Análisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitos
Las técnicas de simulación utilizan modelos numéricos y matemáticos permitiendo explorar alternativas y comprender los procesos fluidodinámicos involucrados en el área cardiovascular. Las diferentes aplicaciones en ingeniería requieren del uso de materiales que cumplan con mayor desempeño y confiabi...
- Autores:
-
Moreno Jaramillo, Santiago
Hernandez Marulanda, Andres Felipe
Gaviria, Carlos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/29019
- Acceso en línea:
- https://hdl.handle.net/10819/29019
https://doi.org/10.21500/20275846.5989
- Palabra clave:
- computational models
blood vessels
vascular stenosis
stress
strain
displacement
modelos computacionales
vasos sanguíneos
estenosis vascular
estrés
deformación
desplazamiento
- Rights
- openAccess
- License
- Ingenierías USBMed - 2023
| id |
SANBUENAV2_098fe7e4652c117c9b5d0c9035611cc7 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/29019 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Análisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitos |
| dc.title.translated.eng.fl_str_mv |
Thermal Evaluation of a Cardiovascular Stent Using Finite Volume, Fixed Point, and Von-Mises Methods in Commercial Software |
| title |
Análisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitos |
| spellingShingle |
Análisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitos computational models blood vessels vascular stenosis stress strain displacement modelos computacionales vasos sanguíneos estenosis vascular estrés deformación desplazamiento |
| title_short |
Análisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitos |
| title_full |
Análisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitos |
| title_fullStr |
Análisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitos |
| title_full_unstemmed |
Análisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitos |
| title_sort |
Análisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitos |
| dc.creator.fl_str_mv |
Moreno Jaramillo, Santiago Hernandez Marulanda, Andres Felipe Gaviria, Carlos |
| dc.contributor.author.spa.fl_str_mv |
Moreno Jaramillo, Santiago Hernandez Marulanda, Andres Felipe Gaviria, Carlos |
| dc.subject.eng.fl_str_mv |
computational models blood vessels vascular stenosis stress strain displacement |
| topic |
computational models blood vessels vascular stenosis stress strain displacement modelos computacionales vasos sanguíneos estenosis vascular estrés deformación desplazamiento |
| dc.subject.spa.fl_str_mv |
modelos computacionales vasos sanguíneos estenosis vascular estrés deformación desplazamiento |
| description |
Las técnicas de simulación utilizan modelos numéricos y matemáticos permitiendo explorar alternativas y comprender los procesos fluidodinámicos involucrados en el área cardiovascular. Las diferentes aplicaciones en ingeniería requieren del uso de materiales que cumplan con mayor desempeño y confiabilidad para dar solución a los problemas conceptuales donde la optimización del recurso es la base para lograr este objetivo. Es por esto que se deben realizar una validación de las diferentes condiciones físicas de los productos antes de realizar los ensayos clínicos. Los materiales convencionales no cumplen con esa prestación, es por esto que se desarrollan estudios en materiales compuestos que logran suplir los diferentes campos de estudio. Es por tal motivo que se utilizan herramientas computacionales para determinar de forma predictiva como va ser el comportamiento del material bajo las condiciones que va a ser sometida y de esta forma determinar factores relacionados directamente con su funcionamiento, vida de servicio y afectación al cuerpo humano. Ahí entran los métodos numéricos los cuales permiten conocer el cambio en el material respecto a su deformación y dilatación térmica para conocer si cumple con los requerimientos deseados en la aplicación.     |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-09-18T11:40:58Z 2025-08-22T17:04:21Z |
| dc.date.available.none.fl_str_mv |
2023-09-18T11:40:58Z 2025-08-22T17:04:21Z |
| dc.date.issued.none.fl_str_mv |
2023-09-18 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.spa.fl_str_mv |
Text |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/20275846.5989 |
| dc.identifier.eissn.none.fl_str_mv |
2027-5846 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/29019 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/20275846.5989 |
| identifier_str_mv |
10.21500/20275846.5989 2027-5846 |
| url |
https://hdl.handle.net/10819/29019 https://doi.org/10.21500/20275846.5989 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/5989/5202 |
| dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2023 : Ingenierías USBMed |
| dc.relation.citationendpage.none.fl_str_mv |
7 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.none.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
14 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Ingenierías USBMed |
| dc.relation.references.spa.fl_str_mv |
Rainer Hoffmann, Gary S. Mintz, Gaston R. Dussaillant, Jefrey J. Popma, Augusto D. Pichard, Lowell F. Satler, Kenneth M. Kent, Jenniffer Grin, and Martin B. Leon. Patterns and Mechanisms of In-Stent Restenosis. Circulation, 94(6):1247-1254, 1996. [2] Organización Mundial de la Salud, «Enfermedades Cardiovasculares,» [En línea]. Available: www.who.int/mediacentre/factsheets/fs317/es/. [Último acceso: 29-05-2015]. [3] C. Guyton y J. Hall, Tratado de Fisiología Médica. 11 Edición, Elsevier, 2014. [4] A. Bintul Huda and Noreen Sher Akbar. Heat transfer analysis with temperature-dependent viscosity for the peristaltic flow of nano fluid with shape factor over heated tube. International Journal of Hydrogen Energy, 42(39):25088-25101, 2017. [5] S. Ferriró Pons, «Modelado de grandes sistemas distribuidos,» Universidad de Alicante, pp. 1-12 [6] Y. He, M. Shirazaki, H. Liu, R. Himero y Z. Sun, «A Numerical Coupling Model To Analyse The Blood Flow, Temperature, And Oxygen Trnasport In Human Breast Tumor Under Laser Irradiation,» Comput.Biol.Med, vol. 36, nº 12, pp. 1336-1350, 2006. [7] A. Schiavone, L. G. Zhao, and A. A. Abdel-Wahab. E ects of material, coating, design and plaque composition on stent deployment inside a stenotic artery - Finite element simulation. Materials Science and Engineering C, 42:479-488, 2014. [8] Sebastian Acosta, Charles Puelz, Béatrice Riviére, Daniel J. Penny, and Craig G. Rusin. Numerical method of characteristics for one-dimensional blood flow. Journal of Computational Physics, 294: 96-109, 2015. [9] Scot Garg and Patrick W. Serruys. Coronary stents: Current status. Journal of the American College of Cardiology, 56 (10 SUPPL.): S1-S42, 2010. [10] Kean Wah Lau, Paul Gunnes, Miles Williams, Anthony Rickards, and Ulrich Sigwart. Angiographic restenosis after successful wallstent stent implantation: An analysis of resk predictors. American Heart Journal, 124(6):1473-1477, 1992. [11] Roxana Mehran, George Dangas, Andrea S Abizaid, Gary S Mintz, Alexandra J Lansky, Lowell F Satler, Augusto D Pichard, Kenneth M Kent, Gregg W Stone, and Martin B Leon. Classication and Implications for Long-Term Outcome. Circulation, 100:1872-1878, 1999. [12] Ron Waksman, Edouard Cheneau, Andrew E. Ajani, R. Larry White, Ellen Pinnow, Rebecca Torguson, Regina Deible, Lowell F. Satler, Augusto D. Pichard, Kenneth M. Kent, Paul S. Teirstein, and Joseph Lindsay. Intracoronary radiation therapy improves the clinical and angiographic outcomes of difuse in-stent restenotic lesions: Results of the Washington Radiation for In-Stent Restenosis Trial for long lesions (Long WRIST) studies. Circulation, 107(13):1744-1749, 2003. [13] Ron Waksman, R. Larry White, Rosanna C. Chan, Bill G. Bass, Lisa Geirlach, Gary S. Mintz, Lowell F. Satler, Roxana Mehran, Patrick W. Serruys, Alexandra J. Lansky, Peter Fitzgerald, Balram Bhargava, Kenneth M. Kent, Augusto D. Pichard, and Martin B. Leon. Intracoronary radiation therapy after angioplasty inhibits recurrence in patients with in-stent restenosis. Circulation, 101(18):2165-2171, 2000. [14] Emelia J. Benjamin, Salim S. Virani, Clifton W. Callaway, Alanna M. Chamberlain, Alexander R. Chang, Susan Cheng, Stephanie E. Chiuve, Mary Cushman, Francesca N. Delling, Rajat Deo, Sarah D. De Ferranti, Jane F. Ferguson, Myriam Fornage, Cathleen Gillespie, Carmen R. Isasi, Monik C. Jiménez, Lori Chan Jordan, Suzanne E. Judd, Daniel Lackland, Judith H. Lichtman, Lynda Lisabeth, Simin Liu, Chris T. Longenecker, Pamela L. Lutsey, Jason S. MacKey, David B. Matchar, Kunihiro Matsushita, Michael E. Mussolino, Khurram Nasir, Martin O'Flaherty, Latha P. Palaniappan, Ambarish Pandey, Dilip K. Pandey, Mathew J. Reeves, Matthew D. Ritchey, Carlos J. Rodriguez, Gregory A. Roth, Wayne D. Rosamond,Uchechukwu K.A. Sampson, Gary M. Satou, Svati H. Shah, Nicole L. Spartano, David L. Tirschwell, Connie W. Tsao, Jenifer H. Voeks, Joshua Z. Willey, John T. Wilkins, Jason H.Y. Wu, Heather M. Alger, Sally S. Wong, and Paul Muntner. Heart disease and stroke statistics-2018 update: A report from the American Heart Association, volume 137.2018. [15] Alaide Chieffo, Chiara Foglieni, Rota Laura Nodari, Carlo Briguori, Giuseppe Sangiorgi, Azeem Latib, Matteo Montorfano, Flavio Airoldi, Iassen Michev, Mauro Carlino, Antonio Colombo, and Attilio Maseri. Histopathology of Clinical Coronary Restenosis in Drug-Eluting Versus Bare Metal Stents. American Journal of Cardiology, 104(12):1660-1667, 2009. [16] R. Moreno, F. Nicoud y A. Salvayre, «Mecánica computacional para el diagnóstico cardiovascular,» pp. 25-21. [17] W. Jeong y J. Seong, «Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods,» Int.J.Mech.Sci, vol. 78, pp. 19-26, 2014. [18] H. K. Versteeg y W. Malalasekera, «An Introduction to Computational Fluid Dynamics,» John Wiley, 1995. [19] Y. Niño, «Método de los Volúmenes Finitos,» Universidad de Chile, Ingenieria civil, pp. 2-27, 2002. [20] Y. Wang, G. Li, Y Wang, Y. Lyuc, Simplified method to identify full von Mises stress-strain curve of structural metals, Journal of Constructional Steel Research 181 (2021) 106624 [21] Y. Wang, L. Ku, S. Suo, Y. Dang, Z. Ge, Z Yan, Q. Zhou, Finite element análisis on von Mises stress distributions of Si DSP, Materials Science in Semiconductor Processing 16 (2013) 165–170 [22] H. Song, J. Liu, G. Wanga, High-order parameter approximation for von Mises–Fisher distributions, Applied Mathematics and Computation 218 (2012) 11880–11890 [23] K. Hornik, B. Grün, On maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions, Comput Stat DOI 10.1007/s00180-013-0471-0 [24] A. Abzhanova, B. Kallemova,b, Using von Mises-Fisher distribution for polymer conformation analysis in Multi-Scale framework, Procedia Engineering, 61 ( 2013 ) 111 – 116. [25] J. Bustamante y J. Valvuena, Biomecánica Cardiovascular, Medellín: Universidad Pontificia Bolivariana, 1999. |
| dc.rights.spa.fl_str_mv |
Ingenierías USBMed - 2023 |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
| rights_invalid_str_mv |
Ingenierías USBMed - 2023 http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.spa.fl_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/5989 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/f70633d1-6c5e-4c62-b1e4-f2789393006f/download |
| bitstream.checksum.fl_str_mv |
e3b061625e50c53c2250ec81e500d935 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053562698661888 |
| spelling |
Moreno Jaramillo, SantiagoHernandez Marulanda, Andres FelipeGaviria, Carlos2023-09-18T11:40:58Z2025-08-22T17:04:21Z2023-09-18T11:40:58Z2025-08-22T17:04:21Z2023-09-18Las técnicas de simulación utilizan modelos numéricos y matemáticos permitiendo explorar alternativas y comprender los procesos fluidodinámicos involucrados en el área cardiovascular. Las diferentes aplicaciones en ingeniería requieren del uso de materiales que cumplan con mayor desempeño y confiabilidad para dar solución a los problemas conceptuales donde la optimización del recurso es la base para lograr este objetivo. Es por esto que se deben realizar una validación de las diferentes condiciones físicas de los productos antes de realizar los ensayos clínicos. Los materiales convencionales no cumplen con esa prestación, es por esto que se desarrollan estudios en materiales compuestos que logran suplir los diferentes campos de estudio. Es por tal motivo que se utilizan herramientas computacionales para determinar de forma predictiva como va ser el comportamiento del material bajo las condiciones que va a ser sometida y de esta forma determinar factores relacionados directamente con su funcionamiento, vida de servicio y afectación al cuerpo humano. Ahí entran los métodos numéricos los cuales permiten conocer el cambio en el material respecto a su deformación y dilatación térmica para conocer si cumple con los requerimientos deseados en la aplicación.    The simulation techniques use numerical and mathematical models allowing to explore alternatives and understand the fluid-dynamic processes involved in the cardiovascular area. The different applications in engineering require the use of materials that comply with higher performance and reliability to solve the conceptual problems where the optimization of the resource is the basis to achieve this objective. This is why a validation of the different physical conditions of the products must be carried out before conducting clinical trials. Conventional materials do not comply with this provision, which is why studies are carried out in composite materials that are able to supply the different fields of study. It is for this reason that computational tools are used to predictively determine how the material will behave under the conditions to be subjected and thus determine factors directly related to its operation, service life and impact on the human body. This is where the numerical methods come in, which allow us to know the change in the material with respect to its deformation and thermal expansion to know if it meets the desired requirements in the application.application/pdf10.21500/20275846.59892027-5846https://hdl.handle.net/10819/29019https://doi.org/10.21500/20275846.5989spaUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/5989/5202Núm. 2 , Año 2023 : Ingenierías USBMed72114Ingenierías USBMedRainer Hoffmann, Gary S. Mintz, Gaston R. Dussaillant, Jefrey J. Popma, Augusto D. Pichard, Lowell F. Satler, Kenneth M. Kent, Jenniffer Grin, and Martin B. Leon. Patterns and Mechanisms of In-Stent Restenosis. Circulation, 94(6):1247-1254, 1996. [2] Organización Mundial de la Salud, «Enfermedades Cardiovasculares,» [En línea]. Available: www.who.int/mediacentre/factsheets/fs317/es/. [Último acceso: 29-05-2015]. [3] C. Guyton y J. Hall, Tratado de Fisiología Médica. 11 Edición, Elsevier, 2014. [4] A. Bintul Huda and Noreen Sher Akbar. Heat transfer analysis with temperature-dependent viscosity for the peristaltic flow of nano fluid with shape factor over heated tube. International Journal of Hydrogen Energy, 42(39):25088-25101, 2017. [5] S. Ferriró Pons, «Modelado de grandes sistemas distribuidos,» Universidad de Alicante, pp. 1-12 [6] Y. He, M. Shirazaki, H. Liu, R. Himero y Z. Sun, «A Numerical Coupling Model To Analyse The Blood Flow, Temperature, And Oxygen Trnasport In Human Breast Tumor Under Laser Irradiation,» Comput.Biol.Med, vol. 36, nº 12, pp. 1336-1350, 2006. [7] A. Schiavone, L. G. Zhao, and A. A. Abdel-Wahab. E ects of material, coating, design and plaque composition on stent deployment inside a stenotic artery - Finite element simulation. Materials Science and Engineering C, 42:479-488, 2014. [8] Sebastian Acosta, Charles Puelz, Béatrice Riviére, Daniel J. Penny, and Craig G. Rusin. Numerical method of characteristics for one-dimensional blood flow. Journal of Computational Physics, 294: 96-109, 2015. [9] Scot Garg and Patrick W. Serruys. Coronary stents: Current status. Journal of the American College of Cardiology, 56 (10 SUPPL.): S1-S42, 2010. [10] Kean Wah Lau, Paul Gunnes, Miles Williams, Anthony Rickards, and Ulrich Sigwart. Angiographic restenosis after successful wallstent stent implantation: An analysis of resk predictors. American Heart Journal, 124(6):1473-1477, 1992. [11] Roxana Mehran, George Dangas, Andrea S Abizaid, Gary S Mintz, Alexandra J Lansky, Lowell F Satler, Augusto D Pichard, Kenneth M Kent, Gregg W Stone, and Martin B Leon. Classication and Implications for Long-Term Outcome. Circulation, 100:1872-1878, 1999. [12] Ron Waksman, Edouard Cheneau, Andrew E. Ajani, R. Larry White, Ellen Pinnow, Rebecca Torguson, Regina Deible, Lowell F. Satler, Augusto D. Pichard, Kenneth M. Kent, Paul S. Teirstein, and Joseph Lindsay. Intracoronary radiation therapy improves the clinical and angiographic outcomes of difuse in-stent restenotic lesions: Results of the Washington Radiation for In-Stent Restenosis Trial for long lesions (Long WRIST) studies. Circulation, 107(13):1744-1749, 2003. [13] Ron Waksman, R. Larry White, Rosanna C. Chan, Bill G. Bass, Lisa Geirlach, Gary S. Mintz, Lowell F. Satler, Roxana Mehran, Patrick W. Serruys, Alexandra J. Lansky, Peter Fitzgerald, Balram Bhargava, Kenneth M. Kent, Augusto D. Pichard, and Martin B. Leon. Intracoronary radiation therapy after angioplasty inhibits recurrence in patients with in-stent restenosis. Circulation, 101(18):2165-2171, 2000. [14] Emelia J. Benjamin, Salim S. Virani, Clifton W. Callaway, Alanna M. Chamberlain, Alexander R. Chang, Susan Cheng, Stephanie E. Chiuve, Mary Cushman, Francesca N. Delling, Rajat Deo, Sarah D. De Ferranti, Jane F. Ferguson, Myriam Fornage, Cathleen Gillespie, Carmen R. Isasi, Monik C. Jiménez, Lori Chan Jordan, Suzanne E. Judd, Daniel Lackland, Judith H. Lichtman, Lynda Lisabeth, Simin Liu, Chris T. Longenecker, Pamela L. Lutsey, Jason S. MacKey, David B. Matchar, Kunihiro Matsushita, Michael E. Mussolino, Khurram Nasir, Martin O'Flaherty, Latha P. Palaniappan, Ambarish Pandey, Dilip K. Pandey, Mathew J. Reeves, Matthew D. Ritchey, Carlos J. Rodriguez, Gregory A. Roth, Wayne D. Rosamond,Uchechukwu K.A. Sampson, Gary M. Satou, Svati H. Shah, Nicole L. Spartano, David L. Tirschwell, Connie W. Tsao, Jenifer H. Voeks, Joshua Z. Willey, John T. Wilkins, Jason H.Y. Wu, Heather M. Alger, Sally S. Wong, and Paul Muntner. Heart disease and stroke statistics-2018 update: A report from the American Heart Association, volume 137.2018. [15] Alaide Chieffo, Chiara Foglieni, Rota Laura Nodari, Carlo Briguori, Giuseppe Sangiorgi, Azeem Latib, Matteo Montorfano, Flavio Airoldi, Iassen Michev, Mauro Carlino, Antonio Colombo, and Attilio Maseri. Histopathology of Clinical Coronary Restenosis in Drug-Eluting Versus Bare Metal Stents. American Journal of Cardiology, 104(12):1660-1667, 2009. [16] R. Moreno, F. Nicoud y A. Salvayre, «Mecánica computacional para el diagnóstico cardiovascular,» pp. 25-21. [17] W. Jeong y J. Seong, «Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods,» Int.J.Mech.Sci, vol. 78, pp. 19-26, 2014. [18] H. K. Versteeg y W. Malalasekera, «An Introduction to Computational Fluid Dynamics,» John Wiley, 1995. [19] Y. Niño, «Método de los Volúmenes Finitos,» Universidad de Chile, Ingenieria civil, pp. 2-27, 2002. [20] Y. Wang, G. Li, Y Wang, Y. Lyuc, Simplified method to identify full von Mises stress-strain curve of structural metals, Journal of Constructional Steel Research 181 (2021) 106624 [21] Y. Wang, L. Ku, S. Suo, Y. Dang, Z. Ge, Z Yan, Q. Zhou, Finite element análisis on von Mises stress distributions of Si DSP, Materials Science in Semiconductor Processing 16 (2013) 165–170 [22] H. Song, J. Liu, G. Wanga, High-order parameter approximation for von Mises–Fisher distributions, Applied Mathematics and Computation 218 (2012) 11880–11890 [23] K. Hornik, B. Grün, On maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions, Comput Stat DOI 10.1007/s00180-013-0471-0 [24] A. Abzhanova, B. Kallemova,b, Using von Mises-Fisher distribution for polymer conformation analysis in Multi-Scale framework, Procedia Engineering, 61 ( 2013 ) 111 – 116. [25] J. Bustamante y J. Valvuena, Biomecánica Cardiovascular, Medellín: Universidad Pontificia Bolivariana, 1999.Ingenierías USBMed - 2023info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/5989computational modelsblood vesselsvascular stenosisstressstraindisplacementmodelos computacionalesvasos sanguíneosestenosis vascularestrésdeformacióndesplazamientoAnálisis de expansión en un stent de poliuretano termoplástico utilizando el método de volúmenes finitosThermal Evaluation of a Cardiovascular Stent Using Finite Volume, Fixed Point, and Von-Mises Methods in Commercial SoftwareArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2710https://bibliotecadigital.usb.edu.co/bitstreams/f70633d1-6c5e-4c62-b1e4-f2789393006f/downloade3b061625e50c53c2250ec81e500d935MD5110819/29019oai:bibliotecadigital.usb.edu.co:10819/290192025-08-22 12:04:21.14https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
