Caracterización de transductores de bajo costo para el registro de señales bioacústicas
The biological sounds emitted by the human body during its operation, such as the pulmonary, intestinal, articular and cardiac, provide an easy way to assess the physiology of an individual; however its detection, acquisition and processing is expensive due tothe high price of the equipment.In this...
- Autores:
-
Muriel Martínez, Cristian David
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/8049
- Acceso en línea:
- http://hdl.handle.net/10819/8049
- Palabra clave:
- Bioacústicas
Impresión 3D
Bioacoustic
Signals
Transducers
3D Printing
Transductores
Señales
- Rights
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANBUENAV2_26e1f7e31d414b8b521519370302ab7e |
---|---|
oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/8049 |
network_acronym_str |
SANBUENAV2 |
network_name_str |
Repositorio USB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización de transductores de bajo costo para el registro de señales bioacústicas |
title |
Caracterización de transductores de bajo costo para el registro de señales bioacústicas |
spellingShingle |
Caracterización de transductores de bajo costo para el registro de señales bioacústicas Bioacústicas Impresión 3D Bioacoustic Signals Transducers 3D Printing Transductores Señales |
title_short |
Caracterización de transductores de bajo costo para el registro de señales bioacústicas |
title_full |
Caracterización de transductores de bajo costo para el registro de señales bioacústicas |
title_fullStr |
Caracterización de transductores de bajo costo para el registro de señales bioacústicas |
title_full_unstemmed |
Caracterización de transductores de bajo costo para el registro de señales bioacústicas |
title_sort |
Caracterización de transductores de bajo costo para el registro de señales bioacústicas |
dc.creator.fl_str_mv |
Muriel Martínez, Cristian David |
dc.contributor.advisor.none.fl_str_mv |
Ugarte Macías, Juan Pablo Ugarte Macías, Juan Pablo |
dc.contributor.author.none.fl_str_mv |
Muriel Martínez, Cristian David |
dc.subject.spa.fl_str_mv |
Bioacústicas Impresión 3D Bioacoustic Signals Transducers 3D Printing |
topic |
Bioacústicas Impresión 3D Bioacoustic Signals Transducers 3D Printing Transductores Señales |
dc.subject.lemb.spa.fl_str_mv |
Transductores Señales |
description |
The biological sounds emitted by the human body during its operation, such as the pulmonary, intestinal, articular and cardiac, provide an easy way to assess the physiology of an individual; however its detection, acquisition and processing is expensive due tothe high price of the equipment.In this project an economic alternative was implemented through the characterization of low-cost transdu-cers for the registration of bioacoustic signals; in this case, cardiac type. In this sense, stethoscope bells weredesigned and printed in 3D, adapted to the transducer as a means of amplification at low frequencies, in which the heart beat is found.System functionality was verified by performing heart beat measurements in a clinical setting. The results obtained were quantified and analyzed by algorithms, showing a better response in low frequency, with theuseofbellsasameansofamplificationintheacquisitionofcardiacsignals. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-01-29T19:41:56Z |
dc.date.available.none.fl_str_mv |
2021-01-29T19:41:56Z |
dc.date.submitted.none.fl_str_mv |
2021-01-29 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.spa.spa.fl_str_mv |
Trabajo de Grado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.identifier.citation.spa.fl_str_mv |
M.M., Cristian Muriel, Caracterización de trans ductores de bajo costo para el registro de señales bio acústicas”, Trabajo de Pregrado, Ingeniería de Sonido, Universidad de San Buenaventura, Facultad de Ingenierías,2020 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10819/8049 |
identifier_str_mv |
M.M., Cristian Muriel, Caracterización de trans ductores de bajo costo para el registro de señales bio acústicas”, Trabajo de Pregrado, Ingeniería de Sonido, Universidad de San Buenaventura, Facultad de Ingenierías,2020 |
url |
http://hdl.handle.net/10819/8049 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.cc.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.spa.fl_str_mv |
pdf |
dc.format.extent.spa.fl_str_mv |
95 páginas |
dc.format.medium.spa.fl_str_mv |
Recurso en linea |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.faculty.spa.fl_str_mv |
Ingenierias |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Sonido |
dc.publisher.sede.spa.fl_str_mv |
Medellín |
institution |
Universidad de San Buenaventura |
dc.source.bibliographicCitation.spa.fl_str_mv |
[1] P. M. Ortiz, C. Drugalski, J. E. Vega y D. O. Ochoa, ‹Modelos acu´sticos HMM multimodales para sonidos cardiacos y pulmonares› , Revista Mexicana de Ingenieria Biomedica, vol. 35, n.o 3, pa´gs. 197-209, 2014, ISSN: 01889532. [2] M. Shen y L. Sun, ‹ Analysis and classification of phonocardiogram based on higher-order spectra› , en IEEE Signal Processing Workshop on Higher-Order Statistics, Proceedings, vol. 1, n.o 2, pa´gs. 29-33, 1997 [3] L. J. Hadjileontiadis, I. T. Rekanos y S. M. Panas, ‹ Bioacoustic Signals› , en Wiley Encyclopedia of Biomedical Engineering, 2006.Wiley Online Library. DOI: 10.1002/9780471740360.ebs0109. [4] R. B. Northrop, Noninvasive instrumentation and measurement in medical diagnosis The International Jorunal of Medical Physics Research and Practice. 2003, vol. 30, no 5, pa´gs. 453-540, ISBN: 9781420041200. DOI: 10.1118/1.1600741 [5] M. Sanghavi y M. Gulati, Cardiovascular Disease in Women: Primary and Secondary Cardiovascular Disease Prevention, vol. 43, n.o 2, pa´gs. 265-285, 2016. Science Direct. DOI: 10.1016/j.ogc.2016.01.001. [6] M. S. Sidhu y W. E. Boden, ‹ Stable Ischemic Heart Disease› , en PanVascular Medicine, Second Edition, vol. 10, n. o 7, pa´gs. 2109-2172, 2015, ISBN: 9783642370786. DOI: 10.1007/978-3-642-37078-6 71. [7] J. W. Hurst, ‹ The History of Cardiology› , JAMA: The Journal of the American Medical Association, vol. 272, n.o 15, pa´g. 1222, 10/19/1994, ISSN: 0098-7484. DOI: 10.1001/jama.1994.03520150096048. [8] M. F. Njoman, G. Nugroho, S. D. P. Chandra, Y. Permana, S. Suhadi, M. Mujiono, A. D. Hermawan y S. Sugiono, ‹ The vulnerability of human sensory evaluation and the promising senses instrumentation› , British Food Journal, vol. 119, n.o 10, pa´gs. 2145-2160, 2/10/2017, ISSN: 0007070X. DOI: 10.1108/BFJ-10-2016-0505. [9] X. Zhang, B. B. Narakathu, D. Maddipatla, V. S. Turkani, B. J. Bazuin y M. Z. Atashbar, ‹ Digital Signal Processing and Analysis of Cardiopulmonary Audio Using a Multi-Channel Stethograph System› , en Proceedings of IEEE Sensors, vol. 27, n.o 6, 2018, pa´gs. 1-4, ISBN: 9781538647073. DOI: 10.1109/ICSENS.2018.8589512 [10] P. S. Abdul Lateef Haroon y U. Eranna, ‹ Signal processing based diagnosis of cardiovascular anomalies› , en International Conference on Electrical, Electronics, Communication Computer Technologies and Optimization Techniques, ICEECCOT 2017, vol. 14, n o 4, pa´gs. 638-641, 2018, ISBN: 9781538623619. [11] R. Chitkara, A. K. Rajani, J. W. Oehlert, H. C. Lee, M. S. Epi y L. P. Halamek, ‹ The accuracy of human senses in the detection of neonatal heart rate during standardized simulated resuscitation: Implications for delivery of care, training and technology design› , Resuscitation, vol. 84, n.o 3, pa´gs. 369-372, 2013, ISSN: 03009572. DOI: 10.1016/j.resuscitation.2012.07.035. [12] D. Pereira, A. Castro, P. Gomes, J. C. Neves y Z. Silveira, ‹ Digital Auscultation: Challenges and Perspectives›, en Encyclopedia of E-health and telemedicine, vol. 9 n.o 6, pa´gs. 910-924, 2016. [13] M. AlGhatrif y J. Lindsay, ‹ A brief review: history to understand fundamentals of electrocardiography› , Journal of Community Hospital Internal Medicine Perspectives, vol. 2, n.o 1, pa´gs. 14-383, 2012, ISSN: 2000-9666. DOI: 10.3402/jchimp.v2i1.14383. [14] A. Haghighi-Mood y J. N. Torry, ‹ Application of advanced signal processing techniques in analysis of heart sound› , en IEE Colloquium on Signal Processing in Cardiography, 1995. DOI: 10.1049/ic:19950280. [15] X. Liu, J. Sun y W. Wang, ‹ Research on Two Dimensional Visualization of Heart Sound Signal Based on Variant Model Theory› , en 2018 IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2018, 2018, ISBN: 9781538679463. DOI: 10.1109/ICSPCC.2018.8567750. [16] S. Szot, A. Levin, A. Ragazzi y T. Ning, ‹ A Wireless Digital Stethoscope Design› , en International Conference on Signal Processing Proceedings, ICSP, vol. 12, n.o 5, pa´gs. 74-78, 2019, ISBN: 9781538646724. DOI: 10.1109/ICSP.2018.8652475. [17] P. Rakovic´, E. Sejdic´, L. J. Stankovic´ y J. Jiang, ‹Time-frequency signal processing approaches with applications to heart sound analysis›, [18] M. H. Razali, N. Azmi, A. Zakaria, L. M. Kamarudin, S. M. Mamduh, K. Kamarudin, S. A. Shukor, A. Y. Shakaff, N. A. Rahim y F. S. Saad, ‹ Sound analyser for bioacoustic monitoring system using LabVIEW› , en I4CT 2014 - 1st International Conference on Computer, Communications, and Control Technology, Proceedings, vol. 3, n.o 15, pa´gs. 434-437, 2014, ISBN: 9781479945559. DOI: 10.1109/I4CT.2014.6914221. [19] C. N. Gupta, R. Palaniappan, S. Rajan, S. Swaminathan y S. M. Krishnan, ‹ Segmentation and classification of heart sounds› , en Canadian Conference on Electrical and Computer Engineering, vol. 34, n.o 9, pa´gs. 1678-1681, 2005. DOI: 10.1109/CCECE.2005.1557305. [20] S. Ka¨rki, M. Ka¨a¨ria¨inen y J. Lekkala, ‹Measurement of heart sounds with EMFi transducer›, en Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, [21] O. A. Omoniyi, B. Tiller, R. O’Leary y J. F. Windmill, ‹ Developing A 3D Printable Electret Material For Sensing Applications›, vol. 6, n.o 2, pa´gs. 1-3, 2019, ISBN: 9781538693049. DOI: 10.1109/fleps.2019.8792249. [22] V. Padmanabhan, R. Fischer, J. L. Semmlow y W. Welkowitz, ‹ High sensitivity PCG transducer for extended frequency applications› , en Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, vol. 11, n. o 2, pa´gs. 57-58, 1989. DOI: 10.1109/iembs.1989.95569. [23] V. Padmanabhan, J. L. Semmlow y W. Welkowitz, ‹ Accelerometer Type Cardiac Transducer for Detection of Low-Level Heart Sounds› , IEEE Transactions on Biomedical Engineering, vol. 40, n.o 1, pa´gs. 21-28, 1993, ISSN: 1558-2531. DOI: 10.1109/10.204767. [24] R. K. Kusainov y V. K. Makukha, ‹ Evaluation of the applicability of MEMS microphone for auscultation› , en International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM, vol. 8, n.o 6, pa´gs. 595-597, 2015, ISBN: 9781467367196. DOI: 10.1109/EDM.2015.7184613. [25] K. J. Cho y H. H. Asada, ‹ Wireless, battery-less stethoscope for wearable health monitoring› , en Proceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC, vol. 11, n.o 5, pa´gs. 187-188, 2002, ISBN: 0780374193. DOI: 10.1109/NEBC.2002.999528. [26] M. J. Crocker, ‹ Fundamentals of Acoustics, Noise, and Vibration› , en Handbook of Noise and Vibration Control, vol. 8, n.o 3, pa´gs. 1-16, 2008, ISBN: 9780471395997. DOI: 10.1002/9780470209707.ch1. [27] E. Fernandez-Grande, ‹ Sound field reconstruction using a spherical microphone array› , The Journal of the Acoustical Society of America, vol. 139, n.o 3, pa´gs. 1168-1178, 2016, ISSN: 0001-4966. DOI: 10.1121/1.4943545. [28] M. Kleiner, Electroacoustic. 1, vol. n.o 8, pa´gs. 628, 2013. DOI: 10.1017/CBO9781107415324.004. [29] Q. Zou, Z. Tan, Z. Wang, J. Pang, X. Qian, Q. Zhang, R. Lin, S. Yi, H. Gong, L. Liu y Z. Li, ‹ A novel integrated silicon capacitive microphone - Floating electrode .electret”microphone (FEEM)› , Journal of Microelectromechanical Systems, vol. 7, n.o 2, pa´gs. 224-233, 1998, ISSN: 10577157. DOI: 10.1109/84.679385. [30] A. Fallis, C. L. Phillips, J. Parr y E. Riskin, ‹ Signals, Systems, and Transforms› , Journal of Chemical Information and Modeling, vol. 53, n. o 9, pa´gs. 1689-1699, 2007, ISSN: 0131989235. DOI: 10.1017/CBO9781107415324.004. arXiv: arXiv:1011.1669v3. [31] M. Neukom, Signals, Systems and Sound Synthesis. Berlin, 2015. DOI: 10.3726/978-3-0351-0609-1. [32] J. G. Proakis y D. G. Monolakis, Digital signal processing: principles, algorithms, and applications. vol. 9, n.o 4, pa´gs. 1-42, 1996, ISBN: 0-13-394338-9. [33] E. G. Williams y J. A. Mann, ‹ Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography›, The Journal of the Acoustical Society of America, vol. 108, n.o 4, pa´gs. 1373-1373, 2000, ISSN: 0001-4966. DOI: 10.1121/1.1289662. [34] J. McGhee, ‹ Low-, High-, and Band-Pass Digital Filters› , en Handbook of Measuring System Design, vol. 15, n. o 1, pa´gs. 115-211, 2005. DOI: 10.1002/0471497398.mm866. [35] E. V. K. Madisetti, D. B. Williams y S. C. Douglas, ‹ ¨Introduction to Adaptive Filters” Digital Signal Processing Handbook› , I ¨ntroduction to Adaptive Filters” Digital Signal Processing Handbook Ed. Vijay K. Madisetti and Douglas B. Williams Boca Raton: CRC Press LLC, vol. 11, n.o 18, pa´gs. 20, 1999 [36] F. Parola y J. Garcia-Niebla, ‹ Use of High-Pass and Low-Pass Electrocardiographic Filters in an International Cardiological Community and Possible Clinical Effects› , Advanced Journal of Vascular Medicine, vol. 2, n.o 5, pa´gs. 34-38, 2017. [37] G. Ballou, Electroacoustic Devices: Microphones and Loudspeakers. 2012. DOI: 10.4324/9780240812687. [38] M. Re´Billat, K. Ege, M. Gallo y J. Antoni, ‹Repeated exponential sine sweeps for the autonomous estimation of nonlinearities and bootstrap assessment of uncertainties› , en Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 230, n.o 15, pa´gs. 1007-1018, 2015. DOI: 10.1177/0954406215620685. [39] A. Farina, ‹ Advancements in impulse response measurements by sine sweeps› , en Audio Engineering Society - 122nd Audio Engineering Society Convention 2007, vol. 3, n.o 11, pa´gs. 1626-1646, 2007, ISBN: 9781604231403. [40] J. Eargle, The Microphone book. Burlington, 2012. DOI: 10.4324/9780080473468. [41] C. Ahlstro¨m, Processing of the Phonocardiographic Signal Methods for the Intelligent Stethoscope, 1253. vol. 14, n.o 7, pa´gs. 1-68, 2006, ISBN: 9185523593. DOI: urn:nbn:se:liu:diva-7538. direccio´n: http://liu.diva-portal.org/smash/get/diva2:22548/FULLTEXT01 [42] G. Shah, P. Koch y C. B. Papadias, ‹ Analysis of acoustic cardiac signals for heart rate variability and murmur detection using nonnegative matrix factorization-based hierarchical decomposition› , en Proceedings - IEEE 14th International Conference on Bioinformatics and Bioengineering, BIBE, vol. 2, n.o 8, pa´gs. 46-53, 2014, ISBN: 9781479975013. DOI: 10.1109/BIBE.2014.14. [43] C. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro, F. Castells, J. M. Roig, I. Silva, A. E. Johnson, Z. Syed, S. E. Schmidt, C. D. Papadaniil, L. Hadjileontiadis, H. Naseri, A. Moukadem, A. Dieterlen, C. Brandt, H. Tang, M. Samieinasab, M. R. Samieinasab, R. Sameni, R. G. Mark y G. D. Clifford, ‹ An open access database for the evaluation of heart sound algorithms› , Physiological Measurement, vol. 37, n.o 12, pa´gs. 2181-2213, 2016, ISSN: 13616579. DOI: 10.1088/0967-3334/37/12/2181. [44] P. A. Gunning, ‹ Auscultation Skills› , Medicine & Science in Sports & Exercise, vol. 38, n.o 6, pa´g. 1196, 2006, ISSN: 0195-9131. DOI: 10.1249/01.mss.0000221939.90804.a5. [45] N. Jason y J. J. Goldberger, ‹ Cardiology: Electrocardiography› , en The Physiological Measurement Handbook, vol. 21, n. o 16, pa´gs. 43-73, 2014, ISBN: 9781439808481. DOI: 10.1201/b17831. [46] Standard International Organization, ‹ ISO 3382-2› , International Organization for standardization, vol. 2, n.o 1, pa´g. 34, 2008. |
dc.source.instname.spa.fl_str_mv |
Universidad de San Buenaventura - Medellín |
dc.source.other.spa.fl_str_mv |
Biblioteca USB (San Benito) TG-5829t |
dc.source.reponame.spa.fl_str_mv |
Biblioteca Digital Universidad de San Buenaventura |
bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/2ab49830-7b2c-4ef4-8ed2-4975423fd1c4/download https://bibliotecadigital.usb.edu.co/bitstreams/5b522526-92c7-48c9-aab2-de1ff97e9851/download https://bibliotecadigital.usb.edu.co/bitstreams/657faa79-042d-4aee-9698-988d7c244c4c/download https://bibliotecadigital.usb.edu.co/bitstreams/6ad376c8-b453-4c13-9151-3a026ea62237/download |
bitstream.checksum.fl_str_mv |
caf678fc9a86302781021446cb4562c6 0c7b7184e7583ec671a5d9e43f0939c0 dffa5fc4f1a5c947665e7ada47a004e9 79e5caaf156e77b00e497b3e5ba7c3cb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1837099301449236480 |
spelling |
Comunidad Científica y AcadémicaUgarte Macías, Juan Pablo59f2010c-d265-4d45-81cd-0905ab7fced9-1Ugarte Macías, Juan Pablovirtual::2369-1Muriel Martínez, Cristian Davidb26f9c4c-e6ac-4f7e-8e8f-d7d549717aec-12021-01-29T19:41:56Z2021-01-29T19:41:56Z20202021-01-29The biological sounds emitted by the human body during its operation, such as the pulmonary, intestinal, articular and cardiac, provide an easy way to assess the physiology of an individual; however its detection, acquisition and processing is expensive due tothe high price of the equipment.In this project an economic alternative was implemented through the characterization of low-cost transdu-cers for the registration of bioacoustic signals; in this case, cardiac type. In this sense, stethoscope bells weredesigned and printed in 3D, adapted to the transducer as a means of amplification at low frequencies, in which the heart beat is found.System functionality was verified by performing heart beat measurements in a clinical setting. The results obtained were quantified and analyzed by algorithms, showing a better response in low frequency, with theuseofbellsasameansofamplificationintheacquisitionofcardiacsignals.Los sonidos biológicos emitidos por el cuerpo humano durante su actividad, tales como los pulmonares, intestinales, articulares y cardíacos, proporcionan información relevante al momento de caracterizar y diagnosticar la fisiología de un individuo; sin embargo su detección ,adquisición y procesamiento puede resultar costosa y poco precisa, esto, debido ala subjetividad con la cual es evaluada la información adquirida. En este proyecto, se implementó una metodología alternativa mediante la caracterización de transductores de bajo costo para el registro de señales bioacústicas; para este caso en particular, de tipo cardíacas. En este sentido, se diseño e imprimió en3D,campanasdeestetoscopioadaptadasaltransductorcomomedio de amplificación en frecuencias bajas, rango e el cual se encuentran los latidos del corazón. Se verificó la funcionalidad del sistema mediante la realización de mediciones de latidos del corazón en un entorno clínico. Los resultados obtenidos fueron cuantificados y analizados mediante algoritmos, evidenciando una mejor respuesta en baja frecuencia ,con el uso de campanas como medio de amplificación en la adquisición de señales cardíacaspdf95 páginasRecurso en lineaapplication/pdfM.M., Cristian Muriel, Caracterización de trans ductores de bajo costo para el registro de señales bio acústicas”, Trabajo de Pregrado, Ingeniería de Sonido, Universidad de San Buenaventura, Facultad de Ingenierías,2020http://hdl.handle.net/10819/8049spaIngenieriasIngeniería de SonidoMedellínAtribución-NoComercial-SinDerivadas 2.5 ColombiaPor medio de este formato manifiesto mi voluntad de AUTORIZAR a la Universidad de San Buenaventura, Sede Bogotá, Seccionales Medellín, Cali y Cartagena, la difusión en texto completo de manera gratuita y por tiempo indefinido en la Biblioteca Digital Universidad de San Buenaventura, el documento académico-investigativo objeto de la presente autorización, con fines estrictamente educativos, científicos y culturales, en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre derechos de autor. Como autor manifiesto que el presente documento académico-investigativo es original y se realiza sin violar o usurpar derechos de autor de terceros, por lo tanto, la obra es de mi exclusiva autora y poseo la titularidad sobre la misma. La Universidad de San Buenaventura no será responsable de ninguna utilización indebida del documento por parte de terceros y será exclusivamente mi responsabilidad atender personalmente cualquier reclamación que pueda presentarse a la Universidad. Autorizo a la Biblioteca Digital de la Universidad de San Buenaventura convertir el documento al formato que el repositorio lo requiera (impreso, digital, electrónico o cualquier otro conocido o por conocer) o con fines de preservación digital. Esta autorización no implica renuncia a la facultad que tengo de publicar posteriormente la obra, en forma total o parcial, por lo cual podrá, dando aviso por escrito con no menos de un mes de antelación, solicitar que el documento deje de estar disponible para el público en la Biblioteca Digital de la Universidad de San Buenaventura, así mismo, cuando se requiera por razones legales y/o reglas del editor de una revista.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2[1] P. M. Ortiz, C. Drugalski, J. E. Vega y D. O. Ochoa, ‹Modelos acu´sticos HMM multimodales para sonidos cardiacos y pulmonares› , Revista Mexicana de Ingenieria Biomedica, vol. 35, n.o 3, pa´gs. 197-209, 2014, ISSN: 01889532.[2] M. Shen y L. Sun, ‹ Analysis and classification of phonocardiogram based on higher-order spectra› , en IEEE Signal Processing Workshop on Higher-Order Statistics, Proceedings, vol. 1, n.o 2, pa´gs. 29-33, 1997[3] L. J. Hadjileontiadis, I. T. Rekanos y S. M. Panas, ‹ Bioacoustic Signals› , en Wiley Encyclopedia of Biomedical Engineering, 2006.Wiley Online Library. DOI: 10.1002/9780471740360.ebs0109.[4] R. B. Northrop, Noninvasive instrumentation and measurement in medical diagnosis The International Jorunal of Medical Physics Research and Practice. 2003, vol. 30, no 5, pa´gs. 453-540, ISBN: 9781420041200. DOI: 10.1118/1.1600741[5] M. Sanghavi y M. Gulati, Cardiovascular Disease in Women: Primary and Secondary Cardiovascular Disease Prevention, vol. 43, n.o 2, pa´gs. 265-285, 2016. Science Direct. DOI: 10.1016/j.ogc.2016.01.001.[6] M. S. Sidhu y W. E. Boden, ‹ Stable Ischemic Heart Disease› , en PanVascular Medicine, Second Edition, vol. 10, n. o 7, pa´gs. 2109-2172, 2015, ISBN: 9783642370786. DOI: 10.1007/978-3-642-37078-6 71.[7] J. W. Hurst, ‹ The History of Cardiology› , JAMA: The Journal of the American Medical Association, vol. 272, n.o 15, pa´g. 1222, 10/19/1994, ISSN: 0098-7484. DOI: 10.1001/jama.1994.03520150096048.[8] M. F. Njoman, G. Nugroho, S. D. P. Chandra, Y. Permana, S. Suhadi, M. Mujiono, A. D. Hermawan y S. Sugiono, ‹ The vulnerability of human sensory evaluation and the promising senses instrumentation› , British Food Journal, vol. 119, n.o 10, pa´gs. 2145-2160, 2/10/2017, ISSN: 0007070X. DOI: 10.1108/BFJ-10-2016-0505.[9] X. Zhang, B. B. Narakathu, D. Maddipatla, V. S. Turkani, B. J. Bazuin y M. Z. Atashbar, ‹ Digital Signal Processing and Analysis of Cardiopulmonary Audio Using a Multi-Channel Stethograph System› , en Proceedings of IEEE Sensors, vol. 27, n.o 6, 2018, pa´gs. 1-4, ISBN: 9781538647073. DOI: 10.1109/ICSENS.2018.8589512[10] P. S. Abdul Lateef Haroon y U. Eranna, ‹ Signal processing based diagnosis of cardiovascular anomalies› , en International Conference on Electrical, Electronics, Communication Computer Technologies and Optimization Techniques, ICEECCOT 2017, vol. 14, n o 4, pa´gs. 638-641, 2018, ISBN: 9781538623619.[11] R. Chitkara, A. K. Rajani, J. W. Oehlert, H. C. Lee, M. S. Epi y L. P. Halamek, ‹ The accuracy of human senses in the detection of neonatal heart rate during standardized simulated resuscitation: Implications for delivery of care, training and technology design› , Resuscitation, vol. 84, n.o 3, pa´gs. 369-372, 2013, ISSN: 03009572. DOI: 10.1016/j.resuscitation.2012.07.035.[12] D. Pereira, A. Castro, P. Gomes, J. C. Neves y Z. Silveira, ‹ Digital Auscultation: Challenges and Perspectives›, en Encyclopedia of E-health and telemedicine, vol. 9 n.o 6, pa´gs. 910-924, 2016.[13] M. AlGhatrif y J. Lindsay, ‹ A brief review: history to understand fundamentals of electrocardiography› , Journal of Community Hospital Internal Medicine Perspectives, vol. 2, n.o 1, pa´gs. 14-383, 2012, ISSN: 2000-9666. DOI: 10.3402/jchimp.v2i1.14383.[14] A. Haghighi-Mood y J. N. Torry, ‹ Application of advanced signal processing techniques in analysis of heart sound› , en IEE Colloquium on Signal Processing in Cardiography, 1995. DOI: 10.1049/ic:19950280.[15] X. Liu, J. Sun y W. Wang, ‹ Research on Two Dimensional Visualization of Heart Sound Signal Based on Variant Model Theory› , en 2018 IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2018, 2018, ISBN: 9781538679463. DOI: 10.1109/ICSPCC.2018.8567750.[16] S. Szot, A. Levin, A. Ragazzi y T. Ning, ‹ A Wireless Digital Stethoscope Design› , en International Conference on Signal Processing Proceedings, ICSP, vol. 12, n.o 5, pa´gs. 74-78, 2019, ISBN: 9781538646724. DOI: 10.1109/ICSP.2018.8652475.[17] P. Rakovic´, E. Sejdic´, L. J. Stankovic´ y J. Jiang, ‹Time-frequency signal processing approaches with applications to heart sound analysis›,[18] M. H. Razali, N. Azmi, A. Zakaria, L. M. Kamarudin, S. M. Mamduh, K. Kamarudin, S. A. Shukor, A. Y. Shakaff, N. A. Rahim y F. S. Saad, ‹ Sound analyser for bioacoustic monitoring system using LabVIEW› , en I4CT 2014 - 1st International Conference on Computer, Communications, and Control Technology, Proceedings, vol. 3, n.o 15, pa´gs. 434-437, 2014, ISBN: 9781479945559. DOI: 10.1109/I4CT.2014.6914221.[19] C. N. Gupta, R. Palaniappan, S. Rajan, S. Swaminathan y S. M. Krishnan, ‹ Segmentation and classification of heart sounds› , en Canadian Conference on Electrical and Computer Engineering, vol. 34, n.o 9, pa´gs. 1678-1681, 2005. DOI: 10.1109/CCECE.2005.1557305.[20] S. Ka¨rki, M. Ka¨a¨ria¨inen y J. Lekkala, ‹Measurement of heart sounds with EMFi transducer›, en Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings,[21] O. A. Omoniyi, B. Tiller, R. O’Leary y J. F. Windmill, ‹ Developing A 3D Printable Electret Material For Sensing Applications›, vol. 6, n.o 2, pa´gs. 1-3, 2019, ISBN: 9781538693049. DOI: 10.1109/fleps.2019.8792249.[22] V. Padmanabhan, R. Fischer, J. L. Semmlow y W. Welkowitz, ‹ High sensitivity PCG transducer for extended frequency applications› , en Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, vol. 11, n. o 2, pa´gs. 57-58, 1989. DOI: 10.1109/iembs.1989.95569.[23] V. Padmanabhan, J. L. Semmlow y W. Welkowitz, ‹ Accelerometer Type Cardiac Transducer for Detection of Low-Level Heart Sounds› , IEEE Transactions on Biomedical Engineering, vol. 40, n.o 1, pa´gs. 21-28, 1993, ISSN: 1558-2531. DOI: 10.1109/10.204767.[24] R. K. Kusainov y V. K. Makukha, ‹ Evaluation of the applicability of MEMS microphone for auscultation› , en International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM, vol. 8, n.o 6, pa´gs. 595-597, 2015, ISBN: 9781467367196. DOI: 10.1109/EDM.2015.7184613.[25] K. J. Cho y H. H. Asada, ‹ Wireless, battery-less stethoscope for wearable health monitoring› , en Proceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC, vol. 11, n.o 5, pa´gs. 187-188, 2002, ISBN: 0780374193. DOI: 10.1109/NEBC.2002.999528.[26] M. J. Crocker, ‹ Fundamentals of Acoustics, Noise, and Vibration› , en Handbook of Noise and Vibration Control, vol. 8, n.o 3, pa´gs. 1-16, 2008, ISBN: 9780471395997. DOI: 10.1002/9780470209707.ch1.[27] E. Fernandez-Grande, ‹ Sound field reconstruction using a spherical microphone array› , The Journal of the Acoustical Society of America, vol. 139, n.o 3, pa´gs. 1168-1178, 2016, ISSN: 0001-4966. DOI: 10.1121/1.4943545.[28] M. Kleiner, Electroacoustic. 1, vol. n.o 8, pa´gs. 628, 2013. DOI: 10.1017/CBO9781107415324.004.[29] Q. Zou, Z. Tan, Z. Wang, J. Pang, X. Qian, Q. Zhang, R. Lin, S. Yi, H. Gong, L. Liu y Z. Li, ‹ A novel integrated silicon capacitive microphone - Floating electrode .electret”microphone (FEEM)› , Journal of Microelectromechanical Systems, vol. 7, n.o 2, pa´gs. 224-233, 1998, ISSN: 10577157. DOI: 10.1109/84.679385.[30] A. Fallis, C. L. Phillips, J. Parr y E. Riskin, ‹ Signals, Systems, and Transforms› , Journal of Chemical Information and Modeling, vol. 53, n. o 9, pa´gs. 1689-1699, 2007, ISSN: 0131989235. DOI: 10.1017/CBO9781107415324.004. arXiv: arXiv:1011.1669v3.[31] M. Neukom, Signals, Systems and Sound Synthesis. Berlin, 2015. DOI: 10.3726/978-3-0351-0609-1.[32] J. G. Proakis y D. G. Monolakis, Digital signal processing: principles, algorithms, and applications. vol. 9, n.o 4, pa´gs. 1-42, 1996, ISBN: 0-13-394338-9.[33] E. G. Williams y J. A. Mann, ‹ Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography›, The Journal of the Acoustical Society of America, vol. 108, n.o 4, pa´gs. 1373-1373, 2000, ISSN: 0001-4966. DOI: 10.1121/1.1289662.[34] J. McGhee, ‹ Low-, High-, and Band-Pass Digital Filters› , en Handbook of Measuring System Design, vol. 15, n. o 1, pa´gs. 115-211, 2005. DOI: 10.1002/0471497398.mm866.[35] E. V. K. Madisetti, D. B. Williams y S. C. Douglas, ‹ ¨Introduction to Adaptive Filters” Digital Signal Processing Handbook› , I ¨ntroduction to Adaptive Filters” Digital Signal Processing Handbook Ed. Vijay K. Madisetti and Douglas B. Williams Boca Raton: CRC Press LLC, vol. 11, n.o 18, pa´gs. 20, 1999[36] F. Parola y J. Garcia-Niebla, ‹ Use of High-Pass and Low-Pass Electrocardiographic Filters in an International Cardiological Community and Possible Clinical Effects› , Advanced Journal of Vascular Medicine, vol. 2, n.o 5, pa´gs. 34-38, 2017.[37] G. Ballou, Electroacoustic Devices: Microphones and Loudspeakers. 2012. DOI: 10.4324/9780240812687.[38] M. Re´Billat, K. Ege, M. Gallo y J. Antoni, ‹Repeated exponential sine sweeps for the autonomous estimation of nonlinearities and bootstrap assessment of uncertainties› , en Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 230, n.o 15, pa´gs. 1007-1018, 2015. DOI: 10.1177/0954406215620685.[39] A. Farina, ‹ Advancements in impulse response measurements by sine sweeps› , en Audio Engineering Society - 122nd Audio Engineering Society Convention 2007, vol. 3, n.o 11, pa´gs. 1626-1646, 2007, ISBN: 9781604231403.[40] J. Eargle, The Microphone book. Burlington, 2012. DOI: 10.4324/9780080473468.[41] C. Ahlstro¨m, Processing of the Phonocardiographic Signal Methods for the Intelligent Stethoscope, 1253. vol. 14, n.o 7, pa´gs. 1-68, 2006, ISBN: 9185523593. DOI: urn:nbn:se:liu:diva-7538. direccio´n: http://liu.diva-portal.org/smash/get/diva2:22548/FULLTEXT01[42] G. Shah, P. Koch y C. B. Papadias, ‹ Analysis of acoustic cardiac signals for heart rate variability and murmur detection using nonnegative matrix factorization-based hierarchical decomposition› , en Proceedings - IEEE 14th International Conference on Bioinformatics and Bioengineering, BIBE, vol. 2, n.o 8, pa´gs. 46-53, 2014, ISBN: 9781479975013. DOI: 10.1109/BIBE.2014.14.[43] C. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro, F. Castells, J. M. Roig, I. Silva, A. E. Johnson, Z. Syed, S. E. Schmidt, C. D. Papadaniil, L. Hadjileontiadis, H. Naseri, A. Moukadem, A. Dieterlen, C. Brandt, H. Tang, M. Samieinasab, M. R. Samieinasab, R. Sameni, R. G. Mark y G. D. Clifford, ‹ An open access database for the evaluation of heart sound algorithms› , Physiological Measurement, vol. 37, n.o 12, pa´gs. 2181-2213, 2016, ISSN: 13616579. DOI: 10.1088/0967-3334/37/12/2181.[44] P. A. Gunning, ‹ Auscultation Skills› , Medicine & Science in Sports & Exercise, vol. 38, n.o 6, pa´g. 1196, 2006, ISSN: 0195-9131. DOI: 10.1249/01.mss.0000221939.90804.a5.[45] N. Jason y J. J. Goldberger, ‹ Cardiology: Electrocardiography› , en The Physiological Measurement Handbook, vol. 21, n. o 16, pa´gs. 43-73, 2014, ISBN: 9781439808481. DOI: 10.1201/b17831.[46] Standard International Organization, ‹ ISO 3382-2› , International Organization for standardization, vol. 2, n.o 1, pa´g. 34, 2008.Universidad de San Buenaventura - MedellínBiblioteca USB (San Benito) TG-5829tBiblioteca Digital Universidad de San BuenaventuraBioacústicasImpresión 3DBioacousticSignalsTransducers3D PrintingTransductoresSeñalesIngeniero de SonidoCaracterización de transductores de bajo costo para el registro de señales bioacústicasTrabajo de grado - PregradoTrabajo de Gradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fPublicationhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001472217virtual::2369-1https://scholar.google.com/citations?user=LFPIimIAAAAJ&hl=es&oi=aovirtual::2369-10000-0001-8008-3528virtual::2369-124880263-63b0-4bd4-af81-d7ff9fa6e112virtual::2369-124880263-63b0-4bd4-af81-d7ff9fa6e112virtual::2369-1ORIGINALCaracterizacion_Transductores_Muriel_Costo_2020.pdfCaracterizacion_Transductores_Muriel_Costo_2020.pdfapplication/pdf5082564https://bibliotecadigital.usb.edu.co/bitstreams/2ab49830-7b2c-4ef4-8ed2-4975423fd1c4/downloadcaf678fc9a86302781021446cb4562c6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82071https://bibliotecadigital.usb.edu.co/bitstreams/5b522526-92c7-48c9-aab2-de1ff97e9851/download0c7b7184e7583ec671a5d9e43f0939c0MD52TEXTCaracterizacion_Transductores_Muriel_Costo_2020.pdf.txtCaracterizacion_Transductores_Muriel_Costo_2020.pdf.txtExtracted texttext/plain156488https://bibliotecadigital.usb.edu.co/bitstreams/657faa79-042d-4aee-9698-988d7c244c4c/downloaddffa5fc4f1a5c947665e7ada47a004e9MD53THUMBNAILCaracterizacion_Transductores_Muriel_Costo_2020.pdf.jpgCaracterizacion_Transductores_Muriel_Costo_2020.pdf.jpgGenerated Thumbnailimage/jpeg6737https://bibliotecadigital.usb.edu.co/bitstreams/6ad376c8-b453-4c13-9151-3a026ea62237/download79e5caaf156e77b00e497b3e5ba7c3cbMD5410819/8049oai:bibliotecadigital.usb.edu.co:10819/80492024-12-02 13:38:19.014http://creativecommons.org/licenses/by-nc-nd/2.5/co/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPkJJQkxJT1RFQ0EgRElHSVRBTCBVTklWRVJTSURBRCBERSBTQU4gQlVFTkFWRU5UVVJBIC0gQ09MT01CSUE8L2gzPgo8cD4KVMOpcm1pbm9zIGRlIGxhIGxpY2VuY2lhIGdlbmVyYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgcmVwb3NpdG9yaW8gaW5zdGl0dWNpb25hbDwvcD48L2NlbnRlcj4KPFAgQUxJR049Y2VudGVyPgpQb3IgbWVkaW8gZGUgZXN0ZSBmb3JtYXRvIG1hbmlmaWVzdG8gbWkgdm9sdW50YWQgZGUgQVVUT1JJWkFSIGEgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgU2VkZSBCb2dvdMOhIHkgPEJSPlNlY2Npb25hbGVzIE1lZGVsbMOtbiwgQ2FsaSB5IENhcnRhZ2VuYSwgbGEgZGlmdXNpw7NuIGVuIHRleHRvIGNvbXBsZXRvIGRlIG1hbmVyYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBlbiBsYTxCUj4gQmlibGlvdGVjYSBEaWdpdGFsIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIGVsIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBvYmpldG8gZGUgbGEgcHJlc2VudGUgPEJSPmF1dG9yaXphY2nDs24sIGNvbiBmaW5lcyBlc3RyaWN0YW1lbnRlIGVkdWNhdGl2b3MsIGNpZW50w63CrWZpY29zIHkgY3VsdHVyYWxlcywgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW4gbGEgTGV5IDIzIGRlIDxCUj4gMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvczxCUj4gZGUgYXV0b3IuIDxCUj4gCiAKQ29tbyBhdXRvciBtYW5pZmllc3RvIHF1ZSBlbCBwcmVzZW50ZSBkb2N1bWVudG8gYWNhZMOpbWljbyAtIGludmVzdGlnYXRpdm8gZXMgb3JpZ2luYWwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gPEJSPiB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgbWkgZXhjbHVzaXZhIGF1dG9yw63CrWEgeSBwb3NlbyBsYSB0aXR1bGFyaWRhZCA8QlI+IHNvYnJlIGxhIG1pc21hLiBMYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIG5vIHNlcsOhIHJlc3BvbnNhYmxlIGRlIG5pbmd1bmEgdXRpbGl6YWNpw7NuIGluZGViaWRhIGRlbCBkb2N1bWVudG8gPEJSPnBvciBwYXJ0ZSBkZSB0ZXJjZXJvcyB5IHNlcsOhIGV4Y2x1c2l2YW1lbnRlIG1pIHJlc3BvbnNhYmlsaWRhZCBhdGVuZGVyIHBlcnNvbmFsbWVudGUgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBxdWUgcHVlZGE8QlI+IHByZXNlbnRhcnNlIGEgbGEgVW5pdmVyc2lkYWQuIDxCUj4KIApBdXRvcml6byBhIGxhIEJpYmxpb3RlY2EgRGlnaXRhbCBkZSBsYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYWwgZm9ybWF0byBxdWUgZWwgPEJSPnJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBvIGNvbiBmaW5lcyBkZTxCUj4gcHJlc2VydmFjacOzbiBkaWdpdGFsLiA8QlI+CiAKRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGVuZ28gZGUgcHVibGljYXIgcG9zdGVyaW9ybWVudGUgbGEgb2JyYSwgZW4gZm9ybWEgdG90YWwgbyA8QlI+cGFyY2lhbCwgcG9yIGxvIGN1YWwgcG9kcsOpLCBkYW5kbyBhdmlzbyBwb3IgZXNjcml0byBjb24gbm8gbWVub3MgZGUgdW4gbWVzIGRlIGFudGVsYWNpw7NuLCBzb2xpY2l0YXIgcXVlIGVsIDxCUj5kb2N1bWVudG8gZGVqZSBkZSBlc3RhciBkaXNwb25pYmxlIHBhcmEgZWwgcMO6YmxpY28gZW4gbGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIDxCUj4gYXPDrcKtIG1pc21vLCBjdWFuZG8gc2UgcmVxdWllcmEgcG9yIHJhem9uZXMgbGVnYWxlcyB5L28gcmVnbGFzIGRlbCBlZGl0b3IgZGUgdW5hIHJldmlzdGEuIDxCUj48L1A+Cg== |