Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
El presente artículo expone una revisión sobre los desarrollos en el cálculo de las propiedades de transporte tales como: viscosidad y conductividad térmica, a partir de ecuaciones cúbicas de estado, debido a la similitud geométrica entre los diagramas PV (volumen molar) T y Pm (viscosidad) T, de ta...
- Autores:
-
Cardona Palacio, Luis Fernando
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/28730
- Acceso en línea:
- https://hdl.handle.net/10819/28730
https://doi.org/10.21500/01247492.3214
- Palabra clave:
- Ecuación de estado
viscosidad
conductividad térmica
Peng-Robinson
Patel-Teja- Equation of state
viscosity
thermal conductivity
- Rights
- openAccess
- License
- Ingenium Revista de la facultad de ingeniería - 2017
| id |
SANBUENAV2_307b768896414c5e3c5cfeb1d96082b2 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/28730 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State |
| dc.title.translated.eng.fl_str_mv |
Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State |
| title |
Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State |
| spellingShingle |
Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State Ecuación de estado viscosidad conductividad térmica Peng-Robinson Patel-Teja- Equation of state viscosity thermal conductivity |
| title_short |
Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State |
| title_full |
Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State |
| title_fullStr |
Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State |
| title_full_unstemmed |
Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State |
| title_sort |
Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State |
| dc.creator.fl_str_mv |
Cardona Palacio, Luis Fernando |
| dc.contributor.author.spa.fl_str_mv |
Cardona Palacio, Luis Fernando |
| dc.subject.spa.fl_str_mv |
Ecuación de estado viscosidad conductividad térmica Peng-Robinson Patel-Teja- Equation of state viscosity thermal conductivity |
| topic |
Ecuación de estado viscosidad conductividad térmica Peng-Robinson Patel-Teja- Equation of state viscosity thermal conductivity |
| description |
El presente artículo expone una revisión sobre los desarrollos en el cálculo de las propiedades de transporte tales como: viscosidad y conductividad térmica, a partir de ecuaciones cúbicas de estado, debido a la similitud geométrica entre los diagramas PV (volumen molar) T y Pm (viscosidad) T, de tal manera se describe mediante un solo modelo amplios rangos de temperatura y presión, en sistemas líquidos y gaseosos de sustancias puras. Posteriormente, se realiza una comparación con correlaciones utilizadas en la literatura científica, donde se comprueba que la utilización de modelos de ecuaciones cúbicas de estado genera la menor desviación. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2017-07-25T00:00:00Z 2025-08-22T14:07:09Z |
| dc.date.available.none.fl_str_mv |
2017-07-25T00:00:00Z 2025-08-22T14:07:09Z |
| dc.date.issued.none.fl_str_mv |
2017-07-25 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.spa.fl_str_mv |
Text |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/01247492.3214 |
| dc.identifier.issn.none.fl_str_mv |
0124-7492 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/28730 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/01247492.3214 |
| identifier_str_mv |
10.21500/01247492.3214 0124-7492 |
| url |
https://hdl.handle.net/10819/28730 https://doi.org/10.21500/01247492.3214 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/Ingenium/article/download/3214/2668 |
| dc.relation.citationedition.spa.fl_str_mv |
Núm. 35 , Año 2017 : INGENIUM |
| dc.relation.citationendpage.none.fl_str_mv |
133 |
| dc.relation.citationissue.spa.fl_str_mv |
35 |
| dc.relation.citationstartpage.none.fl_str_mv |
120 |
| dc.relation.citationvolume.spa.fl_str_mv |
18 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Ingenium |
| dc.relation.references.spa.fl_str_mv |
Bahadori, A., & Vuthaluru, H. B. (2010). Predictive Tool for an Accurate Estimation of Carbon Dioxide Transport Properties. International Journal of Greenhouse Gas Control, 4(3), 532-536. [2] Chung, T., Lee, L. & Starling, K. (1989). Applications of Kinetic Gas Theories and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal Conductivity. American Chemical Society, (1), 8-13. [3] Danesh, A., Tohidi, B., Todd, A. C., & Tehrani, D. H. (2001). A Residual Viscosity Correlation for Predicting the Viscosity of Petroleum Reservoir Uids Over Wide Ranges of Pressure and Temperature. Chemical Engineering Science, 56, 6997-7006. [4] Desmarest, P., & Tufeu, R. (1987). Thermal Conductivity of Ethane in the Critical Region. International Journal of Thermophysics, 8(3), 293–304. [5] Ely, J. F. & Hanley J.M. (1983). Prediction of Transport Properties. 2 . Thermal Conductivity of Pure Fluids and Mixtures. Ind. Eng. Chem. Fundamen., (4), 90–97. [6] Fan, T.-B., & Wang, L.-S. (2006). A Viscosity Model Based on Peng–Robinson Equation of State For Light Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 247(1-2), 59–69. [7] Guo, X.-Q., Sun, C.-Y., Rong, S.-X., Chen, G.-J., & Guo, T.-M. (2001). Equation of State Analog Correlations for the Viscosity and Thermal Conductivity of Hydrocarbons and Reservoir Fluids. Journal of Petroleum Science and Engineering, 6(1), 251–27. [8] Guo, X.-Q., Wang, L.-S., Rong, S.-X. & Guo, T.-M. (1997). Viscosity Model Based on Equations of State for Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 139, 405–421. [9] He, M.-G, Liu, Z-G. & Yin, J-M. (2002). New Equation of State for Transport Properties: Calculation for the Thermal Conductivity and the Viscosity Of Halogenated Hydrocarbon Refrigerants. Fluid Phase Equilibria, 14(2), 937–320. [10] Heidaryan, E., Moghadasi, J., & Salarabadi, A. (2010). A New and Reliable Model for Predicting Methane Viscosity at High Pressures and High Temperatures. Journal of Natural Gas Chemistry, 19(5), 552–556. [11] Hsu, H., Sheu, Y., & Tu, C. (2002). Viscosity Estimation at Low Temperatures (Tr < 0.75) For Organic Liquids From Group Contributions. Chemical Engineering Journal, 88, 27–35. [12] E. (2012). New International Formulation for the Thermal Conductivity of H2O. Journal of Physical and Chemical Reference Data, 41(3), 033102 [15] Neindre, B. L., Bury, P., Tufeu, R. & Vodar, B. (1976). Thermal Conductivity Coefficients of Water and Heavy Water in the Liquid State up to 370°C. Journal of Physical and Chemical Reference Data, 2(3), 265–274. [16]Standard Reference Data for the Thermal Conductivity of Liquids. Journal of Physical and Chemical Reference Data, 15(3), 1073-1086. [17] Advanced equations of state. Journal of the Taiwan Institute of Chemical Engineers, 58, 57–70. [18] Pedersen, K. S., Fredenslund, A., Christensen, P. L., & Thomassen, P. (1984). Viscosity of crude oils. Chemical Engineering Science, 39(6), 1011–1016. [19] Peng, D., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64. [20] Philips, P. (1912). The Viscosity of Carbon Dioxide. Royal Society of London, 48-61. [21] Reichenberg, D. (1975). New Methods for the Estimation of the Viscosity Coefficients of Pure Gases at Moderate Pressures (with Particular Reference to Organic Vapors). AIChE Journal, 21(1), 181–183. [22] Reid, R. C., Prausnitz, J. M. & Poling, B. E. (1976). The Properties of Gases & Liquids, Estados Unidos de Norte América, McGraw-Hill. [23] Sastri, S. R.S. & Rao, K.K. (2000). A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilibria, 175(1-2), 311–323. [24] Viscosity of Pure Liquids and Liquid Mixtures. Journal of Molecular Liquids, 136, 111–116. [25] Strumpf, H. J., Collings, A.F. & Pings, C.J.(1974). Viscosity of Xenon and Ethane in the Critical Region. The Journal of Chemical Physics, 60(8), 3109-3123. [26] Properties of Ethane . II . Thermal Conductivity, 15(1), 33–66. [27] Viswanath, D., Ghosh, T., Prasad, D., Dutt, N., Rani, K., (2007), Viscosity of Liquids: Theory, Estimation, Experiment and Data, Springer. [28] Wu, X., Li, C., & Jia, W. (2014). An Improved Viscosity Model Based on Peng–Robinson Equation of State for Light Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 380, 147–151. [29] Family at High Pressure by Modified Tait Equation. Chinese Journal of Chemical Engineering, 364–370. [30] Yinghua, L., Peisheng, M., & Ping, L. (2002). Estimation of Liquid Viscosity of Pure Compounds at Different Temperatures by a Corresponding-States Group-Contribution Method. Fluid Phase Equilibria, 198(1), 123–130 |
| dc.rights.spa.fl_str_mv |
Ingenium Revista de la facultad de ingeniería - 2017 |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| rights_invalid_str_mv |
Ingenium Revista de la facultad de ingeniería - 2017 http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.spa.fl_str_mv |
https://revistas.usb.edu.co/index.php/Ingenium/article/view/3214 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/520fa381-5913-46b8-b936-3065c2695458/download |
| bitstream.checksum.fl_str_mv |
a26182e4791683193770e8629a62dd20 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053594984316928 |
| spelling |
Cardona Palacio, Luis Fernando2017-07-25T00:00:00Z2025-08-22T14:07:09Z2017-07-25T00:00:00Z2025-08-22T14:07:09Z2017-07-25El presente artículo expone una revisión sobre los desarrollos en el cálculo de las propiedades de transporte tales como: viscosidad y conductividad térmica, a partir de ecuaciones cúbicas de estado, debido a la similitud geométrica entre los diagramas PV (volumen molar) T y Pm (viscosidad) T, de tal manera se describe mediante un solo modelo amplios rangos de temperatura y presión, en sistemas líquidos y gaseosos de sustancias puras. Posteriormente, se realiza una comparación con correlaciones utilizadas en la literatura científica, donde se comprueba que la utilización de modelos de ecuaciones cúbicas de estado genera la menor desviación.application/pdf10.21500/01247492.32140124-7492https://hdl.handle.net/10819/28730https://doi.org/10.21500/01247492.3214spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/Ingenium/article/download/3214/2668Núm. 35 , Año 2017 : INGENIUM1333512018IngeniumBahadori, A., & Vuthaluru, H. B. (2010). Predictive Tool for an Accurate Estimation of Carbon Dioxide Transport Properties. International Journal of Greenhouse Gas Control, 4(3), 532-536. [2] Chung, T., Lee, L. & Starling, K. (1989). Applications of Kinetic Gas Theories and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal Conductivity. American Chemical Society, (1), 8-13. [3] Danesh, A., Tohidi, B., Todd, A. C., & Tehrani, D. H. (2001). A Residual Viscosity Correlation for Predicting the Viscosity of Petroleum Reservoir Uids Over Wide Ranges of Pressure and Temperature. Chemical Engineering Science, 56, 6997-7006. [4] Desmarest, P., & Tufeu, R. (1987). Thermal Conductivity of Ethane in the Critical Region. International Journal of Thermophysics, 8(3), 293–304. [5] Ely, J. F. & Hanley J.M. (1983). Prediction of Transport Properties. 2 . Thermal Conductivity of Pure Fluids and Mixtures. Ind. Eng. Chem. Fundamen., (4), 90–97. [6] Fan, T.-B., & Wang, L.-S. (2006). A Viscosity Model Based on Peng–Robinson Equation of State For Light Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 247(1-2), 59–69. [7] Guo, X.-Q., Sun, C.-Y., Rong, S.-X., Chen, G.-J., & Guo, T.-M. (2001). Equation of State Analog Correlations for the Viscosity and Thermal Conductivity of Hydrocarbons and Reservoir Fluids. Journal of Petroleum Science and Engineering, 6(1), 251–27. [8] Guo, X.-Q., Wang, L.-S., Rong, S.-X. & Guo, T.-M. (1997). Viscosity Model Based on Equations of State for Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 139, 405–421. [9] He, M.-G, Liu, Z-G. & Yin, J-M. (2002). New Equation of State for Transport Properties: Calculation for the Thermal Conductivity and the Viscosity Of Halogenated Hydrocarbon Refrigerants. Fluid Phase Equilibria, 14(2), 937–320. [10] Heidaryan, E., Moghadasi, J., & Salarabadi, A. (2010). A New and Reliable Model for Predicting Methane Viscosity at High Pressures and High Temperatures. Journal of Natural Gas Chemistry, 19(5), 552–556. [11] Hsu, H., Sheu, Y., & Tu, C. (2002). Viscosity Estimation at Low Temperatures (Tr < 0.75) For Organic Liquids From Group Contributions. Chemical Engineering Journal, 88, 27–35. [12] E. (2012). New International Formulation for the Thermal Conductivity of H2O. Journal of Physical and Chemical Reference Data, 41(3), 033102 [15] Neindre, B. L., Bury, P., Tufeu, R. & Vodar, B. (1976). Thermal Conductivity Coefficients of Water and Heavy Water in the Liquid State up to 370°C. Journal of Physical and Chemical Reference Data, 2(3), 265–274. [16]Standard Reference Data for the Thermal Conductivity of Liquids. Journal of Physical and Chemical Reference Data, 15(3), 1073-1086. [17] Advanced equations of state. Journal of the Taiwan Institute of Chemical Engineers, 58, 57–70. [18] Pedersen, K. S., Fredenslund, A., Christensen, P. L., & Thomassen, P. (1984). Viscosity of crude oils. Chemical Engineering Science, 39(6), 1011–1016. [19] Peng, D., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64. [20] Philips, P. (1912). The Viscosity of Carbon Dioxide. Royal Society of London, 48-61. [21] Reichenberg, D. (1975). New Methods for the Estimation of the Viscosity Coefficients of Pure Gases at Moderate Pressures (with Particular Reference to Organic Vapors). AIChE Journal, 21(1), 181–183. [22] Reid, R. C., Prausnitz, J. M. & Poling, B. E. (1976). The Properties of Gases & Liquids, Estados Unidos de Norte América, McGraw-Hill. [23] Sastri, S. R.S. & Rao, K.K. (2000). A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilibria, 175(1-2), 311–323. [24] Viscosity of Pure Liquids and Liquid Mixtures. Journal of Molecular Liquids, 136, 111–116. [25] Strumpf, H. J., Collings, A.F. & Pings, C.J.(1974). Viscosity of Xenon and Ethane in the Critical Region. The Journal of Chemical Physics, 60(8), 3109-3123. [26] Properties of Ethane . II . Thermal Conductivity, 15(1), 33–66. [27] Viswanath, D., Ghosh, T., Prasad, D., Dutt, N., Rani, K., (2007), Viscosity of Liquids: Theory, Estimation, Experiment and Data, Springer. [28] Wu, X., Li, C., & Jia, W. (2014). An Improved Viscosity Model Based on Peng–Robinson Equation of State for Light Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 380, 147–151. [29] Family at High Pressure by Modified Tait Equation. Chinese Journal of Chemical Engineering, 364–370. [30] Yinghua, L., Peisheng, M., & Ping, L. (2002). Estimation of Liquid Viscosity of Pure Compounds at Different Temperatures by a Corresponding-States Group-Contribution Method. Fluid Phase Equilibria, 198(1), 123–130Ingenium Revista de la facultad de ingeniería - 2017info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/Ingenium/article/view/3214Ecuación de estadoviscosidadconductividad térmicaPeng-RobinsonPatel-Teja- Equation of stateviscositythermal conductivityRevisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of StateRevisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of StateArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2829https://bibliotecadigital.usb.edu.co/bitstreams/520fa381-5913-46b8-b936-3065c2695458/downloada26182e4791683193770e8629a62dd20MD5110819/28730oai:bibliotecadigital.usb.edu.co:10819/287302025-08-22 09:07:09.377https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
