Benzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and Application

This work evaluates the efficiency of the Fenton reaction on oxidizing 3 µg/L benzo[a]pyrene (BaP), used as a polycyclic aromatic hydrocarbon model compound due to the detrimental effects ascribed to its presence in aqueous media. For optimizing the variables affecting the oxidation capacity of the...

Full description

Autores:
Rubio Clemente, Ainhoa
Chica Arrieta, Edwin Lenin
Peñuela Mesa, Gustavo Antonio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/2982
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/2982
Palabra clave:
Water treatment
Tratamiento del agua
Traitement de l'eau
Tratamento da água
Polycyclic aromatic hydrocarbons
hidrocarburos aromáticos policíclicos
Hydrocarbure aromatique polycyclique
Advanced oxidation process
Proceso de oxidación avanzada
Response surface methodology
Metodología de la superficie de respuesta
Real aqueous matrix
Matriz acuosa real
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id RepoTdea2_fd80088485750bf86552a10936a7e379
oai_identifier_str oai:dspace.tdea.edu.co:tdea/2982
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Benzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and Application
title Benzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and Application
spellingShingle Benzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and Application
Water treatment
Tratamiento del agua
Traitement de l'eau
Tratamento da água
Polycyclic aromatic hydrocarbons
hidrocarburos aromáticos policíclicos
Hydrocarbure aromatique polycyclique
Advanced oxidation process
Proceso de oxidación avanzada
Response surface methodology
Metodología de la superficie de respuesta
Real aqueous matrix
Matriz acuosa real
title_short Benzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and Application
title_full Benzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and Application
title_fullStr Benzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and Application
title_full_unstemmed Benzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and Application
title_sort Benzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and Application
dc.creator.fl_str_mv Rubio Clemente, Ainhoa
Chica Arrieta, Edwin Lenin
Peñuela Mesa, Gustavo Antonio
dc.contributor.author.none.fl_str_mv Rubio Clemente, Ainhoa
Chica Arrieta, Edwin Lenin
Peñuela Mesa, Gustavo Antonio
dc.subject.agrovoc.none.fl_str_mv Water treatment
Tratamiento del agua
Traitement de l'eau
Tratamento da água
Polycyclic aromatic hydrocarbons
hidrocarburos aromáticos policíclicos
Hydrocarbure aromatique polycyclique
topic Water treatment
Tratamiento del agua
Traitement de l'eau
Tratamento da água
Polycyclic aromatic hydrocarbons
hidrocarburos aromáticos policíclicos
Hydrocarbure aromatique polycyclique
Advanced oxidation process
Proceso de oxidación avanzada
Response surface methodology
Metodología de la superficie de respuesta
Real aqueous matrix
Matriz acuosa real
dc.subject.proposal.none.fl_str_mv Advanced oxidation process
Proceso de oxidación avanzada
Response surface methodology
Metodología de la superficie de respuesta
Real aqueous matrix
Matriz acuosa real
description This work evaluates the efficiency of the Fenton reaction on oxidizing 3 µg/L benzo[a]pyrene (BaP), used as a polycyclic aromatic hydrocarbon model compound due to the detrimental effects ascribed to its presence in aqueous media. For optimizing the variables affecting the oxidation capacity of the system, response surface methodology was conducted using a face-centered central composite experimental design. H2O2 and Fe(II) ion contents were studied in the range from 5 to 15 mg/L and from 0.21 to 0.63 mg/L, respectively. A poor BaP oxidation was observed in natural water since only ∼25% of BaP removal was obtained for an oxidant level of 10.50 mg/L and a catalyst concentration of 0.44 mg/L, after 90 min of treatment. Under these operating conditions, <10% of organic matter mineralization, in terms of total organic carbon, was achieved. However, by using a simpler aqueous matrix, 76.93% of BaP elimination was found; therefore, the efficiency of the process was increased by three-fold. This fact evidences the importance of performing investigations on advanced oxidation process application using real matrices; otherwise, erroneous conclusions about the efficiency of the system might be obtained. Additionally, the current work allows understanding the individual effects and relationships of the considered factors in the removal of the pollutant of interest at ultra-trace levels in a natural aqueous matrix. Keywords: Advanced oxidation processwater treatmentpolycyclic aromatic hydrocarbonresponse surface methodologyreal aqueous matrix
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-05-20T22:36:15Z
dc.date.available.none.fl_str_mv 2023-05-20T22:36:15Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1040-6638
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/2982
dc.identifier.eissn.spa.fl_str_mv 1563-5333
identifier_str_mv 1040-6638
1563-5333
url https://dspace.tdea.edu.co/handle/tdea/2982
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 108
dc.relation.citationstartpage.spa.fl_str_mv 95
dc.relation.citationvolume.spa.fl_str_mv 41
dc.relation.ispartofjournal.spa.fl_str_mv Polycyclic Aromatic Compounds
dc.relation.references.spa.fl_str_mv G. Vázquez-Gómez, L. Rocha-Zavaleta, M. Rodríguez-Sosa, P. Petrosyan, and J. Rubio-Lightbourn, “Benzo[a]pyrene Activates an AhR/Src/ERK Axis That Contributes to CYP1A1 Induction and Stable DNA Adducts Formation in Lung Cells,” Toxicology Letters 289, (2018): 54–62. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
K. C. Park, H. Pyo, W. Kim, and K. S. Yoon, “Effects of Cooking Methods and Tea Marinades on the Formation of Benzo[a]pyrene in Grilled Pork Belly (Samgyeopsal),” Meat Science 129, (2017): 1–8. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
A. Rubio-Clemente, R. A. Torres-Palma, and G. A. Peñuela, “Removal of Polycyclic Aromatic Hydrocarbons in Aqueous Environment by Chemical Treatments: A Review,” Science of the Total Environment 458, (2014): 201–25. [Crossref], [Web of Science ®], [Google Scholar]
R. M. Harrison, E. Jang, M. S. Alam, and J. Dang, “Mechanisms of Reactivity of Benzo(a)pyrene and Other PAH Inferred from Field Measurements,” Atmospheric Pollution Research 9, no. 6 (2018): 1214–20. [Crossref], [Web of Science ®], [Google Scholar]
M. Beranek, Z. Fiala, J. Kremlacek, C. Andrys, K. Hamakova, M. Chmelarova, V. Palicka, and L. Borska, “Genetic Polymorphisms in Biotransformation Enzymes for Benzo[a]pyrene and Related Levels of Benzo[a]pyrene-7, 8-diol-9, 10-epoxide-DNA Adducts in Goeckerman Therapy,” Toxicology Letters 255, (2016): 47–51. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Photovoltaic Array for Powering Advanced Oxidation Processes: Sizing, Application and Investment Costs for the Degradation of a Mixture of Anthracene and Benzo[a]pyrene in Natural Water by the UV/H2O2 System,” Journal of Environmental Chemical Engineering 6, no. 2 (2018): 2751–61. [Crossref], [Web of Science ®], [Google Scholar]
A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Evaluation of the UV/H2O2 System for Treating Natural Water with a Mixture of Anthracene and Benzo[a]pyrene at Ultra-trace Levels,” Environmental Science and Pollution Research (2018, June 5). [Web of Science ®], [Google Scholar]
C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, et al. “Highly Porous Carbon Nitride by Supramolecular Preassembly of Monomers for Photocatalytic Removal of Sulfamethazine under Visible Light Driven,” Applied Catalysis B 220, (2018): 202–10. [Crossref], [Web of Science ®], [Google Scholar]
C. Zhou, C. Lai, C. Zhang, G. Zeng, D. Huang, M. Cheng, L. Hu, W. Xiong, M. Chen, J. Wang, et al. “Semiconductor/Boron Nitride Composites: Synthesis, Properties, and Photocatalysis Applications,” Applied Catalysis B 238, (2018): 6–18. [Crossref], [Web of Science ®], [Google Scholar]
C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, C. Zhang, M. Cheng, L. Hu, J. Wan, Y. Liu, et al. “In Situ Grown AgI/Bi12O17Cl2 Heterojunction Photocatalysts for Visible Light Degradation of Sulfamethazine: Efficiency, Pathway, and Mechanism,” ACS Sustainable Chemistry & Engineering 6, no. 3 (2018): 4174–84. [Crossref], [Web of Science ®], [Google Scholar]
C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, Z. Li, C. Zhang, M. Cheng, L. Hu, J. Wan, et al. “Rational Design of Carbon-Doped Carbon Nitride/Bi12O17Cl2 Composites: A Promising Candidate Photocatalyst for Boosting Visible-Light-Driven Photocatalytic Degradation of Tetracycline,” ACS Sustainable Chemistry & Engineering 6, no. 5 (2018): 6941–9. [Crossref], [Web of Science ®], [Google Scholar]
D. Huang, X. Yan, M. Yan, G. Zeng, C. Zhou, J. Wan, M. Cheng, and W. Xue, “Graphitic Carbon Nitride Based Heterojunction Photoactive Nanocomposites: Applications and Mechanism Insight”. ACS Applied Materials & Interfaces 10, no. 25 (2018):21035–55. [Google Scholar]
M. I. Litter, and N. Quici, “Photochemical Advanced Oxidation Processes for Water and Wastewater Treatment,” Recent Patents on Engineering 4, (2010): 217–41. [Crossref], [Google Scholar]
A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Application of Fenton Process for Treating Petrochemical Wastewater,” Ingeniería y Competitividad 16, no. 2 (2014): 211–23. [Crossref], [Google Scholar]
A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Petrochemical Wastewater Treatment by Photo-Fenton Process,” Water, Air, & Soil Pollution 226, no. 3 (2015): 62–79. [Crossref], [Web of Science ®], [Google Scholar]
S. Giannakis, S. Liu, A. Carratalà, S. Rtimi, M. Bensimon, and C. Pulgarin, “Effect of Fe(II)/Fe(III) Species, pH, Irradiance and Bacterial Presence on Viral Inactivation in Wastewater by the Photo-Fenton Process: Kinetic Modeling and Mechanistic Interpretation,” Applied Catalysis B 204, (2017): 156–66. [Crossref], [Web of Science ®], [Google Scholar]
A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Kinetic Modeling of the UV/H2O2 Process: Determining the Effective Hydroxyl Radical Concentration”, in Physico-Chemical Wastewater Treatment and Resource Recovery, edited by Farooq R. & Ahmad Z. (Rijeka: InTech, 2017), 19–41. [Google Scholar]
V. Homem, Z. Dias, L. Santos, and A. Alves, “Preliminary Feasibility Study of Benzo(a)pyrene Oxidative Degradation by Fenton Treatment,” Journal of Environmental and Public Health 2009, (2009): 1–6. [Crossref], [Google Scholar]
A. Rubio-Clemente, E. Chica, and G. Peñuela, “Rapid Determination of Anthracene and Benzo(a)pyrene by High-Performance Liquid Chromatography with Fluorescence Detection,” Analytical Letters 50, no. 8 (2017): 1229–47. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
WEF and AWWA, Standard Methods for the Examination of Water and Wastewater (22nd ed., American Public Health Association, Washington, DC, 2012). [Google Scholar]
B. Dejaegher, and Y. Vander, “Experimental Designs and Their Recent Advances in Set-up, Data Interpretation, and Analytical Applications,” Journal of Pharmaceutical and Biomedical Analysis 56, no. 2 (2011): 141–58. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
F. J. Beltrán, M. González, F. J. Ribas, and P. Alvarez, “Fenton Reagent Advanced Oxidation of Polynuclear Aromatic Hydrocarbons in Water,” Water, Air, and Soil Pollution 105, no. 3/4 (1998):685–700. [Crossref], [Web of Science ®], [Google Scholar]
P. Ghosh, A. N. Samanta, and S. Ray, “COD Reduction of Petrochemical Industry Wastewater Using Fenton’s Oxidation,” The Canadian Journal of Chemical Engineering 88, no. 6 (2010): 1021–6. [Crossref], [Web of Science ®], [Google Scholar]
N. Nadarajah, J. Van Hamme, J. Pannu, A. Singh, and O. Ward, “Enhanced Transformation of Polycyclic Aromatic Hydrocarbons Using a Combined Fenton’s Reagent, Microbial Treatment and Surfactants,” Applied Microbiology and Biotechnology 59, (2002): 540–4. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Y. Ma, B. Chen, B. Zhang, and H. Zhang, “Fenton Oxidation Process for Remediation of Produced Water Containing Polycyclic Aromatic Hydrocarbons,” CSE 2014 13th International Environment Special Conference 1, (2014): 1–10. [Google Scholar]
R. Saini, and P. Kumar, “Optimization of Chlorpyrifos Degradation by Fenton Oxidation Using CCD and ANFIS Computing Technique,” Journal of Environmental Chemical Engineering 4, no. 3 (2016): 2952–63. [Crossref], [Web of Science ®], [Google Scholar]
A. Mirzaei, Z. Chen, F. Haghighat, and L. Yerushalmi, “Removal of Pharmaceuticals from Water by Homo/Heterogonous Fenton-Type Processes—A Review,” Chemosphere 174 (2017): 665–88. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
J. H. Ramirez, F. M. Duarte, F. G. Martins, C. A. Costa, and L. M. Madeira, “Modelling of the Synthetic Dye Orange II Degradation Using Fenton’s Reagent: From Batch to Continuous Reactor Operation,” Chemical Engineering Journal 148, no. 2–3 (2009): 394–404. [Crossref], [Web of Science ®], [Google Scholar]
P. T. De Souza e Silva, V. L. Da Silva, B. de Barros Neto, and M. O. Simonnot, “Phenanthrene and Pyrene Oxidation in Contaminated Soils Using Fenton's Reagent,” Journal of Hazardous Materials 161, no. 2–3 (2009): 967–73. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
D. Rubio, E. Nebot, J. F. Casanueva, and C. Pulgarin, “Comparative Effect of Simulated Solar Light, UV, UV/H2O2 and Photo-Fenton Treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli Inactivation in Artificial Seawater ,” Water Research 47, no. 16 (2013): 6367–79. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
C. Comninellis, A. Kapalka, S. Malato, and S. A. Parsons, “Advanced Oxidation Processes for Water Treatment: Advances and Trends for R&D,” Journal of Chemical Technology & Biotechnology 83 (2008): 769–76. [Crossref], [Web of Science ®], [Google Scholar]
Resolución, “Resolución Número 2115 Por Medio de la Cual se Señalan Características, instrumentos Básicos y Frecuencias Del Sistema de Control y Vigilancia Para la Calidad de Agua Para Consumo Humano,” Ministerio de la Protección Social, Ministerio de Ambiente, Vivienda y Desarrollo Territorial 2007, (2007): 23. [Google Scholar]
Council Directive, “Directive 98/83/CE of the Council of 3 November on the Quality of Water Intended for Human Consumption,” Official Journal of the European Union Lex 330, no. 32 (1998): 23. [Google Scholar]
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv image/jpeg
dc.publisher.spa.fl_str_mv Taylor and Francis Group
dc.publisher.place.spa.fl_str_mv Estados Unidos
dc.source.spa.fl_str_mv https://www.tandfonline.com/doi/full/10.1080/10406638.2019.1570950?scroll=top&needAccess=true&role=tab&aria-labelledby=full-article
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/2982/3/Benzo-a-pyrene%20Emerging%20Micropollutant%20Oxidation%20under%20the%20Action%20of%20Fenton%20Reactants%20in%20Real%20Surface%20Water_%20Process%20Optimization%20and%20Application.jpg.jpg
https://dspace.tdea.edu.co/bitstream/tdea/2982/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/2982/1/Benzo-a-pyrene%20Emerging%20Micropollutant%20Oxidation%20under%20the%20Action%20of%20Fenton%20Reactants%20in%20Real%20Surface%20Water_%20Process%20Optimization%20and%20Application.jpg
bitstream.checksum.fl_str_mv ef1712d32336d7fb6704b80c6ede86fc
2f9959eaf5b71fae44bbf9ec84150c7a
b51b74e316b97961a2fcf7c2a3dfd434
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189263073116160
spelling Rubio Clemente, Ainhoa8924cc9a-a600-460b-b180-3288281741e5Chica Arrieta, Edwin Lenina3a70685-f160-43b7-8bd2-46fcfa5c040ePeñuela Mesa, Gustavo Antoniof172ce30-27a0-413a-8aa5-27c19a7e29802023-05-20T22:36:15Z2023-05-20T22:36:15Z20191040-6638https://dspace.tdea.edu.co/handle/tdea/29821563-5333This work evaluates the efficiency of the Fenton reaction on oxidizing 3 µg/L benzo[a]pyrene (BaP), used as a polycyclic aromatic hydrocarbon model compound due to the detrimental effects ascribed to its presence in aqueous media. For optimizing the variables affecting the oxidation capacity of the system, response surface methodology was conducted using a face-centered central composite experimental design. H2O2 and Fe(II) ion contents were studied in the range from 5 to 15 mg/L and from 0.21 to 0.63 mg/L, respectively. A poor BaP oxidation was observed in natural water since only ∼25% of BaP removal was obtained for an oxidant level of 10.50 mg/L and a catalyst concentration of 0.44 mg/L, after 90 min of treatment. Under these operating conditions, <10% of organic matter mineralization, in terms of total organic carbon, was achieved. However, by using a simpler aqueous matrix, 76.93% of BaP elimination was found; therefore, the efficiency of the process was increased by three-fold. This fact evidences the importance of performing investigations on advanced oxidation process application using real matrices; otherwise, erroneous conclusions about the efficiency of the system might be obtained. Additionally, the current work allows understanding the individual effects and relationships of the considered factors in the removal of the pollutant of interest at ultra-trace levels in a natural aqueous matrix. Keywords: Advanced oxidation processwater treatmentpolycyclic aromatic hydrocarbonresponse surface methodologyreal aqueous matrix14 páginasimage/jpegengTaylor and Francis GroupEstados Unidoshttps://www.tandfonline.com/doi/full/10.1080/10406638.2019.1570950?scroll=top&needAccess=true&role=tab&aria-labelledby=full-articleBenzo[a]pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water: Process Optimization and ApplicationArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a851089541Polycyclic Aromatic CompoundsG. Vázquez-Gómez, L. Rocha-Zavaleta, M. Rodríguez-Sosa, P. Petrosyan, and J. Rubio-Lightbourn, “Benzo[a]pyrene Activates an AhR/Src/ERK Axis That Contributes to CYP1A1 Induction and Stable DNA Adducts Formation in Lung Cells,” Toxicology Letters 289, (2018): 54–62. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]K. C. Park, H. Pyo, W. Kim, and K. S. Yoon, “Effects of Cooking Methods and Tea Marinades on the Formation of Benzo[a]pyrene in Grilled Pork Belly (Samgyeopsal),” Meat Science 129, (2017): 1–8. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]A. Rubio-Clemente, R. A. Torres-Palma, and G. A. Peñuela, “Removal of Polycyclic Aromatic Hydrocarbons in Aqueous Environment by Chemical Treatments: A Review,” Science of the Total Environment 458, (2014): 201–25. [Crossref], [Web of Science ®], [Google Scholar]R. M. Harrison, E. Jang, M. S. Alam, and J. Dang, “Mechanisms of Reactivity of Benzo(a)pyrene and Other PAH Inferred from Field Measurements,” Atmospheric Pollution Research 9, no. 6 (2018): 1214–20. [Crossref], [Web of Science ®], [Google Scholar]M. Beranek, Z. Fiala, J. Kremlacek, C. Andrys, K. Hamakova, M. Chmelarova, V. Palicka, and L. Borska, “Genetic Polymorphisms in Biotransformation Enzymes for Benzo[a]pyrene and Related Levels of Benzo[a]pyrene-7, 8-diol-9, 10-epoxide-DNA Adducts in Goeckerman Therapy,” Toxicology Letters 255, (2016): 47–51. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Photovoltaic Array for Powering Advanced Oxidation Processes: Sizing, Application and Investment Costs for the Degradation of a Mixture of Anthracene and Benzo[a]pyrene in Natural Water by the UV/H2O2 System,” Journal of Environmental Chemical Engineering 6, no. 2 (2018): 2751–61. [Crossref], [Web of Science ®], [Google Scholar]A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Evaluation of the UV/H2O2 System for Treating Natural Water with a Mixture of Anthracene and Benzo[a]pyrene at Ultra-trace Levels,” Environmental Science and Pollution Research (2018, June 5). [Web of Science ®], [Google Scholar]C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, et al. “Highly Porous Carbon Nitride by Supramolecular Preassembly of Monomers for Photocatalytic Removal of Sulfamethazine under Visible Light Driven,” Applied Catalysis B 220, (2018): 202–10. [Crossref], [Web of Science ®], [Google Scholar]C. Zhou, C. Lai, C. Zhang, G. Zeng, D. Huang, M. Cheng, L. Hu, W. Xiong, M. Chen, J. Wang, et al. “Semiconductor/Boron Nitride Composites: Synthesis, Properties, and Photocatalysis Applications,” Applied Catalysis B 238, (2018): 6–18. [Crossref], [Web of Science ®], [Google Scholar]C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, C. Zhang, M. Cheng, L. Hu, J. Wan, Y. Liu, et al. “In Situ Grown AgI/Bi12O17Cl2 Heterojunction Photocatalysts for Visible Light Degradation of Sulfamethazine: Efficiency, Pathway, and Mechanism,” ACS Sustainable Chemistry & Engineering 6, no. 3 (2018): 4174–84. [Crossref], [Web of Science ®], [Google Scholar]C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, Z. Li, C. Zhang, M. Cheng, L. Hu, J. Wan, et al. “Rational Design of Carbon-Doped Carbon Nitride/Bi12O17Cl2 Composites: A Promising Candidate Photocatalyst for Boosting Visible-Light-Driven Photocatalytic Degradation of Tetracycline,” ACS Sustainable Chemistry & Engineering 6, no. 5 (2018): 6941–9. [Crossref], [Web of Science ®], [Google Scholar]D. Huang, X. Yan, M. Yan, G. Zeng, C. Zhou, J. Wan, M. Cheng, and W. Xue, “Graphitic Carbon Nitride Based Heterojunction Photoactive Nanocomposites: Applications and Mechanism Insight”. ACS Applied Materials & Interfaces 10, no. 25 (2018):21035–55. [Google Scholar]M. I. Litter, and N. Quici, “Photochemical Advanced Oxidation Processes for Water and Wastewater Treatment,” Recent Patents on Engineering 4, (2010): 217–41. [Crossref], [Google Scholar]A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Application of Fenton Process for Treating Petrochemical Wastewater,” Ingeniería y Competitividad 16, no. 2 (2014): 211–23. [Crossref], [Google Scholar]A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Petrochemical Wastewater Treatment by Photo-Fenton Process,” Water, Air, & Soil Pollution 226, no. 3 (2015): 62–79. [Crossref], [Web of Science ®], [Google Scholar]S. Giannakis, S. Liu, A. Carratalà, S. Rtimi, M. Bensimon, and C. Pulgarin, “Effect of Fe(II)/Fe(III) Species, pH, Irradiance and Bacterial Presence on Viral Inactivation in Wastewater by the Photo-Fenton Process: Kinetic Modeling and Mechanistic Interpretation,” Applied Catalysis B 204, (2017): 156–66. [Crossref], [Web of Science ®], [Google Scholar]A. Rubio-Clemente, E. Chica, and G. A. Peñuela, “Kinetic Modeling of the UV/H2O2 Process: Determining the Effective Hydroxyl Radical Concentration”, in Physico-Chemical Wastewater Treatment and Resource Recovery, edited by Farooq R. & Ahmad Z. (Rijeka: InTech, 2017), 19–41. [Google Scholar]V. Homem, Z. Dias, L. Santos, and A. Alves, “Preliminary Feasibility Study of Benzo(a)pyrene Oxidative Degradation by Fenton Treatment,” Journal of Environmental and Public Health 2009, (2009): 1–6. [Crossref], [Google Scholar]A. Rubio-Clemente, E. Chica, and G. Peñuela, “Rapid Determination of Anthracene and Benzo(a)pyrene by High-Performance Liquid Chromatography with Fluorescence Detection,” Analytical Letters 50, no. 8 (2017): 1229–47. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]WEF and AWWA, Standard Methods for the Examination of Water and Wastewater (22nd ed., American Public Health Association, Washington, DC, 2012). [Google Scholar]B. Dejaegher, and Y. Vander, “Experimental Designs and Their Recent Advances in Set-up, Data Interpretation, and Analytical Applications,” Journal of Pharmaceutical and Biomedical Analysis 56, no. 2 (2011): 141–58. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]F. J. Beltrán, M. González, F. J. Ribas, and P. Alvarez, “Fenton Reagent Advanced Oxidation of Polynuclear Aromatic Hydrocarbons in Water,” Water, Air, and Soil Pollution 105, no. 3/4 (1998):685–700. [Crossref], [Web of Science ®], [Google Scholar]P. Ghosh, A. N. Samanta, and S. Ray, “COD Reduction of Petrochemical Industry Wastewater Using Fenton’s Oxidation,” The Canadian Journal of Chemical Engineering 88, no. 6 (2010): 1021–6. [Crossref], [Web of Science ®], [Google Scholar]N. Nadarajah, J. Van Hamme, J. Pannu, A. Singh, and O. Ward, “Enhanced Transformation of Polycyclic Aromatic Hydrocarbons Using a Combined Fenton’s Reagent, Microbial Treatment and Surfactants,” Applied Microbiology and Biotechnology 59, (2002): 540–4. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Y. Ma, B. Chen, B. Zhang, and H. Zhang, “Fenton Oxidation Process for Remediation of Produced Water Containing Polycyclic Aromatic Hydrocarbons,” CSE 2014 13th International Environment Special Conference 1, (2014): 1–10. [Google Scholar]R. Saini, and P. Kumar, “Optimization of Chlorpyrifos Degradation by Fenton Oxidation Using CCD and ANFIS Computing Technique,” Journal of Environmental Chemical Engineering 4, no. 3 (2016): 2952–63. [Crossref], [Web of Science ®], [Google Scholar]A. Mirzaei, Z. Chen, F. Haghighat, and L. Yerushalmi, “Removal of Pharmaceuticals from Water by Homo/Heterogonous Fenton-Type Processes—A Review,” Chemosphere 174 (2017): 665–88. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]J. H. Ramirez, F. M. Duarte, F. G. Martins, C. A. Costa, and L. M. Madeira, “Modelling of the Synthetic Dye Orange II Degradation Using Fenton’s Reagent: From Batch to Continuous Reactor Operation,” Chemical Engineering Journal 148, no. 2–3 (2009): 394–404. [Crossref], [Web of Science ®], [Google Scholar]P. T. De Souza e Silva, V. L. Da Silva, B. de Barros Neto, and M. O. Simonnot, “Phenanthrene and Pyrene Oxidation in Contaminated Soils Using Fenton's Reagent,” Journal of Hazardous Materials 161, no. 2–3 (2009): 967–73. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]D. Rubio, E. Nebot, J. F. Casanueva, and C. Pulgarin, “Comparative Effect of Simulated Solar Light, UV, UV/H2O2 and Photo-Fenton Treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli Inactivation in Artificial Seawater ,” Water Research 47, no. 16 (2013): 6367–79. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]C. Comninellis, A. Kapalka, S. Malato, and S. A. Parsons, “Advanced Oxidation Processes for Water Treatment: Advances and Trends for R&D,” Journal of Chemical Technology & Biotechnology 83 (2008): 769–76. [Crossref], [Web of Science ®], [Google Scholar]Resolución, “Resolución Número 2115 Por Medio de la Cual se Señalan Características, instrumentos Básicos y Frecuencias Del Sistema de Control y Vigilancia Para la Calidad de Agua Para Consumo Humano,” Ministerio de la Protección Social, Ministerio de Ambiente, Vivienda y Desarrollo Territorial 2007, (2007): 23. [Google Scholar]Council Directive, “Directive 98/83/CE of the Council of 3 November on the Quality of Water Intended for Human Consumption,” Official Journal of the European Union Lex 330, no. 32 (1998): 23. [Google Scholar]info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbWater treatmentTratamiento del aguaTraitement de l'eauTratamento da águaPolycyclic aromatic hydrocarbonshidrocarburos aromáticos policíclicosHydrocarbure aromatique polycycliqueAdvanced oxidation processProceso de oxidación avanzadaResponse surface methodologyMetodología de la superficie de respuestaReal aqueous matrixMatriz acuosa realTHUMBNAILBenzo-a-pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water_ Process Optimization and Application.jpg.jpgBenzo-a-pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water_ Process Optimization and Application.jpg.jpgGenerated Thumbnailimage/jpeg12647https://dspace.tdea.edu.co/bitstream/tdea/2982/3/Benzo-a-pyrene%20Emerging%20Micropollutant%20Oxidation%20under%20the%20Action%20of%20Fenton%20Reactants%20in%20Real%20Surface%20Water_%20Process%20Optimization%20and%20Application.jpg.jpgef1712d32336d7fb6704b80c6ede86fcMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2982/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessORIGINALBenzo-a-pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water_ Process Optimization and Application.jpgBenzo-a-pyrene Emerging Micropollutant Oxidation under the Action of Fenton Reactants in Real Surface Water_ Process Optimization and Application.jpgDatos del documentoimage/jpeg371091https://dspace.tdea.edu.co/bitstream/tdea/2982/1/Benzo-a-pyrene%20Emerging%20Micropollutant%20Oxidation%20under%20the%20Action%20of%20Fenton%20Reactants%20in%20Real%20Surface%20Water_%20Process%20Optimization%20and%20Application.jpgb51b74e316b97961a2fcf7c2a3dfd434MD51open accesstdea/2982oai:dspace.tdea.edu.co:tdea/29822023-05-26 20:47:01.155open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=