Uso de drones y sensores remotos para el monitoreo de laderas: una revisión

Los deslizamientos de tierra son uno de los peligros y riesgos más costoso y fatales para cualquier infraestructura vial, que frecuentemente amenazan e influyen en la situación socioeconómica, principalmente, de los países en vía de desarrollo. Frecuentemente, los estudios de deslizamiento se hacen...

Full description

Autores:
Alonso Gómez, Luis Fernando
Chaves Pabon, Saieth Baudilio
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/29007
Acceso en línea:
https://hdl.handle.net/10819/29007
https://doi.org/10.21500/20275846.5158
Palabra clave:
Spanish
sensores remotos
drones
deslizamientos de tierra
detección
peligros naturales
Rights
openAccess
License
Ingenierías USBMed - 2021
id SANBUENAV2_1514275de18f670eadd40297c4615b43
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/29007
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
dc.title.translated.eng.fl_str_mv Spanish
title Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
spellingShingle Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
Spanish
sensores remotos
drones
deslizamientos de tierra
detección
peligros naturales
title_short Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
title_full Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
title_fullStr Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
title_full_unstemmed Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
title_sort Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
dc.creator.fl_str_mv Alonso Gómez, Luis Fernando
Chaves Pabon, Saieth Baudilio
dc.contributor.author.spa.fl_str_mv Alonso Gómez, Luis Fernando
Chaves Pabon, Saieth Baudilio
dc.subject.eng.fl_str_mv Spanish
topic Spanish
sensores remotos
drones
deslizamientos de tierra
detección
peligros naturales
dc.subject.spa.fl_str_mv sensores remotos
drones
deslizamientos de tierra
detección
peligros naturales
description Los deslizamientos de tierra son uno de los peligros y riesgos más costoso y fatales para cualquier infraestructura vial, que frecuentemente amenazan e influyen en la situación socioeconómica, principalmente, de los países en vía de desarrollo. Frecuentemente, los estudios de deslizamiento se hacen de manera directa, in situ, siendo muchos de ellos costosos y un reto dada la dificultad que se pueden presentar al acceder a las zonas de estudio. Los datos de los sensores remotos se pueden usar en el monitoreo de deslizamientos de tierra, mapeo, simulación, predicción y evaluación de peligros y otras investigaciones. El presente artículo presenta una revisión bibliográfica en estudios relacionados con el uso de drones y sensores remotos para el seguimiento y monitoreo de laderas, de una manera descriptiva y que permita por medio de la documentación incorporar información relevante para poder abordar futuros estudios más específicos que permitan tener en cuenta el monitoreo de deslizamientos de tierra, las técnicas de sensores remotos, drones y la aplicación global de este conjunto de nuevas tecnologías.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-11T17:08:18Z
2025-08-22T17:04:13Z
dc.date.available.none.fl_str_mv 2021-10-11T17:08:18Z
2025-08-22T17:04:13Z
dc.date.issued.none.fl_str_mv 2021-10-11
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20275846.5158
dc.identifier.eissn.none.fl_str_mv 2027-5846
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/29007
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20275846.5158
identifier_str_mv 10.21500/20275846.5158
2027-5846
url https://hdl.handle.net/10819/29007
https://doi.org/10.21500/20275846.5158
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/5158/4132
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2021 : Ingenierías USBMed
dc.relation.citationendpage.none.fl_str_mv 73
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 65
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.ispartofjournal.spa.fl_str_mv Ingenierías USBMed
dc.relation.references.spa.fl_str_mv D. A. Flores, C. Saito, J. A. Paredes, and F. Trujillano, "Aerial photography for 3D reconstruction in the Peruvian Highlands through a fixed-wing UAV system," Proc. - 2017 IEEE Int. Conf. Mechatronics, ICM 2017, pp. 388-392, 2017. [2] X. Xiang and L. Tian, "Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform ," Biosyst. Eng., vol. 108, no. 2, pp. 104–113, 2011. [3] S. L. Garianoab and F. Guzzetti, "Landslides in a changing climate," Earth-Science Reviews, vol. 162, pp. 227-252, Novembe 2016. [4] D. Petley, "Global patterns of loss of life from landslides," Geology, vol. 40, no. 10, pp. 927-93, September 2012, DOI: 10.1130/G33217.1. [5] M. Barbarella and M. Fiani, "Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing," European Journal of Remote Sensing, vol. 46, no. 1, pp. 126-151, Febrero 2013, https://doi.org/10.5721/EuJRS20134608. [6] Zhong Cheng et al., "Landslide mapping with remote sensing: challenges and opportunities," International Journal of Remote Sensing, vol. 41, no. 4, 1555-1581 2020, DOI: 10.1080/01431161.2019.1672904. [7] M. Alizadeh, I. Ngah, M. Hashim, B. Pradhan, and AB Pour, "A Hybrid Analytic Network Process and Artificial Neural Network (ANP-ANN) Model for Urban Earthquake Vulnerability Assessment," Remote sensing, vol. 10, p. 975, 2018, doi: 10.3390/rs10060975. [8] J. M. Wempen, "Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States," International Journal of Mining Science and Technology, vol. 30, no. 1, pp. 33-37, January 2020. [9] J.M. Wempen and M.K. McCarter, "Comparison of L-band and X-band differential interferometric synthetic aperture radar for mine subsidence monitoring in Central Utah," International Journal of Mining Science and Technology, vol. 27, no. 1, pp. 159-163, 2017. [10] R.K. Dahal, S. Hasegawa, T. Masuda, and M. Yamanaka, "Roadside slope failures in Nepal during torrential rainfall and their mitigation," Disaster mitigation of debris flow, slope failures and landslides, (Interpraevent 2007), Universal Academy Press, Tokyo, vol. 2, pp. 503-514, 2006. [11] L. Solar et al., "Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data," Geomatics, Natural Hazards and Risk, vol. 9, no. 1, pp. 152-174, 2018, https://doi.org/10.1080/19475705.2017.1413013. [12] M. Koeva, M. Muneza, C. Gevaert, M. Gerke, and F. Nex, "Using UAVs for map creation and updating. A case study in Rwanda," Survey Review, vol. 50, no. 361, pp. 312-325, 2018, DOI: 10.1080/00396265.2016.1268756. [13] F. Nex and F. Remondino, "UAV for 3D mapping applications: a review," Applied Geomatics, vol. 6, no. 1, pp. 1-15, 2014, doi: 10.1007 / s12518-013-0120-x. [14] E., Renchin, T., Kappas, M., Tseveen, B., Dari, C., Tsend, O., Duger, U.-O. Natsagdorj, "An integrated methodology for soil moisture analysis using multispectral data in Mongolia," Geo-Spatial Information Science, vol. 20, no. 1, pp. 46-55, 2017. [15] G. J. Grenzdörffer and F. Niemeyer, "UAV-based BRDF-measurements of agricutltural surfaces with PFIFFikus," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 38, no. 1/C22, pp. 229-234, 2011. [16] E. Pino, "Los drones una herramienta para una agricultura eficiente: un futuro de alta tecnología," Idesia (Arica), vol. 1, no. 75-84, p. 37, 2019. [17] V. Puri, A. Nayyar, and L. Raja, "Agriculture drones: A modern breakthrough in precision agriculture," Journal of Statistics and Management Systems, vol. 20, no. 4, pp. 507-518, 2017. [18] M. A. Ruiz E. and A. Ndomab, "The uses of unmanned aerial vehicles –UAV’s- (or drones) in social logistic: Natural disasters response and humanitarian relief aid," Procedia Computer Science, vol. 149, pp. 375-383, 2019. [19] D. Giordan, A. Manconi, F. Remondino, and F. Nex, "Use of unmanned aerial vehicles in monitoring application and management of natural hazards," Geomatics, Natural Hazards and Risk , vol. 8, no. 1, pp. 1-4, 2017 DOI: 10.1080/19475705.2017.1315619. [20] K. Choi and I. Lee, "A UAV based close-range rapid aerial monitoring system for emergency responses," ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22, no. 1, pp. 247-252, 2011, DOI: 10.5194/isprsarchives-XXXVIII-1-C22-247-2011. [21] Pere Molina et al., "Drones to the Rescue!," Inside GNSS, pp. 36-47, July 2012. [22] P. Zarco-Tejada and J. Berni, "Monitoreo de la vegetación mediante un sensor de imágenes micro-hiperespectrales a bordo de un vehículo aéreo no tripulado (UAV)," in Proceedings of the EuroCOW 2012, European espacial data research (EuroSDR), Castelldefels, España, 8-10 de febrero de 2012. [23] F. Agüera, F. Carvajal, and M. Pérez, "Measuring sunflower nitrogen status from an unmanned aerial vehicle-based system and an on the ground device," in ISPRS Annals of the Photogrametry Remote Sensing and Spatial Information Sciences , XXVIII-1 / C2, 33 - 37, 2011, pp. 33-37. [24] A. Lucieer, S. A. Robinson, D. Turner, S. Harwin, and J. Kelcey, "Using a micro-UAV for ultra-high resolution multi-sensor observations of Antarctic moss beds," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIX-B1, pp. 429-433, 2012. [25] Fausto G. Costa et al., "The use of unmanned aerial vehicles and wireless sensor network in agricultural applications," in Simposio internacional de geociencias y teledetección del IEEE (IGARSS), Munich, Alemania, 22-27 de julio de 2012. [26] D.N. Concepción-Toledo, E. González-Suárez, R.A. García-Prado, and J.E. Miño-Valdés, "Investigation methodology: Origin and construction of a doctoral thesis," Revista Científica de la UCSA, vol. 6, no. 1, pp. 076-087, 2019, http://dx.doi.org/10.18004/ucsa/2409-8752/2019.006(01)076-087. [27] R. Prokešová, M. Kardoš, and A. Medveová, "Landslide dynamics from high-resolution aerial photographs: A case study from the Western Carpathians, Slovakia," Geomorphology, vol. 101, no. 1-2, p. 90, 2010. [28] A. Lucieer, D. Turner, D. H. King, and S. A. Robinson, "Using an unmanned aerial vehicle (UAV) to capture micro-topography of antarctic moss beds," International Journal Applied Eath Observation Geoinformation, vol. 27, pp. 53-62, 2014. [29] E. J. Ramírez Chávez, A. Cruz García, A. G. Lagunas Pérez, and O. E. Reyes Carreño, "Uso de vehículos aéreos no tripulados para la caracterización del paisaje sumergido; Bahía Estacahuite," Ciencia y Mar, vol. 51, pp. 35-40, 2015. [30] F. Carvajal, F. Agüera, and M. Pérez, "Surveying a Landslide in a Road Embankment Using Unmanned Aerial Vehicle Photogrammetry," Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXVIII-1, pp. 201-206, 2012. [31] S. Manfreda and et al., "On the use of unmanned aerial systems for environmental monitoring," Remote Sens., vol. 10, no. 4, 2018. [32] R. Niethammer, James A, and J. Travelletti, "Uav-Based Remote Sensing of Landslides," Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXVIII, pp. 496–501, 2010. [33] H. Taddese B. and I. Burud, "Application of unmanned aerial vehicles in earth resources monitoring: focus on evaluating potentials for forest monitoring in Ethiopia," European Journal of Remote Sensing, vol. 51, no. 1, pp. 326-335, 2018, DOI: 10.1080/22797254.2018.1432993. [34] P. Boccardo, F. Chiabrando, F. Dutto, F. G. Tonolo, and A. Lingua, "UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications," Sensors, vol. 15, no. 7, pp. 15717-15737, 2015. [35] M. Silvagni, A. Tonoli, E. Zenerino, and M. Chiaberge, "Multipurpose UAV for search and rescue operations in mountain avalanche events," Geomatics, Natural Hazards and Risk, vol. 8, no. 1, pp. 18-33, 2017, DOI: 10.1080/19475705.2016.1238852. [36] R. R. Murphy et al., "Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma," Journal of Field robotics, vol. 25, no. 3, pp. 164-180, 2008, https://doi.org/10.1002/rob.20235. [37] K. S. Pratt, R. Murphy, S. Stover, and C. Griffin, "CONOPS and Autonomy Recommendations for VTOL Small Unmanned Aerial System Based on Hurricane Katrina Operations," Journal of Field Robotics, vol. 26, no. 8, pp. 636-650, 2009. [38] T.Y. Chou, M. L. Yeh, Y. Chen, and Y. H. Chen, "Disaster monitoring and management by the unmanned aerial vehicle technology," in En: Wagner W , Székely B , editores. Simposio ISPRS TC VII - 100 años ISPRS. Viena : Archivos internacionales de fotogrametría, teledetección e información espacial, 2010, pp. 137-142. [39] Pere Molina et al., "SEARCHING LOST PEOPLE WITH UAVS: THE SYSTEM AND RESULTS OF THE CLOSE-SEARCH PROJECT," in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII Congress of the International Society for Photogrammetry and Remote Sensing, Melbourne, Australia, August 25 - September 1, 2012, pp. 441-446. [40] M. Baldo, C. Bicocchi, U. Chiocchini, D. Giordan, and G. Lollino, "LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy," Geomorphology, vol. 105, no. 3, pp. 193-201, 2009. [41] E. Nissen, A. K. Krishnan, R. Arrowsmith, and S. Saripalli, "Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds," Geophysical Research Letters , vol. 39, no. 16, 2012. [42] I. Colomina and P. Molina, "Unmanned aerial systems for photogrammetry and remote sensing: A review," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 92, pp. 79-97, 2014, doi: 10.1016 / j.isprsjprs.2014.02.013. [43] B. U. Meinen and D. T. Robinson, "Streambank topography: an accuracy assessment of UAV-based and traditional 3D reconstructions," International Journal of Remote Sensing, vol. 41, no. 1, pp. 1-18, 2020, DOI: 10.1080 / 01431161.2019.1597294. [44] K. Nikolakopoulos et al., "Preliminary results from active landslide monitoring using multidisciplinary surveys," European Journal of Remote Sensing, vol. 50, no. 1, 2017, DOI: 10.1080/22797254.2017.1324741. [45] G.F. Wieczorek and J.B. Snyder, "Monitoring slope movements," in R. Young & L. Norby (Eds.), Geological Society of America. Boulder, CO: Geological Monitoring, 2009, pp. 245-271. [46] A., De Jong, S.M., & Turner, D. Lucieer, "Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography," Progress in Physical Geography, vol. 38, no. 1, pp. 97-116. [47] K., Kavoura, K., Depountis, N., Argyropoulos, N., Koukouvelas, I. Nikolakopoulos and N. Sabatakakis, "Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV," Proceedings of SPIE, 9644, 96440E, 2015, doi:10.1117/12.2195394. [48] U. Niethammer, S. Rothmund, U. Schwaderer, J. Zeman, and M. Joswig, "Open source image-processing tools for low-cost uav-based landslide investigations," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 38, no. 1C22, pp. 161-166, 2011, doi: 10.5194/isprsarchives-XXXVIII-1-C22-161-2011. [49] D. Turner, A. Lucieer, and S.M. De Jong, "Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV)," Remote Sensing, vol. 7, pp. 1736-1757. [50] J. Lin, H. Tao, Y. Wang, and Z. Huang, "Practical application of unmanned aerial vehicles for mountain hazards survey," in 18th International Conference on Geoinformatics, Beijing, 2010, doi:10.1109/GEOINFORMATICS.2010.5567777, pp. 1-5. [51] J. Rau, J. Jhan, C. Lob, and Y. Linb, "Landslide mapping using imagery acquired by a fixed-wing UAV. ISPRS International Archives of the Photogrammetry," Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22, pp. 195-200. [52] U., James, M.R., Rothmund, S., Travelletti, J., & Joswig, M. Niethammer, "UAV-based remote sensing of the super-sauze landslide: Evaluation and results," Engineering Geology, vol. 128, pp. 2-11, 2012, doi:10.1016/j.enggeo.2011.03.012. [53] A. Stumpf, J.P. Malet, N. Kerle, U. Niethammer, and S. Rothmund, "Image-based mapping of surface fissures for the investigation of landslide dynamics," Geomorphology, vol. 186, no. 15, pp. 12-27, 2013, doi:10.1016/j.geomorph.2012.12.010. [54] F. Pirotti, A. Guarnieri, and A. Vettore, "State of the art of ground and aerial laser scanning technologies for high-resolution topography of the earth surface," European Journal Remote Sensing, vol. 46, pp. 66-78, 2013, doi: 10.5721/EuJRS20134605. [55] S Slob and R. Hack, "3D terrestrial laser scanning as a new field measurement and monitoring technique," in Hack R, Azzam R, Charlier R, editors. Engineering geology for infrastructure planning in Europe: a European perspective. Berlin/Heidelberg: Springer, pp. 179-189. [56] M Jaboyedoff et al., "Use of LIDAR in landslide investigations: a review," Nat Hazads, vol. 61, pp. 5-28, 2012. [57] C. Briese, "Extraction of digital terrain models," in Vosselman G, Maas HG, editors. Airborne and terrestrial laser scanning. Dunbeath: Whittles, pp. 135-167. [58] K. Kraus and N. Pfeifer, "Advanced DTM generation from LIDAR data," ISPRS Archives, vol. XXXIV-3/W4, pp. 23-30, Available from: http://www.isprs.org/proceedings/xxxiv/3-w4/pdf/kraus.pdf. [59] G. Vosselman and G. Sithole, "Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds," ISPRS Journal Photogrammetry Remote Sensing, vol. 1, pp. 85-101, 2004. [60] N. Pfeifer and G. Mandlburger, "LIDAR data filtering and DTM generation," in Shan J, Toth CK, editors. Topographic laser ranging and scanning. Principles and processing. Boca Raton (FL): Taylor and Francis, pp. 307-334. [61] F. J. Aguilar, F. Agüera, M. A. Aguilar, and F. Carvajal, "Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy," Photogrammetric Eng Remote Sensing, vol. 71, pp. 805-816. [62] M. Fiani and N. Siani, "Comparison of terrestrial laser scanners in production of DEMs for Cetara tower," in CIPA 2005 XX International Symposium, Torino (Italy), Sep 26 - Oct 01, Available from: http://cipa.icomos.org/fileadmin/template/doc/TURIN/277.pdf, p. 2005. [63] A. Abellan, M. Jaboyedoff, T. Oppikofer, and J. M. Vilaplana, "Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rock fall event," Nat Hazards Earth Syst Sc, vol. 9, pp. 365-372, 2009. [64] K. Ujike and M. Takagi, "Measurement of landslide displacement by object extraction with ground based portable Lased Scanner," in Proceedings of the 25th Asian Conference on Remote Sensing, Chiangmai, Thailand, 2004, Available from: http://www.aars.org/acrs/proceeding/ACRS2004/Papers/3LS04-4.htm, pp. 83-89. [65] C. Castagnetti, E. Bertacchini, and R. Rivola, "A reliable methodology for monitoring unstable slopes: The multi-platform and multi-sensor approach," roceedings of SPIE, 9245, Earth Resources and Environmental Remote Sensing/GIS Applications V, 92450J. , 2014, doi:10.1117/12.2067407. [66] M. C. Spreafico et al., "Terrestrial Remote Sensing techniques to complement conventional geomechanical surveys for the assessment of landslide hazard: The San Leo case study (Italy)," European Journal of Remote Sensing, vol. 48, no. 1, pp. 639-660, 2015, DOI: 10.5721/EuJRS20154835. [67] T.R. Martha, N. Kerle, V. Jetten, C.J. Van Westen, and K.V. Kumar, "Landslide volumetric analysis using cartosat-1-derived dems," IEEE Geoscience And Remote Sensing Letters, vol. 7, pp. 582-586. [68] M.J. Westoby, J. Brasington, N.F. Glasser, M.J. Hambrey, and J.M. Reynolds, "Structure-from motion photogrammetry: A low-cost, effective tool for geoscience applications," Geomorphology, vol. 179, pp. 300-314, 2012. [69] J. Campos, "Diseño innovador se sensor para laderas sistema previsor de taludes," Universidad Nacional Autonoma de Mexico, Tesis doctoral 2017.
dc.rights.spa.fl_str_mv Ingenierías USBMed - 2021
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
rights_invalid_str_mv Ingenierías USBMed - 2021
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.spa.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/5158
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/1f2eb6b6-f118-4207-8e4f-7cd4c7e3db6d/download
bitstream.checksum.fl_str_mv eee7ce1f1d4fbecae527e7793f75fc9d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053593659965440
spelling Alonso Gómez, Luis FernandoChaves Pabon, Saieth Baudilio2021-10-11T17:08:18Z2025-08-22T17:04:13Z2021-10-11T17:08:18Z2025-08-22T17:04:13Z2021-10-11Los deslizamientos de tierra son uno de los peligros y riesgos más costoso y fatales para cualquier infraestructura vial, que frecuentemente amenazan e influyen en la situación socioeconómica, principalmente, de los países en vía de desarrollo. Frecuentemente, los estudios de deslizamiento se hacen de manera directa, in situ, siendo muchos de ellos costosos y un reto dada la dificultad que se pueden presentar al acceder a las zonas de estudio. Los datos de los sensores remotos se pueden usar en el monitoreo de deslizamientos de tierra, mapeo, simulación, predicción y evaluación de peligros y otras investigaciones. El presente artículo presenta una revisión bibliográfica en estudios relacionados con el uso de drones y sensores remotos para el seguimiento y monitoreo de laderas, de una manera descriptiva y que permita por medio de la documentación incorporar información relevante para poder abordar futuros estudios más específicos que permitan tener en cuenta el monitoreo de deslizamientos de tierra, las técnicas de sensores remotos, drones y la aplicación global de este conjunto de nuevas tecnologías.Landslides are one of the most costly and fatal hazards and risks for any road infrastructure, often threatening and influencing the socio-economic situation mainly in developing countries. Landslide studies are often carried out directly on site, and many are costly and challenging given the difficulty of access to study areas. Remote sensing data can be used in landslide monitoring, mapping, simulation, hazard prediction and assessment, and other research. This article presents a literature review on studies related to the use of drones and remote sensing for slope tracking and monitoring, in a descriptive manner that allows through documentation to incorporate relevant information in order to address future more specific studies to take into account landslide monitoring, remote sensing techniques, drones and the global application of this set of new technologies.application/pdf10.21500/20275846.51582027-5846https://hdl.handle.net/10819/29007https://doi.org/10.21500/20275846.5158spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/5158/4132Núm. 2 , Año 2021 : Ingenierías USBMed7326512Ingenierías USBMedD. A. Flores, C. Saito, J. A. Paredes, and F. Trujillano, "Aerial photography for 3D reconstruction in the Peruvian Highlands through a fixed-wing UAV system," Proc. - 2017 IEEE Int. Conf. Mechatronics, ICM 2017, pp. 388-392, 2017. [2] X. Xiang and L. Tian, "Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform ," Biosyst. Eng., vol. 108, no. 2, pp. 104–113, 2011. [3] S. L. Garianoab and F. Guzzetti, "Landslides in a changing climate," Earth-Science Reviews, vol. 162, pp. 227-252, Novembe 2016. [4] D. Petley, "Global patterns of loss of life from landslides," Geology, vol. 40, no. 10, pp. 927-93, September 2012, DOI: 10.1130/G33217.1. [5] M. Barbarella and M. Fiani, "Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing," European Journal of Remote Sensing, vol. 46, no. 1, pp. 126-151, Febrero 2013, https://doi.org/10.5721/EuJRS20134608. [6] Zhong Cheng et al., "Landslide mapping with remote sensing: challenges and opportunities," International Journal of Remote Sensing, vol. 41, no. 4, 1555-1581 2020, DOI: 10.1080/01431161.2019.1672904. [7] M. Alizadeh, I. Ngah, M. Hashim, B. Pradhan, and AB Pour, "A Hybrid Analytic Network Process and Artificial Neural Network (ANP-ANN) Model for Urban Earthquake Vulnerability Assessment," Remote sensing, vol. 10, p. 975, 2018, doi: 10.3390/rs10060975. [8] J. M. Wempen, "Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States," International Journal of Mining Science and Technology, vol. 30, no. 1, pp. 33-37, January 2020. [9] J.M. Wempen and M.K. McCarter, "Comparison of L-band and X-band differential interferometric synthetic aperture radar for mine subsidence monitoring in Central Utah," International Journal of Mining Science and Technology, vol. 27, no. 1, pp. 159-163, 2017. [10] R.K. Dahal, S. Hasegawa, T. Masuda, and M. Yamanaka, "Roadside slope failures in Nepal during torrential rainfall and their mitigation," Disaster mitigation of debris flow, slope failures and landslides, (Interpraevent 2007), Universal Academy Press, Tokyo, vol. 2, pp. 503-514, 2006. [11] L. Solar et al., "Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data," Geomatics, Natural Hazards and Risk, vol. 9, no. 1, pp. 152-174, 2018, https://doi.org/10.1080/19475705.2017.1413013. [12] M. Koeva, M. Muneza, C. Gevaert, M. Gerke, and F. Nex, "Using UAVs for map creation and updating. A case study in Rwanda," Survey Review, vol. 50, no. 361, pp. 312-325, 2018, DOI: 10.1080/00396265.2016.1268756. [13] F. Nex and F. Remondino, "UAV for 3D mapping applications: a review," Applied Geomatics, vol. 6, no. 1, pp. 1-15, 2014, doi: 10.1007 / s12518-013-0120-x. [14] E., Renchin, T., Kappas, M., Tseveen, B., Dari, C., Tsend, O., Duger, U.-O. Natsagdorj, "An integrated methodology for soil moisture analysis using multispectral data in Mongolia," Geo-Spatial Information Science, vol. 20, no. 1, pp. 46-55, 2017. [15] G. J. Grenzdörffer and F. Niemeyer, "UAV-based BRDF-measurements of agricutltural surfaces with PFIFFikus," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 38, no. 1/C22, pp. 229-234, 2011. [16] E. Pino, "Los drones una herramienta para una agricultura eficiente: un futuro de alta tecnología," Idesia (Arica), vol. 1, no. 75-84, p. 37, 2019. [17] V. Puri, A. Nayyar, and L. Raja, "Agriculture drones: A modern breakthrough in precision agriculture," Journal of Statistics and Management Systems, vol. 20, no. 4, pp. 507-518, 2017. [18] M. A. Ruiz E. and A. Ndomab, "The uses of unmanned aerial vehicles –UAV’s- (or drones) in social logistic: Natural disasters response and humanitarian relief aid," Procedia Computer Science, vol. 149, pp. 375-383, 2019. [19] D. Giordan, A. Manconi, F. Remondino, and F. Nex, "Use of unmanned aerial vehicles in monitoring application and management of natural hazards," Geomatics, Natural Hazards and Risk , vol. 8, no. 1, pp. 1-4, 2017 DOI: 10.1080/19475705.2017.1315619. [20] K. Choi and I. Lee, "A UAV based close-range rapid aerial monitoring system for emergency responses," ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22, no. 1, pp. 247-252, 2011, DOI: 10.5194/isprsarchives-XXXVIII-1-C22-247-2011. [21] Pere Molina et al., "Drones to the Rescue!," Inside GNSS, pp. 36-47, July 2012. [22] P. Zarco-Tejada and J. Berni, "Monitoreo de la vegetación mediante un sensor de imágenes micro-hiperespectrales a bordo de un vehículo aéreo no tripulado (UAV)," in Proceedings of the EuroCOW 2012, European espacial data research (EuroSDR), Castelldefels, España, 8-10 de febrero de 2012. [23] F. Agüera, F. Carvajal, and M. Pérez, "Measuring sunflower nitrogen status from an unmanned aerial vehicle-based system and an on the ground device," in ISPRS Annals of the Photogrametry Remote Sensing and Spatial Information Sciences , XXVIII-1 / C2, 33 - 37, 2011, pp. 33-37. [24] A. Lucieer, S. A. Robinson, D. Turner, S. Harwin, and J. Kelcey, "Using a micro-UAV for ultra-high resolution multi-sensor observations of Antarctic moss beds," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIX-B1, pp. 429-433, 2012. [25] Fausto G. Costa et al., "The use of unmanned aerial vehicles and wireless sensor network in agricultural applications," in Simposio internacional de geociencias y teledetección del IEEE (IGARSS), Munich, Alemania, 22-27 de julio de 2012. [26] D.N. Concepción-Toledo, E. González-Suárez, R.A. García-Prado, and J.E. Miño-Valdés, "Investigation methodology: Origin and construction of a doctoral thesis," Revista Científica de la UCSA, vol. 6, no. 1, pp. 076-087, 2019, http://dx.doi.org/10.18004/ucsa/2409-8752/2019.006(01)076-087. [27] R. Prokešová, M. Kardoš, and A. Medveová, "Landslide dynamics from high-resolution aerial photographs: A case study from the Western Carpathians, Slovakia," Geomorphology, vol. 101, no. 1-2, p. 90, 2010. [28] A. Lucieer, D. Turner, D. H. King, and S. A. Robinson, "Using an unmanned aerial vehicle (UAV) to capture micro-topography of antarctic moss beds," International Journal Applied Eath Observation Geoinformation, vol. 27, pp. 53-62, 2014. [29] E. J. Ramírez Chávez, A. Cruz García, A. G. Lagunas Pérez, and O. E. Reyes Carreño, "Uso de vehículos aéreos no tripulados para la caracterización del paisaje sumergido; Bahía Estacahuite," Ciencia y Mar, vol. 51, pp. 35-40, 2015. [30] F. Carvajal, F. Agüera, and M. Pérez, "Surveying a Landslide in a Road Embankment Using Unmanned Aerial Vehicle Photogrammetry," Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXVIII-1, pp. 201-206, 2012. [31] S. Manfreda and et al., "On the use of unmanned aerial systems for environmental monitoring," Remote Sens., vol. 10, no. 4, 2018. [32] R. Niethammer, James A, and J. Travelletti, "Uav-Based Remote Sensing of Landslides," Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXVIII, pp. 496–501, 2010. [33] H. Taddese B. and I. Burud, "Application of unmanned aerial vehicles in earth resources monitoring: focus on evaluating potentials for forest monitoring in Ethiopia," European Journal of Remote Sensing, vol. 51, no. 1, pp. 326-335, 2018, DOI: 10.1080/22797254.2018.1432993. [34] P. Boccardo, F. Chiabrando, F. Dutto, F. G. Tonolo, and A. Lingua, "UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications," Sensors, vol. 15, no. 7, pp. 15717-15737, 2015. [35] M. Silvagni, A. Tonoli, E. Zenerino, and M. Chiaberge, "Multipurpose UAV for search and rescue operations in mountain avalanche events," Geomatics, Natural Hazards and Risk, vol. 8, no. 1, pp. 18-33, 2017, DOI: 10.1080/19475705.2016.1238852. [36] R. R. Murphy et al., "Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma," Journal of Field robotics, vol. 25, no. 3, pp. 164-180, 2008, https://doi.org/10.1002/rob.20235. [37] K. S. Pratt, R. Murphy, S. Stover, and C. Griffin, "CONOPS and Autonomy Recommendations for VTOL Small Unmanned Aerial System Based on Hurricane Katrina Operations," Journal of Field Robotics, vol. 26, no. 8, pp. 636-650, 2009. [38] T.Y. Chou, M. L. Yeh, Y. Chen, and Y. H. Chen, "Disaster monitoring and management by the unmanned aerial vehicle technology," in En: Wagner W , Székely B , editores. Simposio ISPRS TC VII - 100 años ISPRS. Viena : Archivos internacionales de fotogrametría, teledetección e información espacial, 2010, pp. 137-142. [39] Pere Molina et al., "SEARCHING LOST PEOPLE WITH UAVS: THE SYSTEM AND RESULTS OF THE CLOSE-SEARCH PROJECT," in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII Congress of the International Society for Photogrammetry and Remote Sensing, Melbourne, Australia, August 25 - September 1, 2012, pp. 441-446. [40] M. Baldo, C. Bicocchi, U. Chiocchini, D. Giordan, and G. Lollino, "LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy," Geomorphology, vol. 105, no. 3, pp. 193-201, 2009. [41] E. Nissen, A. K. Krishnan, R. Arrowsmith, and S. Saripalli, "Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds," Geophysical Research Letters , vol. 39, no. 16, 2012. [42] I. Colomina and P. Molina, "Unmanned aerial systems for photogrammetry and remote sensing: A review," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 92, pp. 79-97, 2014, doi: 10.1016 / j.isprsjprs.2014.02.013. [43] B. U. Meinen and D. T. Robinson, "Streambank topography: an accuracy assessment of UAV-based and traditional 3D reconstructions," International Journal of Remote Sensing, vol. 41, no. 1, pp. 1-18, 2020, DOI: 10.1080 / 01431161.2019.1597294. [44] K. Nikolakopoulos et al., "Preliminary results from active landslide monitoring using multidisciplinary surveys," European Journal of Remote Sensing, vol. 50, no. 1, 2017, DOI: 10.1080/22797254.2017.1324741. [45] G.F. Wieczorek and J.B. Snyder, "Monitoring slope movements," in R. Young & L. Norby (Eds.), Geological Society of America. Boulder, CO: Geological Monitoring, 2009, pp. 245-271. [46] A., De Jong, S.M., & Turner, D. Lucieer, "Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography," Progress in Physical Geography, vol. 38, no. 1, pp. 97-116. [47] K., Kavoura, K., Depountis, N., Argyropoulos, N., Koukouvelas, I. Nikolakopoulos and N. Sabatakakis, "Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV," Proceedings of SPIE, 9644, 96440E, 2015, doi:10.1117/12.2195394. [48] U. Niethammer, S. Rothmund, U. Schwaderer, J. Zeman, and M. Joswig, "Open source image-processing tools for low-cost uav-based landslide investigations," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 38, no. 1C22, pp. 161-166, 2011, doi: 10.5194/isprsarchives-XXXVIII-1-C22-161-2011. [49] D. Turner, A. Lucieer, and S.M. De Jong, "Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV)," Remote Sensing, vol. 7, pp. 1736-1757. [50] J. Lin, H. Tao, Y. Wang, and Z. Huang, "Practical application of unmanned aerial vehicles for mountain hazards survey," in 18th International Conference on Geoinformatics, Beijing, 2010, doi:10.1109/GEOINFORMATICS.2010.5567777, pp. 1-5. [51] J. Rau, J. Jhan, C. Lob, and Y. Linb, "Landslide mapping using imagery acquired by a fixed-wing UAV. ISPRS International Archives of the Photogrammetry," Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22, pp. 195-200. [52] U., James, M.R., Rothmund, S., Travelletti, J., & Joswig, M. Niethammer, "UAV-based remote sensing of the super-sauze landslide: Evaluation and results," Engineering Geology, vol. 128, pp. 2-11, 2012, doi:10.1016/j.enggeo.2011.03.012. [53] A. Stumpf, J.P. Malet, N. Kerle, U. Niethammer, and S. Rothmund, "Image-based mapping of surface fissures for the investigation of landslide dynamics," Geomorphology, vol. 186, no. 15, pp. 12-27, 2013, doi:10.1016/j.geomorph.2012.12.010. [54] F. Pirotti, A. Guarnieri, and A. Vettore, "State of the art of ground and aerial laser scanning technologies for high-resolution topography of the earth surface," European Journal Remote Sensing, vol. 46, pp. 66-78, 2013, doi: 10.5721/EuJRS20134605. [55] S Slob and R. Hack, "3D terrestrial laser scanning as a new field measurement and monitoring technique," in Hack R, Azzam R, Charlier R, editors. Engineering geology for infrastructure planning in Europe: a European perspective. Berlin/Heidelberg: Springer, pp. 179-189. [56] M Jaboyedoff et al., "Use of LIDAR in landslide investigations: a review," Nat Hazads, vol. 61, pp. 5-28, 2012. [57] C. Briese, "Extraction of digital terrain models," in Vosselman G, Maas HG, editors. Airborne and terrestrial laser scanning. Dunbeath: Whittles, pp. 135-167. [58] K. Kraus and N. Pfeifer, "Advanced DTM generation from LIDAR data," ISPRS Archives, vol. XXXIV-3/W4, pp. 23-30, Available from: http://www.isprs.org/proceedings/xxxiv/3-w4/pdf/kraus.pdf. [59] G. Vosselman and G. Sithole, "Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds," ISPRS Journal Photogrammetry Remote Sensing, vol. 1, pp. 85-101, 2004. [60] N. Pfeifer and G. Mandlburger, "LIDAR data filtering and DTM generation," in Shan J, Toth CK, editors. Topographic laser ranging and scanning. Principles and processing. Boca Raton (FL): Taylor and Francis, pp. 307-334. [61] F. J. Aguilar, F. Agüera, M. A. Aguilar, and F. Carvajal, "Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy," Photogrammetric Eng Remote Sensing, vol. 71, pp. 805-816. [62] M. Fiani and N. Siani, "Comparison of terrestrial laser scanners in production of DEMs for Cetara tower," in CIPA 2005 XX International Symposium, Torino (Italy), Sep 26 - Oct 01, Available from: http://cipa.icomos.org/fileadmin/template/doc/TURIN/277.pdf, p. 2005. [63] A. Abellan, M. Jaboyedoff, T. Oppikofer, and J. M. Vilaplana, "Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rock fall event," Nat Hazards Earth Syst Sc, vol. 9, pp. 365-372, 2009. [64] K. Ujike and M. Takagi, "Measurement of landslide displacement by object extraction with ground based portable Lased Scanner," in Proceedings of the 25th Asian Conference on Remote Sensing, Chiangmai, Thailand, 2004, Available from: http://www.aars.org/acrs/proceeding/ACRS2004/Papers/3LS04-4.htm, pp. 83-89. [65] C. Castagnetti, E. Bertacchini, and R. Rivola, "A reliable methodology for monitoring unstable slopes: The multi-platform and multi-sensor approach," roceedings of SPIE, 9245, Earth Resources and Environmental Remote Sensing/GIS Applications V, 92450J. , 2014, doi:10.1117/12.2067407. [66] M. C. Spreafico et al., "Terrestrial Remote Sensing techniques to complement conventional geomechanical surveys for the assessment of landslide hazard: The San Leo case study (Italy)," European Journal of Remote Sensing, vol. 48, no. 1, pp. 639-660, 2015, DOI: 10.5721/EuJRS20154835. [67] T.R. Martha, N. Kerle, V. Jetten, C.J. Van Westen, and K.V. Kumar, "Landslide volumetric analysis using cartosat-1-derived dems," IEEE Geoscience And Remote Sensing Letters, vol. 7, pp. 582-586. [68] M.J. Westoby, J. Brasington, N.F. Glasser, M.J. Hambrey, and J.M. Reynolds, "Structure-from motion photogrammetry: A low-cost, effective tool for geoscience applications," Geomorphology, vol. 179, pp. 300-314, 2012. [69] J. Campos, "Diseño innovador se sensor para laderas sistema previsor de taludes," Universidad Nacional Autonoma de Mexico, Tesis doctoral 2017.Ingenierías USBMed - 2021info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/5158Spanishsensores remotosdronesdeslizamientos de tierradetecciónpeligros naturalesUso de drones y sensores remotos para el monitoreo de laderas: una revisiónSpanishArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2596https://bibliotecadigital.usb.edu.co/bitstreams/1f2eb6b6-f118-4207-8e4f-7cd4c7e3db6d/downloadeee7ce1f1d4fbecae527e7793f75fc9dMD5110819/29007oai:bibliotecadigital.usb.edu.co:10819/290072025-08-22 12:04:13.87https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com