Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach

In this article, the aerodynamic behavior of a commuter train operating at average speeds is evaluated, by means of computational fluid dynamics; the main goal is to identify the main aerodynamic drag sources. The study consist of two phases; the first one is the aerodynamic analysis of the current...

Full description

Autores:
Tabares, Andrés
Gómez, Natalia
Nieto, César
Giraldo, Mauricio
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/26054
Acceso en línea:
https://hdl.handle.net/10819/26054
https://doi.org/10.21500/22563202.605
Palabra clave:
aerodynamics
energy consumption
commuter train for urban areas
aerodynamic drag
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id SANBUENAV2_126efb573e9b1690de54a560d3ba7da9
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/26054
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach
dc.title.translated.spa.fl_str_mv Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach
title Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach
spellingShingle Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach
aerodynamics
energy consumption
commuter train for urban areas
aerodynamic drag
title_short Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach
title_full Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach
title_fullStr Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach
title_full_unstemmed Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach
title_sort Critical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approach
dc.creator.fl_str_mv Tabares, Andrés
Gómez, Natalia
Nieto, César
Giraldo, Mauricio
dc.contributor.author.eng.fl_str_mv Tabares, Andrés
Gómez, Natalia
Nieto, César
Giraldo, Mauricio
dc.subject.spa.fl_str_mv aerodynamics
energy consumption
commuter train for urban areas
aerodynamic drag
topic aerodynamics
energy consumption
commuter train for urban areas
aerodynamic drag
description In this article, the aerodynamic behavior of a commuter train operating at average speeds is evaluated, by means of computational fluid dynamics; the main goal is to identify the main aerodynamic drag sources. The study consist of two phases; the first one is the aerodynamic analysis of the current train using certain mesh parameters and the turbulence model – to obtain a real condition of operation, with this analysis was obtained the total power consumption corresponding to the value of the aerodynamic drag thrown by the simulation process. These results were qualitatively compared with experimental data in order to validate the simulation process. The second part is the identification and analysis of the main aerodynamic drag zones that the Metro system generate in its interaction with the air, to make a preliminary evaluation of a few modifications that allowed the reduction in the drag in these critical
publishDate 2013
dc.date.accessioned.none.fl_str_mv 2013-06-01T00:00:00Z
2025-07-31T17:11:51Z
dc.date.available.none.fl_str_mv 2013-06-01T00:00:00Z
2025-07-31T17:11:51Z
dc.date.issued.none.fl_str_mv 2013-06-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/22563202.605
dc.identifier.eissn.none.fl_str_mv 2256-3202
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/26054
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/22563202.605
identifier_str_mv 10.21500/22563202.605
2256-3202
url https://hdl.handle.net/10819/26054
https://doi.org/10.21500/22563202.605
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/GuillermoOckham/article/download/605/405
dc.relation.citationendpage.none.fl_str_mv 124
dc.relation.citationissue.eng.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 111
dc.relation.citationvolume.eng.fl_str_mv 11
dc.relation.ispartofjournal.eng.fl_str_mv Revista Guillermo de Ockham
dc.relation.references.spa.fl_str_mv ANSYS FLUENT, Ansys help: Fluent User Guide 12.1. AUGUSTIN, Kai, RIST, Ulrich, and WAGNER, Siegfried. (2012) Control of Laminar Separation Bubbles by Small-Amplitude 2D and 3D Boundary-Layer Disturbances. Universität Stuttgart; Institut für Aerodynamik und Gasdynamik, Pfaffenwaldring 21, 70550 Stuttgart, Germany. BAKER, Chris. (2010) The flow around high speed trains. Journal of Wind Engineering and Industrial Aerodynamics 98 277–298. BAKER, Chris. (2010) The simulation of unsteady aerodynamic cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics 98 88–99. BEAUDOINA, J.F., CADOTB, O., AIDERC, J.L., and WESFREID, J.E. (2006) Bluff-body drag reduction by extremum-seeking control. Journal of Fluids and Structures 22 973–978. CHELI, F., RIPAMONTI, F., ROCCHI, D., and TOMASINI, G. (2010) Aerodynamic behavior investigation of the new EMUV 250 train to cross wind. Journal of Wind Engineering and Industrial Aerodynamics 98 189–201. LAM, K. M and WEI, C. T. (2010) Numerical simulation of vortex shedding from an inclined flat plate. Engineering Applications of Computational Fluid Mechanics Vol.45, No.4, pp 569-579. LIENHART, Hermann, BREUER, Michael, and and KÖKSOY, Cagatay. (2008) Drag reduction by dimples? – A complementary experimental/numerical investigation. International Journal of Heat and Fluid Flow 29 783–791. ORTEGA, Jason M. and SALARI, Kambiz. (2005) Apparatus and method for reducing drag of a bluff body in ground effect using counter-rotating vortex pairs. United States Patent. RAGHUNATHANA, S. RAGHU, Kimb, H.-D., and SETOGUCHIC, T. (2002) Aerodynamics of high-speed railway train. Progress in Aerospace Sciences 38 469–514. SALARI, Kambiz, et al. (2006) Heavy Vehicle Drag Reduction Devices: Computational Evaluation & Design. DOE Heavy Vehicle Systems Review. ÜNAL, Ugur Oral and GÖREN Ömer. (2011) Effect of vortex generators on the flow around a circular cylinder: Computational investigation with two-equation turbulence models. Engineering Applications of Computational Fluid Mechanics Vol. 5, No.1, pp 99-116. WOOD, Richard M., y BAUER, Steven X. S. (2003) Simple and Low-Cost Aerodynamic Drag Reduction Devices for Tractor-Trailer Trucks. SOLUS – Solutions and Technologies.
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Universidad de San Buenaventura Cali
dc.source.spa.fl_str_mv https://revistas.usb.edu.co/index.php/GuillermoOckham/article/view/605
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/1ae8aa66-0e57-47dd-8c6c-9ceeab9fa09a/download
bitstream.checksum.fl_str_mv 5c88876f7142bda6360d65291816d681
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053650097471488
spelling Tabares, AndrésGómez, NataliaNieto, CésarGiraldo, Mauricio2013-06-01T00:00:00Z2025-07-31T17:11:51Z2013-06-01T00:00:00Z2025-07-31T17:11:51Z2013-06-01In this article, the aerodynamic behavior of a commuter train operating at average speeds is evaluated, by means of computational fluid dynamics; the main goal is to identify the main aerodynamic drag sources. The study consist of two phases; the first one is the aerodynamic analysis of the current train using certain mesh parameters and the turbulence model – to obtain a real condition of operation, with this analysis was obtained the total power consumption corresponding to the value of the aerodynamic drag thrown by the simulation process. These results were qualitatively compared with experimental data in order to validate the simulation process. The second part is the identification and analysis of the main aerodynamic drag zones that the Metro system generate in its interaction with the air, to make a preliminary evaluation of a few modifications that allowed the reduction in the drag in these criticalapplication/pdf10.21500/22563202.6052256-3202https://hdl.handle.net/10819/26054https://doi.org/10.21500/22563202.605spaUniversidad de San Buenaventura Calihttps://revistas.usb.edu.co/index.php/GuillermoOckham/article/download/605/405124111111Revista Guillermo de OckhamANSYS FLUENT, Ansys help: Fluent User Guide 12.1. AUGUSTIN, Kai, RIST, Ulrich, and WAGNER, Siegfried. (2012) Control of Laminar Separation Bubbles by Small-Amplitude 2D and 3D Boundary-Layer Disturbances. Universität Stuttgart; Institut für Aerodynamik und Gasdynamik, Pfaffenwaldring 21, 70550 Stuttgart, Germany. BAKER, Chris. (2010) The flow around high speed trains. Journal of Wind Engineering and Industrial Aerodynamics 98 277–298. BAKER, Chris. (2010) The simulation of unsteady aerodynamic cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics 98 88–99. BEAUDOINA, J.F., CADOTB, O., AIDERC, J.L., and WESFREID, J.E. (2006) Bluff-body drag reduction by extremum-seeking control. Journal of Fluids and Structures 22 973–978. CHELI, F., RIPAMONTI, F., ROCCHI, D., and TOMASINI, G. (2010) Aerodynamic behavior investigation of the new EMUV 250 train to cross wind. Journal of Wind Engineering and Industrial Aerodynamics 98 189–201. LAM, K. M and WEI, C. T. (2010) Numerical simulation of vortex shedding from an inclined flat plate. Engineering Applications of Computational Fluid Mechanics Vol.45, No.4, pp 569-579. LIENHART, Hermann, BREUER, Michael, and and KÖKSOY, Cagatay. (2008) Drag reduction by dimples? – A complementary experimental/numerical investigation. International Journal of Heat and Fluid Flow 29 783–791. ORTEGA, Jason M. and SALARI, Kambiz. (2005) Apparatus and method for reducing drag of a bluff body in ground effect using counter-rotating vortex pairs. United States Patent. RAGHUNATHANA, S. RAGHU, Kimb, H.-D., and SETOGUCHIC, T. (2002) Aerodynamics of high-speed railway train. Progress in Aerospace Sciences 38 469–514. SALARI, Kambiz, et al. (2006) Heavy Vehicle Drag Reduction Devices: Computational Evaluation & Design. DOE Heavy Vehicle Systems Review. ÜNAL, Ugur Oral and GÖREN Ömer. (2011) Effect of vortex generators on the flow around a circular cylinder: Computational investigation with two-equation turbulence models. Engineering Applications of Computational Fluid Mechanics Vol. 5, No.1, pp 99-116. WOOD, Richard M., y BAUER, Steven X. S. (2003) Simple and Low-Cost Aerodynamic Drag Reduction Devices for Tractor-Trailer Trucks. SOLUS – Solutions and Technologies.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.usb.edu.co/index.php/GuillermoOckham/article/view/605aerodynamicsenergy consumptioncommuter train for urban areasaerodynamic dragCritical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approachCritical Sources of Aerodynamic Resistance in a Medium Distance Urban Train: a CFD approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2700https://bibliotecadigital.usb.edu.co/bitstreams/1ae8aa66-0e57-47dd-8c6c-9ceeab9fa09a/download5c88876f7142bda6360d65291816d681MD5110819/26054oai:bibliotecadigital.usb.edu.co:10819/260542025-07-31 12:11:51.855https://creativecommons.org/licenses/by-nc-sa/4.0/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com