Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State

El presente artículo expone una revisión sobre los desarrollos en el cálculo de las propiedades de transporte tales como: viscosidad y conductividad térmica, a partir de ecuaciones cúbicas de estado, debido a la similitud geométrica entre los diagramas PV (volumen molar) T y Pm (viscosidad) T, de ta...

Full description

Autores:
Cardona Palacio, Luis Fernando
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/28730
Acceso en línea:
https://hdl.handle.net/10819/28730
https://doi.org/10.21500/01247492.3214
Palabra clave:
Ecuación de estado
viscosidad
conductividad térmica
Peng-Robinson
Patel-Teja- Equation of state
viscosity
thermal conductivity
Rights
openAccess
License
Ingenium Revista de la facultad de ingeniería - 2017
id SANBUENAV2_307b768896414c5e3c5cfeb1d96082b2
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/28730
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
dc.title.translated.eng.fl_str_mv Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
title Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
spellingShingle Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
Ecuación de estado
viscosidad
conductividad térmica
Peng-Robinson
Patel-Teja- Equation of state
viscosity
thermal conductivity
title_short Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
title_full Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
title_fullStr Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
title_full_unstemmed Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
title_sort Revisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of State
dc.creator.fl_str_mv Cardona Palacio, Luis Fernando
dc.contributor.author.spa.fl_str_mv Cardona Palacio, Luis Fernando
dc.subject.spa.fl_str_mv Ecuación de estado
viscosidad
conductividad térmica
Peng-Robinson
Patel-Teja- Equation of state
viscosity
thermal conductivity
topic Ecuación de estado
viscosidad
conductividad térmica
Peng-Robinson
Patel-Teja- Equation of state
viscosity
thermal conductivity
description El presente artículo expone una revisión sobre los desarrollos en el cálculo de las propiedades de transporte tales como: viscosidad y conductividad térmica, a partir de ecuaciones cúbicas de estado, debido a la similitud geométrica entre los diagramas PV (volumen molar) T y Pm (viscosidad) T, de tal manera se describe mediante un solo modelo amplios rangos de temperatura y presión, en sistemas líquidos y gaseosos de sustancias puras. Posteriormente, se realiza una comparación con correlaciones utilizadas en la literatura científica, donde se comprueba que la utilización de modelos de ecuaciones cúbicas de estado genera la menor desviación.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-07-25T00:00:00Z
2025-08-22T14:07:09Z
dc.date.available.none.fl_str_mv 2017-07-25T00:00:00Z
2025-08-22T14:07:09Z
dc.date.issued.none.fl_str_mv 2017-07-25
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/01247492.3214
dc.identifier.issn.none.fl_str_mv 0124-7492
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/28730
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/01247492.3214
identifier_str_mv 10.21500/01247492.3214
0124-7492
url https://hdl.handle.net/10819/28730
https://doi.org/10.21500/01247492.3214
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/Ingenium/article/download/3214/2668
dc.relation.citationedition.spa.fl_str_mv Núm. 35 , Año 2017 : INGENIUM
dc.relation.citationendpage.none.fl_str_mv 133
dc.relation.citationissue.spa.fl_str_mv 35
dc.relation.citationstartpage.none.fl_str_mv 120
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.spa.fl_str_mv Ingenium
dc.relation.references.spa.fl_str_mv Bahadori, A., & Vuthaluru, H. B. (2010). Predictive Tool for an Accurate Estimation of Carbon Dioxide Transport Properties. International Journal of Greenhouse Gas Control, 4(3), 532-536. [2] Chung, T., Lee, L. & Starling, K. (1989). Applications of Kinetic Gas Theories and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal Conductivity. American Chemical Society, (1), 8-13. [3] Danesh, A., Tohidi, B., Todd, A. C., & Tehrani, D. H. (2001). A Residual Viscosity Correlation for Predicting the Viscosity of Petroleum Reservoir Uids Over Wide Ranges of Pressure and Temperature. Chemical Engineering Science, 56, 6997-7006. [4] Desmarest, P., & Tufeu, R. (1987). Thermal Conductivity of Ethane in the Critical Region. International Journal of Thermophysics, 8(3), 293–304. [5] Ely, J. F. & Hanley J.M. (1983). Prediction of Transport Properties. 2 . Thermal Conductivity of Pure Fluids and Mixtures. Ind. Eng. Chem. Fundamen., (4), 90–97. [6] Fan, T.-B., & Wang, L.-S. (2006). A Viscosity Model Based on Peng–Robinson Equation of State For Light Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 247(1-2), 59–69. [7] Guo, X.-Q., Sun, C.-Y., Rong, S.-X., Chen, G.-J., & Guo, T.-M. (2001). Equation of State Analog Correlations for the Viscosity and Thermal Conductivity of Hydrocarbons and Reservoir Fluids. Journal of Petroleum Science and Engineering, 6(1), 251–27. [8] Guo, X.-Q., Wang, L.-S., Rong, S.-X. & Guo, T.-M. (1997). Viscosity Model Based on Equations of State for Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 139, 405–421. [9] He, M.-G, Liu, Z-G. & Yin, J-M. (2002). New Equation of State for Transport Properties: Calculation for the Thermal Conductivity and the Viscosity Of Halogenated Hydrocarbon Refrigerants. Fluid Phase Equilibria, 14(2), 937–320. [10] Heidaryan, E., Moghadasi, J., & Salarabadi, A. (2010). A New and Reliable Model for Predicting Methane Viscosity at High Pressures and High Temperatures. Journal of Natural Gas Chemistry, 19(5), 552–556. [11] Hsu, H., Sheu, Y., & Tu, C. (2002). Viscosity Estimation at Low Temperatures (Tr < 0.75) For Organic Liquids From Group Contributions. Chemical Engineering Journal, 88, 27–35. [12] E. (2012). New International Formulation for the Thermal Conductivity of H2O. Journal of Physical and Chemical Reference Data, 41(3), 033102 [15] Neindre, B. L., Bury, P., Tufeu, R. & Vodar, B. (1976). Thermal Conductivity Coefficients of Water and Heavy Water in the Liquid State up to 370°C. Journal of Physical and Chemical Reference Data, 2(3), 265–274. [16]Standard Reference Data for the Thermal Conductivity of Liquids. Journal of Physical and Chemical Reference Data, 15(3), 1073-1086. [17] Advanced equations of state. Journal of the Taiwan Institute of Chemical Engineers, 58, 57–70. [18] Pedersen, K. S., Fredenslund, A., Christensen, P. L., & Thomassen, P. (1984). Viscosity of crude oils. Chemical Engineering Science, 39(6), 1011–1016. [19] Peng, D., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64. [20] Philips, P. (1912). The Viscosity of Carbon Dioxide. Royal Society of London, 48-61. [21] Reichenberg, D. (1975). New Methods for the Estimation of the Viscosity Coefficients of Pure Gases at Moderate Pressures (with Particular Reference to Organic Vapors). AIChE Journal, 21(1), 181–183. [22] Reid, R. C., Prausnitz, J. M. & Poling, B. E. (1976). The Properties of Gases & Liquids, Estados Unidos de Norte América, McGraw-Hill. [23] Sastri, S. R.S. & Rao, K.K. (2000). A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilibria, 175(1-2), 311–323. [24] Viscosity of Pure Liquids and Liquid Mixtures. Journal of Molecular Liquids, 136, 111–116. [25] Strumpf, H. J., Collings, A.F. & Pings, C.J.(1974). Viscosity of Xenon and Ethane in the Critical Region. The Journal of Chemical Physics, 60(8), 3109-3123. [26] Properties of Ethane . II . Thermal Conductivity, 15(1), 33–66. [27] Viswanath, D., Ghosh, T., Prasad, D., Dutt, N., Rani, K., (2007), Viscosity of Liquids: Theory, Estimation, Experiment and Data, Springer. [28] Wu, X., Li, C., & Jia, W. (2014). An Improved Viscosity Model Based on Peng–Robinson Equation of State for Light Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 380, 147–151. [29] Family at High Pressure by Modified Tait Equation. Chinese Journal of Chemical Engineering, 364–370. [30] Yinghua, L., Peisheng, M., & Ping, L. (2002). Estimation of Liquid Viscosity of Pure Compounds at Different Temperatures by a Corresponding-States Group-Contribution Method. Fluid Phase Equilibria, 198(1), 123–130
dc.rights.spa.fl_str_mv Ingenium Revista de la facultad de ingeniería - 2017
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Ingenium Revista de la facultad de ingeniería - 2017
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.spa.fl_str_mv https://revistas.usb.edu.co/index.php/Ingenium/article/view/3214
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/520fa381-5913-46b8-b936-3065c2695458/download
bitstream.checksum.fl_str_mv a26182e4791683193770e8629a62dd20
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053594984316928
spelling Cardona Palacio, Luis Fernando2017-07-25T00:00:00Z2025-08-22T14:07:09Z2017-07-25T00:00:00Z2025-08-22T14:07:09Z2017-07-25El presente artículo expone una revisión sobre los desarrollos en el cálculo de las propiedades de transporte tales como: viscosidad y conductividad térmica, a partir de ecuaciones cúbicas de estado, debido a la similitud geométrica entre los diagramas PV (volumen molar) T y Pm (viscosidad) T, de tal manera se describe mediante un solo modelo amplios rangos de temperatura y presión, en sistemas líquidos y gaseosos de sustancias puras. Posteriormente, se realiza una comparación con correlaciones utilizadas en la literatura científica, donde se comprueba que la utilización de modelos de ecuaciones cúbicas de estado genera la menor desviación.application/pdf10.21500/01247492.32140124-7492https://hdl.handle.net/10819/28730https://doi.org/10.21500/01247492.3214spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/Ingenium/article/download/3214/2668Núm. 35 , Año 2017 : INGENIUM1333512018IngeniumBahadori, A., & Vuthaluru, H. B. (2010). Predictive Tool for an Accurate Estimation of Carbon Dioxide Transport Properties. International Journal of Greenhouse Gas Control, 4(3), 532-536. [2] Chung, T., Lee, L. & Starling, K. (1989). Applications of Kinetic Gas Theories and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal Conductivity. American Chemical Society, (1), 8-13. [3] Danesh, A., Tohidi, B., Todd, A. C., & Tehrani, D. H. (2001). A Residual Viscosity Correlation for Predicting the Viscosity of Petroleum Reservoir Uids Over Wide Ranges of Pressure and Temperature. Chemical Engineering Science, 56, 6997-7006. [4] Desmarest, P., & Tufeu, R. (1987). Thermal Conductivity of Ethane in the Critical Region. International Journal of Thermophysics, 8(3), 293–304. [5] Ely, J. F. & Hanley J.M. (1983). Prediction of Transport Properties. 2 . Thermal Conductivity of Pure Fluids and Mixtures. Ind. Eng. Chem. Fundamen., (4), 90–97. [6] Fan, T.-B., & Wang, L.-S. (2006). A Viscosity Model Based on Peng–Robinson Equation of State For Light Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 247(1-2), 59–69. [7] Guo, X.-Q., Sun, C.-Y., Rong, S.-X., Chen, G.-J., & Guo, T.-M. (2001). Equation of State Analog Correlations for the Viscosity and Thermal Conductivity of Hydrocarbons and Reservoir Fluids. Journal of Petroleum Science and Engineering, 6(1), 251–27. [8] Guo, X.-Q., Wang, L.-S., Rong, S.-X. & Guo, T.-M. (1997). Viscosity Model Based on Equations of State for Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 139, 405–421. [9] He, M.-G, Liu, Z-G. & Yin, J-M. (2002). New Equation of State for Transport Properties: Calculation for the Thermal Conductivity and the Viscosity Of Halogenated Hydrocarbon Refrigerants. Fluid Phase Equilibria, 14(2), 937–320. [10] Heidaryan, E., Moghadasi, J., & Salarabadi, A. (2010). A New and Reliable Model for Predicting Methane Viscosity at High Pressures and High Temperatures. Journal of Natural Gas Chemistry, 19(5), 552–556. [11] Hsu, H., Sheu, Y., & Tu, C. (2002). Viscosity Estimation at Low Temperatures (Tr < 0.75) For Organic Liquids From Group Contributions. Chemical Engineering Journal, 88, 27–35. [12] E. (2012). New International Formulation for the Thermal Conductivity of H2O. Journal of Physical and Chemical Reference Data, 41(3), 033102 [15] Neindre, B. L., Bury, P., Tufeu, R. & Vodar, B. (1976). Thermal Conductivity Coefficients of Water and Heavy Water in the Liquid State up to 370°C. Journal of Physical and Chemical Reference Data, 2(3), 265–274. [16]Standard Reference Data for the Thermal Conductivity of Liquids. Journal of Physical and Chemical Reference Data, 15(3), 1073-1086. [17] Advanced equations of state. Journal of the Taiwan Institute of Chemical Engineers, 58, 57–70. [18] Pedersen, K. S., Fredenslund, A., Christensen, P. L., & Thomassen, P. (1984). Viscosity of crude oils. Chemical Engineering Science, 39(6), 1011–1016. [19] Peng, D., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64. [20] Philips, P. (1912). The Viscosity of Carbon Dioxide. Royal Society of London, 48-61. [21] Reichenberg, D. (1975). New Methods for the Estimation of the Viscosity Coefficients of Pure Gases at Moderate Pressures (with Particular Reference to Organic Vapors). AIChE Journal, 21(1), 181–183. [22] Reid, R. C., Prausnitz, J. M. & Poling, B. E. (1976). The Properties of Gases & Liquids, Estados Unidos de Norte América, McGraw-Hill. [23] Sastri, S. R.S. & Rao, K.K. (2000). A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilibria, 175(1-2), 311–323. [24] Viscosity of Pure Liquids and Liquid Mixtures. Journal of Molecular Liquids, 136, 111–116. [25] Strumpf, H. J., Collings, A.F. & Pings, C.J.(1974). Viscosity of Xenon and Ethane in the Critical Region. The Journal of Chemical Physics, 60(8), 3109-3123. [26] Properties of Ethane . II . Thermal Conductivity, 15(1), 33–66. [27] Viswanath, D., Ghosh, T., Prasad, D., Dutt, N., Rani, K., (2007), Viscosity of Liquids: Theory, Estimation, Experiment and Data, Springer. [28] Wu, X., Li, C., & Jia, W. (2014). An Improved Viscosity Model Based on Peng–Robinson Equation of State for Light Hydrocarbon Liquids and Gases. Fluid Phase Equilibria, 380, 147–151. [29] Family at High Pressure by Modified Tait Equation. Chinese Journal of Chemical Engineering, 364–370. [30] Yinghua, L., Peisheng, M., & Ping, L. (2002). Estimation of Liquid Viscosity of Pure Compounds at Different Temperatures by a Corresponding-States Group-Contribution Method. Fluid Phase Equilibria, 198(1), 123–130Ingenium Revista de la facultad de ingeniería - 2017info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/Ingenium/article/view/3214Ecuación de estadoviscosidadconductividad térmicaPeng-RobinsonPatel-Teja- Equation of stateviscositythermal conductivityRevisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of StateRevisión del cálculo de las propiedades de transporte de sustancias puras a partir de ecuaciones cúbicas de estado- Review of Calculation of the Transport Properties of Pure Substances from Cubic Equations of StateArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2829https://bibliotecadigital.usb.edu.co/bitstreams/520fa381-5913-46b8-b936-3065c2695458/downloada26182e4791683193770e8629a62dd20MD5110819/28730oai:bibliotecadigital.usb.edu.co:10819/287302025-08-22 09:07:09.377https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com