience, 15(10), 6592–6604. https://doi.org/10.1523/jneurosci.15-10-06592.1995Hasselmo, Michael E., & Sarter, M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology, 36(1), 52–73. https://doi.org/10.1038/npp.2010.104Hernández-Peón, R., Scherrer, H., & Jouvet, M. (1956). Modification of electric activity in cochlear nucleus during “attention” in unanesthetized cats. Science, 123(3191), 331–332. https://doi.org/10.1126/science.123.3191.331Hodges, H., Fealko, C., & Soares, N. (2020). Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Translational Pediatrics, 9(S1), S55–S65. https://doi.org/10.21037/tp.2019.09.09Hoover, K. C. (2010). Smell with inspiration: The evolutionary significance of olfaction. American Journal of Physical Anthropology, 143(SUPPL. 51), 63–74. https://doi.org/10.1002/ajpa.21441Hur, E. E., & Zaborszky, L. (2005). Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: A combined retrograde tracing in situ hybridization. Journal of Comparative Neurology, 483(3), 351–373. https://doi.org/10.1002/cne.20444Igarashi, K. M., Ieki, N., An, M., Yamaguchi, Y., Nagayama, S., Kobayakawa, K., Kobayakawa, R., Tanifuji, M., Sakano, H., Chen, W. R., & Mori, K. (2012). Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. Journal of Neuroscience, 32(23), 7970–7985. https://doi.org/10.1523/JNEUROSCI.0154-12.2012Isaacson, J. S., & Strowbridge, B. W. (1998). Olfactory Reciprocal Synapses: Dendritic Signaling in the CNS Electron microscopic evidence indicates that mitral cell dendrites contain synaptic vesicles clustered around active zones (Rall et al. Neuron, 20(4), 749–761.Jahr, B. Y. C. E., & Nicoll, R. A. (1982). An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. The Journal of Physiology, 326, 213–234. https://doi.org/10.1113/jphysiol.1982.sp014187Jaramillo, S., & Zador, A. M. (2011). The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nature Neuroscience, 14(2), 246–253. https://doi.org/10.1038/nn.2688Johnson, B., & Leon, M. (2007). Chemotopic Odorant Coding in a Mammalian Olfactory System. Journal of Comparative Neurology, 503(1), 1–34. https://doi.org/10.1002/cne.21396Karvat, G., & Kimchi, T. (2014). Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology, 39(4), 831–840. https://doi.org/10.1038/npp.2013.274Kay, L. M. (2005). Theta oscillations and sensorimotor performance. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3863–3868. https://doi.org/10.1073/pnas.0407920102Kemper, T., & Bauman, M. (1998). Neuropathology of Infantile Austism. Journal of Neuropathology and Experimenta Neurology, 57(7), 645–652. https://doi.org/10.1097/00005072-199807000-00001Khalighinejad, N., Priestley, L., Jbabdi, S., & Rushworth, M. F. S. (2020). Human decisions about when to act originate within a basal forebrain-nigral circuit. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11799–11810. https://doi.org/10.1073/pnas.1921211117Klinkenberg, I., Sambeth, A., & Blokland, A. (2011). Acetylcholine and attention. Behavioural Brain Research, 221(2), 430–442. https://doi.org/10.1016/j.bbr.2010.11.033Koehler, L., Fournel, A., Albertowski, K., Roessner, V., Gerber, J., Hummel, C., Hummel, T., & Bensafi, M. (2018). Impaired odor perception in autism spectrum disorder is associated with decreased activity in olfactory cortex. Chemical Senses, 43(8), 627–634. https://doi.org/10.1093/chemse/bjy051Koevoet, D., Deschamps, P. K. H., & Kenemans, J. L. (2021). Catecholaminergic and Cholinergic Neuromodulation in Autism Spectrum Disorder : A Comparison to Attention-Deficit Hyperactivity Disorder. PsyArXiv. https://doi.org/10.31234/osf.io/nb5j8Kondo, H., & Zaborszky, L. (2016). Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. Journal of Comparative Neurology, 524(12), 2503–2515. https://doi.org/https://doi.org/10.1002/cne.23967Kudryavitskaya, E., Marom, E., Shani-Narkiss, H., Pash, D., & Mizrahi, A. (2021). Flexible categorization in the mouse olfactory bulb. Current Biology, 31(8), 1616-1631.e4. https://doi.org/10.1016/j.cub.2021.01.063Lagier, S., Carleton, A., & Lledo, P. M. (2004). Interplay between Local GABAergic Interneurons and Relay Neurons Generates γ Oscillations in the Rat Olfactory Bulb. Journal of Neuroscience, 24(18), 4382–4392. https://doi.org/10.1523/JNEUROSCI.5570-03.2004Lam, K. S. L., Bodfish, J. W., & Piven, J. (2008). Evidence for three subtypes of repetitive behavior in autism that differ in familiality and association with other symptoms. Journal of Child Psychology and Psychiatry and Allied Disciplines, 49(11), 1193–1200. https://doi.org/10.1111/j.1469-7610.2008.01944.xLaszlovszky, T., Schlingloff, D., Hegedüs, P., Freund, T. F., Gulyás, A., Kepecs, A., & Hangya, B. (2020). Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types. Nature Neuroscience, 23(8), 992–1003. https://doi.org/10.1038/s41593-020-0648-0Leach, N. D., Nodal, F. R., Cordery, P. M., King, A. J., & Bajo, V. M. (2013). Cortical cholinergic input is required for normal auditory perception and experience-dependent plasticity in adult ferrets. Journal of Neuroscience, 33(15), 6659–6671. https://doi.org/10.1523/JNEUROSCI.5039-12.2013Lee, S. H., & Dan, Y. (2012). Neuromodulation of Brain States. Neuron, 76(1), 209–222. https://doi.org/10.1016/j.neuron.2012.09.012Lewis, A. S., van Schalkwyk, G. I., Lopez, M. O., Volkmar, F. R., Picciotto, M. R., & Sukhodolsky, D. G. (2018). An Exploratory Trial of Transdermal Nicotine for Aggression and Irritability in Adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 48(8), 2748–2757. https://doi.org/10.1007/s10803-018-3536-7Li, G., & Cleland, T. (2013). A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. Journal of Neuroscience, 33(7), 3037–3058. https://doi.org/10.1523/JNEUROSCI.2831-12.2013Li, X., Yu, B., Sun, Q., Zhang, Y., Ren, M., Zhang, X., Li, A., Yuan, J., Madisen, L., Luo, Q., Zeng, H., Gong, H., & Qiu, Z. (2018). Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 115(2), 415–420. https://doi.org/10.1073/pnas.1703601115Lim, D., & Alvarez-Buylla, A. (2016). The Adult Ventricular – Subventricular Zone and Olfactory bulb Neurogenesis. Cold Spring Harbor Perspectives in Biology, 8(5), a018820. https://www.ncbi.nlm.nih.gov/pubmed/27048191Lin, S. C., Brown, R. E., Shuler, M. G. H., Petersen, C. C. H., & Kepecs, A. (2015). Optogenetic dissection of the basal forebrain neuromodulatory control of cortical activation, plasticity, and cognition. Journal of Neuroscience, 35(41), 13896–13903. https://doi.org/10.1523/JNEUROSCI.2590-15.2015Lin, S. C., & Nicolelis, M. A. L. (2008). Neuronal Ensemble Bursting in the Basal Forebrain Encodes Salience Irrespective of Valence. Neuron, 59(1), 138–149. https://doi.org/10.1016/j.neuron.2008.04.031Linster, C., Wyble, B. P., & Hasselmo, M. E. (1999). Electrical stimulation of the horizontal limb of the diagonal band of broca modulates population EPSPs in piriform cortex. Journal of Neurophysiology, 81(6), 2737–2742. https://doi.org/10.1152/jn.1999.81.6.2737Liu, S., Shao, Z., Puche, A., Wachowiak, M., Rothermel, M., & Shipley, M. T. (2015). Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output. Journal of Neuroscience, 35(14), 5680–5692. https://doi.org/10.1523/JNEUROSCI.4953-14.2015Lledo, P. M., & Valley, M. (2016). Adult olfactory bulb neurogenesis. Cold Spring Harbor Perspectives in Biology, 8(8). https://doi.org/10.1101/cshperspect.a018945Lois, C., & Alvarez-Buylla, A. (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proceedings of the National Academy of Sciences of the United States of America, 90(5), 2074–2077. https://doi.org/10.1073/pnas.90.5.2074Lois, C., & Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science (New York, N.Y.), 264(5162), 1145–1148. https://doi.org/10.1126/science.8178174Lowther, C., Costain, G., Stavropoulos, D. J., Melvin, R., Silversides, C. K., Andrade, D. M., So, J., Faghfoury, H., Lionel, A. C., Marshall, C. R., Scherer, S. W., & Bassett, A. S. (2015). Delineating the 15q13.3 microdeletion phenotype: A case series and comprehensive review of the literature. Genetics in Medicine, 17(2), 149–157. https://doi.org/10.1038/gim.2014.83Luchicchi, A., Bloem, B., Viaña, J. N. M., Mansvelder, H. D., & Role, L. W. (2014). Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors. Frontiers in Synaptic Neuroscience, 6(OCT), 1–10. https://doi.org/10.3389/fnsyn.2014.00024Luskin, M. B., & Price, J. L. (1982). The distribution of axon collaterals from the olfactory bulb and the nucleus of the horizontal limb of the diagonal band to the olfactory cortex, demonstrated by double retrograde labeling techniques. Journal of Comparative Neurology, 209(3), 249–263. https://doi.org/10.1002/cne.902090304Lyons-Warren, A. M., Herman, I., Hunt, P. J., & Arenkiel, B. (2021). A systematic-review of olfactory deficits in neurodevelopmental disorders: From mouse to human. Neuroscience and Biobehavioral Reviews, 125(January), 110–121. https://doi.org/10.1016/j.neubiorev.2021.02.024Ma, M., & Luo, M. (2012). Optogenetic activation of basal forebrain cholinergic neurons modulates neuronal excitability and sensory responses in the main olfactory bulb. Journal of Neuroscience, 32(30), 10105–10116. https://doi.org/10.1523/JNEUROSCI.0058-12.2012Malnic, B., Hirono, J., Sato, T., & Buck, L. B. (1999). Combinatorial receptor codes for odors. Cell, 96(5), 713–723. https://doi.org/10.1016/S0092-8674(00)80581-4Malun, D., & Brunjes, P. C. (1996). Development of olfactory glomeruli: Temporal and spatial interactions between olfactory receptor axons and mitral cells in opossums and rats. Journal of Comparative Neurology, 368(1), 1–16. https://doi.org/10.1002/(SICI)1096-9861(19960422)368:1<1::AID-CNE1>3.0.CO;2-7Mandairon, N., Sacquet, J., Garcia, S., Ravel, N., Jourdan, F., & Didier, A. (2006). Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. European Journal of Neuroscience, 24(12), 3578–3588. https://doi.org/10.1111/j.1460-9568.2006.05235.xManns, I. D., Mainville, L., & Jones, B. E. (2001). Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience, 107(2), 249–263. https://doi.org/https://doi.org/10.1016/S0306-4522(01)00302-5Mark, G. P., Shabani, S., Dobbs, L. K., & Hansen, S. T. (2011). Cholinergic modulation of mesolimbic dopamine function and reward. Physiology and Behavior, 104(1), 76–81. https://doi.org/10.1016/j.physbeh.2011.04.052Martin-Ruiz, C. M., Lee, M., Perry, R. H., Baumann, M., Court, J. A., & Perry, E. K. (2004). Molecular analysis of nicotinic receptor expression in autism. Molecular Brain Research, 123(1), 81–90. https://doi.org/10.1016/j.molbrainres.2004.01.003Matsutani, S. (2010). Trajectory and terminal distribution of single centrifugal axons from olfactory cortical areas in the rat olfactory bulb. Neuroscience, 169(1), 436–448. https://doi.org/10.1016/j.neuroscience.2010.05.001Matsutani, S., & Yamamoto, N. (2008). Centrifugal innervation of the mammalian olfactory bulb. Anatomical Science International, 83(4), 218–227. https://doi.org/10.1111/j.1447-073x.2007.00223.xMinces, V., Pinto, L., Dan, Y., & Chiba, A. A. (2017). Cholinergic shaping of neural correlations. Proceedings of the National Academy of Sciences of the United States of America, 114(22), 5725–5730. https://doi.org/10.1073/pnas.1621493114Miura, K., Mainen, Z. F., & Uchida, N. (2012). Odor Representations in Olfactory Cortex: Distributed Rate Coding and Decorrelated Population Activity. Neuron, 74(6), 1087–1098. https://doi.org/10.1016/j.neuron.2012.04.021Moyano, H. F., & Molina, J. C. (1982). Olfactory connections of substantia innominata and nucleus of the horizontal limb of the diagonal band in the rat: An electrophysiological study. Neuroscience Letters, 34(3), 241–246. https://doi.org/10.1016/0304-3940(82)90182-3Murphy, C. M., Christakou, A., Daly, E. M., Ecker, C., Giampietro, V., Brammer, M., Smith, A. B., Johnston, P., Robertson, D. M., Murphy, D. G., Rubia, K., Bailey, A. J., Baron-Cohen, S., Bolton, P. F., Bullmore, E. T., Carrington, S., Chakrabarti, B., Deoni, S. C., Happe, F., … Williams, S. C. (2014). Abnormal functional activation and maturation of fronto-striato-temporal and cerebellar regions during sustained attention in autism spectrum disorder. American Journal of Psychiatry, 171(10), 1107–1116. https://doi.org/10.1176/appi.ajp.2014.12030352Murphy, D., Critchley, H., Schmitz, N., McAlonan, G., van Amelsvoort, T., Robertson, D., Daly, E., Rowe, A., Russell, A., Simmons, A., Murphy, K., & Howlin, P. (2002). Asperger Syndrome: A Proton Magnetic Resonance Spectroscopy Study of Brain. Archives of General Psychiatry, 59(10), 885–891. https://doi.org/10.1001/archpsyc.59.10.885Nagayama, S., Enerva, A., Fletcher, M. L., Masurkar, A. V., Igarashi, K. M., Mori, K., & Chen, W. R. (2010). Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Frontiers in Neural Circuits, 4, 1–8. https://doi.org/10.3389/fncir.2010.00120 Nobre, A., Correa, A., & Coull, J. (2007). The hazards of time. Current Opinion in Neurobiology, 17(4), 465–470. https://doi.org/10.1016/j.conb.2007.07.006Nunez-Parra, A., Cea-Del Rio, C. A., Huntsman, M. M., & Restrepo, D. (2020). The Basal Forebrain Modulates Neuronal Response in an Active Olfactory Discrimination Task. Frontiers in Cellular Neuroscience, 14(June), 1–14. https://doi.org/10.3389/fncel.2020.00141Nunez-Parra, A., Li, A., & Restrepo, D. (2014). Coding odor identity and odor value in awake rodents. Progress in Brain Research, 208, 205–222. https://doi.org/10.1016/B978-0-444-63350-7.00008-5Nunez-Parra, A., Maurer, R. K., Krahe, K., Smith, R. S., & Araneda, R. C. (2013). Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14777–14782. https://doi.org/10.1073/pnas.1310686110Nusser, Z., Kay, L. M., Laurent, G., Homanics, G. E., & Mody, I. (2001). Disruption of GABAA receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. Journal of Neurophysiology, 86(6), 2823–2833. https://doi.org/10.1152/jn.2001.86.6.2823Ogg, M. C., Ross, J. M., Bendahmane, M., & Fletcher, M. L. (2018). Olfactory bulb acetylcholine release dishabituates odor responses and reinstates odor investigation. Nature Communications, 9(1), 1868. https://doi.org/10.1038/s41467-018-04371-wOikonomakis, V., Kosma, K., Mitrakos, A., Sofocleous, C., Pervanidou, P., Syrmou, A., Pampanos, A., Psoni, S., Fryssira, H., Kanavakis, E., Kitsiou-Tzeli, S., & Tzetis, M. (2016). Recurrent copy number variations as risk factors for autism spectrum disorders: Analysis of the clinical implications. Clinical Genetics, 89(6), 708–718. https://doi.org/10.1111/cge.12740Okumura, T., Kumazaki, H., Singh, A. K., Touhara, K., & Okamoto, M. (2020). Individuals with Autism Spectrum Disorder Show Altered Event-Related Potentials in the Late Stages of Olfactory Processing. Chemical Senses, 45(1), 45–58. https://doi.org/10.1093/chemse/bjz070Olender, T., Waszak, S. M., Viavant, M., Khen, M., Ben-Asher, E., Reyes, A., Nativ, N., Wysocki, C. J., Ge, D., & Lancet, D. (2012). Personal receptor repertoires: olfaction as a model. BMC Genomics, 13(1). https://doi.org/10.1186/1471-2164-13-414Olincy, A., Blakeley-Smith, A., Johnson, L., Kem, W. R., & Freedman, R. (2016). Brief Report: Initial Trial of Alpha7-Nicotinic Receptor Stimulation in Two Adult Patients with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 46(12), 3812–3817. https://doi.org/10.1007/s10803-016-2890-6Oswald, A. M., & Urban, N. N. (2012). There and Back Again: The Corticobulbar Loop. Neuron, 76(6), 1045–1047. https://doi.org/10.1016/j.neuron.2012.12.006Pashkovski, S. L., Iurilli, G., Brann, D., Chicharro, D., Drummey, K., Franks, K., Panzeri, S., & Datta, S. R. (2020). Structure and flexibility in cortical representations of odour space. Nature, 583(7815), 253–258. https://doi.org/10.1038/s41586-020-2451-1Patil, M. M., Linster, C., Lubenov, E., & Hasselmo, M. E. (1998). Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. Journal of Neurophysiology, 80(5), 2467–2474. https://doi.org/10.1152/jn.1998.80.5.2467Perry, E. K., Lee, M. L. W., Martin-Ruiz, C. M., Court, J. A., Volsen, S. G., Merrit, J., Folly, E., Iversen, P. E., Bauman, M. L., Perry, R. H., & Wenk, G. L. (2001). Cholinergic activity in autism: Abnormalities in the cerebral cortex and basal forebrain. American Journal of Psychiatry, 158(7), 1058–1066. https://doi.org/10.1176/appi.ajp.158.7.1058Petreanu, L., & Alvarez-Buylla, A. (2002). Maturation and Death of Adult-Born Olfactory Bulb Granule Neurons: Role of Olfaction. The Journal of Neuroscience, 22(14), 6106 LP – 6113. https://doi.org/10.1523/JNEUROSCI.22-14-06106.2002Pinto, L., Goard, M. J., Estandian, D., Xu, M., Kwan, A. C., Lee, S. H., Harrison, T. C., Feng, G., & Dan, Y. (2013). Fast modulation of visual perception by basal forebrain cholinergic neurons. Nature Neuroscience, 16(12), 1857–1863. https://doi.org/10.1038/nn.3552Price, J. L. (1973). An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. Journal of Comparative Neurology, 150(1), 87–108. https://doi.org/10.1002/cne.901500105Quast, K. B., Ung, K., Froudarakis, E., Huang, L., Herman, I., Addison, A. P., Ortiz-Guzman, J., Cordiner, K., Saggau, P., Tolias, A. S., & Arenkiel, B. R. (2017). Developmental broadening of inhibitory sensory maps. Nature Neuroscience, 20(2), 189–199. https://doi.org/10.1038/nn.4467Rajkowski, J., Majczynski, H., Clayton, E., & Aston-Jones, G. (2004). Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. Journal of Neurophysiology, 92(1), 361–371. https://doi.org/10.1152/jn.00673.2003Rall, W., Shepherd, G. M., Reese, T. S., & Brightman, M. W. (1966). Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Experimental Neurology, 14(1), 44–56. https://doi.org/10.1016/0014-4886(66)90023-9Rauss, K., & Pourtois, G. (2013). What is bottom-up and what is top-down in predictive coding. Frontiers in Psychology, 4(MAY), 1–8. https://doi.org/10.3389/fpsyg.2013.00276Ressler, K. J., Sullivan, S. L., & Buck, L. B. (1994). A molecular dissection of spatial patterning in the olfactory system. Current Opinion in Neurobiology, 4(4), 588–596. https://doi.org/10.1016/0959-4388(94)90061-2Richardson, R. T., & DeLong, M. R. (1990). Context-dependent responses of primate nucleus basalis neurons in a go/no-go task. Journal of Neuroscience, 10(8), 2528–2540. https://doi.org/10.1523/jneurosci.10-08-02528.1990Riva, D., Bulgheroni, S., Aquino, D., Di Salle, F., Savoiardo, M., & Erbetta, A. (2011). Basal forebrain involvement in low-functioning autistic children: A voxel-based morphometry study. American Journal of Neuroradiology, 32(8), 1430–1435. https://doi.org/10.3174/ajnr.A2527 Robertson, C. E., & Baron-Cohen, S. (2017). Sensory perception in autism. Nature Reviews Neuroscience, 18(11), 671–684. https://doi.org/10.1038/nrn.2017.112Robinson, L., Platt, B., & Riedel, G. (2011). Involvement of the cholinergic system in conditioning and perceptual memory. Behavioural Brain Research, 221(2), 443–465. https://doi.org/10.1016/j.bbr.2011.01.055Roman, F. S., Simonetto, I., & Soumireu-Mourat, B. (1993). Learning and Memory of Odor-Reward Association: Selective Impairment Following Horizontal Diagonal Band Lesions. Behavioral Neuroscience, 107(1), 72–81. https://doi.org/10.1037/0735-7044.107.1.72Rosin, J. F., Datiche, F., & Cattarelli, M. (1999). Modulation of the piriform cortex activity by the basal forebrain: An optical recording study in the rat. Brain Research, 820(1–2), 105–111. https://doi.org/10.1016/S0006-8993(98)01369-9Rothermel, M., Carey, R. M., Puche, A., Shipley, M. T., & Wachowiak, M. (2014). Cholinergic inputs from basal forebrain add an excitatory bias to odor coding in the olfactory bulb. Journal of Neuroscience, 34(13), 4654–4664. https://doi.org/10.1523/JNEUROSCI.5026-13.2014Saar, D., Dadon, M., Leibovich, M., Sharabani, H., Grossman, Y., & Heldman, E. (2007). Opposing effects on muscarinic acetylcholine receptors in the piriform cortex of odor-trained rats. Learning and Memory, 14(3), 224–228. https://doi.org/10.1101/lm.452307Saar, D., Grossman, Y., & Barkai, E. (2001). Long-lasting cholinergic modulation underlies rule learning in rats. Journal of Neuroscience, 21(4), 1385–1392. https://doi.org/10.1523/jneurosci.21-04-01385.2001Salcedo, E., Tran, T., Ly, X., Lopez, R., Barbica, C., Restrepo, D., & Vijayaraghavan, S. (2011). Activity-dependent changes in cholinergic innervation of the mouse olfactory bulb. PLoS ONE, 6(10), e25441. https://doi.org/10.1371/journal.pone.0025441Sanz Diez, A., Najac, M., & De Saint Jan, D. (2019). Basal forebrain GABAergic innervation of olfactory bulb periglomerular interneurons. Journal of Physiology, 597(9), 2547–2563. https://doi.org/10.1113/JP277811Saper, C. B. (1984). Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. Journal of Comparative Neurology, 222(3), 313–342. https://doi.org/10.1002/cne.902220302Saper, C. B. (1987). Diffuse Cortical Projection Systems: Anatomical Organization and Role in Cortical Function. Comprehensive Physiology, 217, 169–210. https://doi.org/10.1002/cphy.cp010506Schoppa, N. E., Kinzie, J. M., Sahara, Y., Segerson, T. P., & Westbrook, G. L. (1998). Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. Journal of Neuroscience, 18(17), 6790–6802. https://doi.org/10.1523/jneurosci.18-17-06790.1998Semba, K. (2000). Multiple output pathways of the basal forebrain: Organization, chemical heterogeneity, and roles in vigilance. Behavioural Brain Research, 115(2), 117–141. https://doi.org/10.1016/S0166-4328(00)00254-0Senut, M. C., Menetrey, D., & Lamour, Y. (1989). Cholinergic and peptidergic projections from the medial septum and the nucleus of the diagonal band of broca to dorsal hippocampus, cingulate cortex and olfactory bulb: A combined wheatgerm agglutinin-apohorseradish peroxidase-gold immunohistochemical stu. Neuroscience, 30(2), 385–403. https://doi.org/10.1016/0306-4522(89)90260-1Shah, A., & Frith, U. (1983). an Islet of Ability in Autistic Children: a Research Note. Journal of Child Psychology and Psychiatry, 24(4), 613–620. https://doi.org/10.1111/j.1469-7610.1983.tb00137.xShao, Z., Puche, A. C., Kiyokage, E., Szabo, G., & Shipley, M. T. (2009). Two GABAergic intraglomerular circuits differentially regulate tonic and phasic presynaptic inhibition of olfactory nerve terminals. Journal of Neurophysiology, 101(4), 1988–2001. https://doi.org/10.1152/jn.91116.2008Shepherd, G. M., Chen, W. R., Willhite, D., Migliore, M., & Greer, C. A. (2007). The olfactory granule cell: From classical enigma to central role in olfactory processing. Brain Research Reviews, 55(2), 373–382. https://doi.org/10.1016/j.brainresrev.2007.03.005Shi, Y. F., Han, Y., Su, Y. T., Yang, J. H., & Yu, Y. Q. (2015). Silencing of cholinergic basal forebrain neurons using archaerhodopsin prolongs slow-wave sleep in mice. PLoS ONE, 10(7), 1–18. https://doi.org/10.1371/journal.pone.0130130Shipley, M. T., & Adamek, G. D. (1984). the connections of the mouse olfactory bulb: A study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Research Bulletin, 12(6), 669–688. https://doi.org/10.1016/0361-9230(84)90148-5Slotnick, B., & Weiler, E. (2009). Olfactory Perception. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of Neuroscience (pp. 3007–3010). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_4192Smith, R. S., & Araneda, R. C. (2010). Cholinergic modulation of neuronal excitability in the accessory olfactory bulb. Journal of Neurophysiology, 104(6), 2963–2974. https://doi.org/10.1152/jn.00446.2010Smith, R. S., Hu, R., DeSouza, A., Eberly, C. L., Krahe, K., Chan, W., & Araneda, R. C. (2015). Differential muscarinic modulation in the olfactory bulb. Journal of Neuroscience, 35(30), 10773–10785. https://doi.org/10.1523/JNEUROSCI.0099-15.2015Soucy, E. R., Albeanu, D. F., Fantana, A. L., Murthy, V. N., & Meister, M. (2009). Precision and diversity in an odor map on the olfactory bulb. Nature Neuroscience, 12(2), 210–220. https://doi.org/10.1038/nn.2262Soudry, Y., Lemogne, C., Malinvaud, D., Consoli, S. M., & Bonfils, P. (2011). Olfactory system and emotion: Common substrates. European Annals of Otorhinolaryngology, Head and Neck Diseases, 128(1), 18–23. https://doi.org/10.1016/j.anorl.2010.09.007Spors, H., & Grinvald, A. (2002). Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron, 34(2), 301–315. https://doi.org/10.1016/S0896-6273(02)00644-XSteriade, M. (2004). Acetylcholine systems and rhythmic activities during the waking-sleep cycle. Progress in Brain Research, 145, 179–196. https://doi.org/10.1016/S0079-6123(03)45013-9Stevenson, R. A., Philipp-Muller, A., Hazlett, N., Wang, Z. Y., Luk, J., Lee, J., Black, K. R., Yeung, L. K., Shafai, F., Segers, M., Feber, S., & Barense, M. D. (2019). Conjunctive visual processing appears abnormal in Autism. Frontiers in Psychology, 9, 1–7. https://doi.org/10.3389/fpsyg.2018.02668Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Tsujii, M., Futatsubashi, M., Iwata, Y., Tsuchiya, K. J., Matsumoto, K., Takebayashi, K., Wakuda, T., Yoshihara, Y., Suda, S., Kikuchi, M., Takei, N., Sugiyama, T., Irie, T., & Mori, N. (2011). Reduced acetylcholinesterase activity in the fusiform gyrus in adults with autism spectrum disorders (Archives of General Psychiatry (2011) 68, 3 (306-313)). Archives of General Psychiatry, 68(5), 306–313. https://doi.org/10.1001/archgenpsychiatry.2011.33Suzuki, Y., Critchley, H. D., Rowe, A., Howlin, P., & Murphy, D. G. M. (2003). Impaired olfactory identification in Asperger’s syndrome. Journal of Neuropsychiatry and Clinical Neurosciences, 15(1), 105–107. https://doi.org/10.1176/jnp.15.1.105Tan, J., Savigner, A., Ma, M., & Luo, M. (2010). Odor Information Processing by the Olfactory Bulb Analyzed in Gene-Targeted Mice. Neuron, 65(6), 912–926. https://doi.org/10.1016/j.neuron.2010.02.011Thomas, A. P., & Westrum, L. E. (1989). Plasticity-related binding of GABA and muscarinic receptor sites in piriform cortex of rat: An autoradiographic study. Experimental Neurology, 105(3), 265–271. https://doi.org/10.1016/0014-4886(89)90129-5Thomson, E., Lou, J., Sylvester, K., McDonough, A., Tica, S., & Nicolelis, M. A. (2014). Basal forebrain dynamics during a tactile discrimination task. Journal of Neurophysiology, 112(5), 1179–1191. https://doi.org/10.1152/jn.00040.2014Uchida, N., Poo, C., & Haddad, R. (2014). Coding and transformations in the olfactory system. Annual Review of Neuroscience, 37, 363–385. https://doi.org/10.1146/annurev-neuro-071013-013941Uchida, N., Takahashi, Y. K., Tanifuji, M., & Mori, K. (2000). Odor maps in the mammalian olfactory bulb: Domain organization and odorant structural features. Nature Neuroscience, 3(10), 1035–1043. https://doi.org/10.1038/79857van Hoorn, A., Carpenter, T., Oak, K., Laugharne, R., Ring, H., & Shankar, R. (2019). Neuromodulation of autism spectrum disorders using vagal nerve stimulation. Journal of Clinical Neuroscience : Official Journal of the Neurosurgical Society of Australasia, 63, 8–12. https://doi.org/10.1016/j.jocn.2019.01.042Vassar, R., Chao, S. K., Sitcheran, R., Nuiiez, M., Vosshall, L. B., & Axel, R. (1994). Topographic O rganization of Sensory Projection to the O lfactory Bulb. Cell, 79(6), 981–991. https://doi.org/10.1016/0092-8674(94)90029-9Villar, P. S., Hu, R., & Araneda, R. C. (2021). Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb. The Journal of Neuroscience, 41(16), 3610–3621. https://doi.org/10.1523/jneurosci.1498-20.2021Voytko, M. Lou, Olton, D. S., Richardson, R. T., Gorman, L. K., Tobin, J. R., & Price, D. L. (1994). Basal forebrain lesions in monkeys disrupt attention but not learning and memory. Journal of Neuroscience, 14(1), 167–186. https://doi.org/10.1523/jneurosci.14-01-00167.1994Wang, L., Almeida, L. E. F., Spornick, N. A., Kenyon, N., Kamimura, S., Khaibullina, A., Nouraie, M., & Quezado, Z. M. N. (2015). Modulation of social deficits and repetitive behaviors in a mouse model of autism: The role of the nicotinic cholinergic system. Psychopharmacology, 232(23), 4303–4316. https://doi.org/10.1007/s00213-015-4058-zWegiel, J., Flory, M., Kuchna, I., Nowicki, K., Ma, S. Y., Imaki, H., Wegiel, J., Cohen, I. L., London, E., Brown, W. T., & Wisniewski, T. (2014). Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathologica Communications, 2(1), 1–18. https://doi.org/10.1186/2051-5960-2-28Wesson, D. W., & Wilson, D. A. (2011). Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neuroscience and Biobehavioral Reviews, 35(3), 655–668. https://doi.org/10.1016/j.neubiorev.2010.08.004Wilson, C. D., Serrano, G. O., Koulakov, A. A., & Rinberg, D. (2017). A primacy code for odor identity. Nature Communications, 8(1), 1477. https://doi.org/10.1038/s41467-017-01432-4Wilson, D., & Sullivan, R. (2011). Cortical processing of odor objects. Neuron, 72(4), 506–519. https://doi.org/10.1016/j.neuron.2011.10.027Wilson, F. A. W., & Rolls, E. T. (1990). Learning and memory is reflected in the responses of reinforcement-related neurons in the primate basal forebrain. Journal of Neuroscience, 10(4), 1254–1267. https://doi.org/10.1523/jneurosci.10-04-01254.1990Xiong, W., & Chen, W. R. (2002). Dynamic gating of spike propagation in the mitral cell lateral dendrites. Neuron, 34(1), 115–126. https://doi.org/10.1016/S0896-6273(02)00628-1Yamaguchi, M., & Mori, K. (2005). Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9697–9702. https://doi.org/10.1073/pnas.0406082102Yang, C., McKenna, J. T., Zant, J. C., Winston, S., Basheer, R., & Brown, R. E. (2014). Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. Journal of Neuroscience, 34(8), 2832–2844. https://doi.org/10.1523/JNEUROSCI.3235-13.2014Yang, C., Thankachan, S., McCarley, R. W., & Brown, R. E. (2017). The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Current Opinion in Neurobiology, 44, 159–166. https://doi.org/10.1016/j.conb.2017.05.004Yokoi, M., Mori, K., & Nakanishi, S. (1995). Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 92(8), 3371–3375. https://doi.org/10.1073/pnas.92.8.3371Yu, J., & Frank, L. (2015). Hippocampal-cortical interaction in decision making. Neurobiology of Learning and Memory, 117, 34–41. https://doi.org/10.1016/j.nlm.2014.02.002Yu, L., & Wang, S. (2021). Aberrant auditory system and its developmental implications for autism. Science China Life Sciences, 64(6), 861–878. https://doi.org/10.1007/s11427-020-1863-6Záborszky, L., Carlsen, J., Brashear, H. R., & Heimer, L. (1986a). Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. Journal of Comparative Neurology, 243(4), 488–509. https://doi.org/10.1002/cne.902430405Záborszky, L., Heimer, L., Eckenstein, F., & Leranth, C. (1986b). GABAergic input to cholinergic forebrain neurons: An ultrastructural study using retrograde tracing of HRP and double immunolabeling. Journal of Comparative Neurology, 250(3), 282–295. https://doi.org/10.1002/cne.902500303 Zaborszky, L., & Duque, A. (2000). Local synaptic connections of basal forebrain neurons. Behavioural Brain Research, 115(2), 143–158. https://doi.org/10.1016/S0166-4328(00)00255-2Zaborszky, L., & Duque, A. (2000). Local synaptic connections of basal forebrain neurons. Behavioural Brain Research, 115(2), 143–158. https://doi.org/10.1016/S0166-4328(00)00255-2Zaborszky, L. (2002). The modular organization of brain systems. Basal forebrain: The last frontier. Progress in Brain Research, 136, 359–372. https://doi.org/10.1016/S0079-6123(02)36030-8Zaborszky, L., van den Pol, A. N., & Gyengesi, E. (2012). The Basal Forebrain Cholinergic Projection System in Mice. In The Mouse Nervous System. https://doi.org/10.1016/B978-0-12-369497-3.10028-7Zaborszky, L., Csordas, A., Mosca, K., Kim, J., Gielow, M. R., Vadasz, C., & Nadasdy, Z. (2015). Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: An experimental study based on retrograde tracing and 3D reconstruction. Cerebral Cortex, 25(1), 118–137. https://doi.org/10.1093/cercor/bht210Zaborszky, L., & Gombkoto, P. (2018). The Cholinergic Multicompartmental Basal Forebrain Microcircuit. In G. M. Shepherd, S. Grillner, G. M. Shepherd, & S. Grillner (Eds.), Handbook of Brain Microcircuits (2nd ed., pp. 163–184). Oxford University Press. https://doi.org/10.1093/med/9780190636111.003.0015Záborszky, L., Gombkoto, P., Varsanyi, P., Gielow, M. R., Poe, G., Role, L. W., Ananth, M., Rajebhosale, P., Talmage, D. A., Hasselmo, M. E., Dannenberg, H., Minces, V. H., & Chiba, A. A. (2018). Specific basal forebrain–cortical cholinergic circuits coordinate cognitive operations. Journal of Neuroscience, 38(44), 9446–9458. https://doi.org/10.1523/JNEUROSCI.1676-18.2018Zheng, Y., Feng, S., Zhu, X., Jiang, W., Wen, P., Ye, F., Rao, X., Jin, S., He, X., & Xu, F. (2018). Different Subgroups of Cholinergic Neurons in the Basal Forebrain Are Distinctly Innervated by the Olfactory Regions and Activated Differentially in Olfactory Memory Retrieval . In Frontiers in Neural Circuits (Vol. 12). https://www.frontiersin.org/articles/10.3389/fncir.2018.00099info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.http://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IJPR/article/view/6486sensory processing;olfactory bulb;neuromodulationacetylcholineGABA,optogeneticelectrophysiological recordingProcesamiento sensorialneuromodulaciónbulbo olfatorioacetilcolinaGABAoptogenéticaregistros electrofisiológicosModulación del cerebro basal en la codificación olfatoria in vivoModulación del cerebro basal en la codificación olfatoria in vivoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2735https://bibliotecadigital.usb.edu.co/bitstreams/e50a6407-a558-4ead-9011-058ee2bc8a13/downloadadbc107aa75c31d48b1dca5e00205c6bMD5110819/28972oai:bibliotecadigital.usb.edu.co:10819/289722025-08-22 11:59:22.29http://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
