Implementation of algorithms to compute the Convex Hull

Computational geometry is a discipline focused on solving problems in the geometric domain. In this context, the algorithm for computing the convex polygon called Convex Hull (CH) is important, because it is the basis for many other algorithms. The objective of the research was to implement algorith...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Católica de Pereira
Repositorio:
Repositorio Institucional - RIBUC
Idioma:
spa
OAI Identifier:
oai:repositorio.ucp.edu.co:10785/13703
Acceso en línea:
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668
http://hdl.handle.net/10785/13703
Palabra clave:
Rights
openAccess
License
Derechos de autor 2023 Entre Ciencia e Ingeniería
id RepoRIBUC_fba395286599632d3ebb7b08528f0eff
oai_identifier_str oai:repositorio.ucp.edu.co:10785/13703
network_acronym_str RepoRIBUC
network_name_str Repositorio Institucional - RIBUC
repository_id_str
spelling Implementation of algorithms to compute the Convex HullImplementación de algoritmos para calcular el Convex HullComputational geometry is a discipline focused on solving problems in the geometric domain. In this context, the algorithm for computing the convex polygon called Convex Hull (CH) is important, because it is the basis for many other algorithms. The objective of the research was to implement algorithms that compute the CH incorporating modifications to reduce the execution time. The research started with a bibliographic review of computational geometry and the algorithms highlighted in the calculation of CH. Subsequently, the QuickHull, Gift Wrapping, and Graham Scan algorithms were implemented in JAVA in their original versions; some versions with modifications were also implemented. Upon completion of implementation, tests were run to verify the execution times. Finally, the QuickHull algorithm was found to be the fastest among the implementations performed in this research. It is also noted a reduction in execution times in the modified implementations in relation to the original ones of the Gift Wrapping and Graham Scan algorithms.La geometría computacional es una disciplina enfocada en la resolución de problemas en el ámbito geométrico. En este contexto, el algoritmo para calcular el polígono convexo llamado Convex Hull (CH) es importante, debido a que es la base de muchos otros algoritmos. El objetivo de la investigación fue implementar algoritmos que calculan el CH incorporando modificaciones para reducir el tiempo de ejecución. El trabajo inició con la revisión bibliográfica acerca de geometría computacional y los algoritmos destacados en el cálculo del CH. Posteriormente, se realizó la implementación en JAVA de los algoritmos QuickHull, Gift Wrapping y Graham Scan en sus versiones originales; también se implementaron algunas versiones con modificaciones.  Al finalizar la implementación, se ejecutaron pruebas para verificar los tiempos de ejecución. Finalmente, se comprobó que el algoritmo QuickHull es el más rápido entre las implementaciones realizadas en esta investigación. También se nota reducción en los tiempos de ejecución en las implementaciones modificadas con relación a las originales de los algoritmos Gift Wrapping y Graham Scan.Universidad Católica de Pereira2023-08-29T03:49:42Z2023-08-29T03:49:42Z2022-12-31Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1application/pdfapplication/xmlhttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/266810.31908/19098367.2668http://hdl.handle.net/10785/13703Entre ciencia e ingeniería; Vol 16 No 32 (2022); 27-34Entre Ciencia e Ingeniería; Vol. 16 Núm. 32 (2022); 27-34Entre ciencia e ingeniería; v. 16 n. 32 (2022); 27-342539-41691909-8367spahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668/2597https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668/2632Derechos de autor 2023 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Candela Uribe., Christian AndrésSepúlveda Rodríguez, Luis EduardoChavarro Porras, Julio CésarMeneses Escobar, Carlos AugustoSanabria Ordoñez, John AlexanderArcila Guzmán, Olmedooai:repositorio.ucp.edu.co:10785/137032025-01-27T23:58:26Z
dc.title.none.fl_str_mv Implementation of algorithms to compute the Convex Hull
Implementación de algoritmos para calcular el Convex Hull
title Implementation of algorithms to compute the Convex Hull
spellingShingle Implementation of algorithms to compute the Convex Hull
title_short Implementation of algorithms to compute the Convex Hull
title_full Implementation of algorithms to compute the Convex Hull
title_fullStr Implementation of algorithms to compute the Convex Hull
title_full_unstemmed Implementation of algorithms to compute the Convex Hull
title_sort Implementation of algorithms to compute the Convex Hull
description Computational geometry is a discipline focused on solving problems in the geometric domain. In this context, the algorithm for computing the convex polygon called Convex Hull (CH) is important, because it is the basis for many other algorithms. The objective of the research was to implement algorithms that compute the CH incorporating modifications to reduce the execution time. The research started with a bibliographic review of computational geometry and the algorithms highlighted in the calculation of CH. Subsequently, the QuickHull, Gift Wrapping, and Graham Scan algorithms were implemented in JAVA in their original versions; some versions with modifications were also implemented. Upon completion of implementation, tests were run to verify the execution times. Finally, the QuickHull algorithm was found to be the fastest among the implementations performed in this research. It is also noted a reduction in execution times in the modified implementations in relation to the original ones of the Gift Wrapping and Graham Scan algorithms.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-31
2023-08-29T03:49:42Z
2023-08-29T03:49:42Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668
10.31908/19098367.2668
http://hdl.handle.net/10785/13703
url https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668
http://hdl.handle.net/10785/13703
identifier_str_mv 10.31908/19098367.2668
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668/2597
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668/2632
dc.rights.none.fl_str_mv Derechos de autor 2023 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2023 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.none.fl_str_mv Universidad Católica de Pereira
publisher.none.fl_str_mv Universidad Católica de Pereira
dc.source.none.fl_str_mv Entre ciencia e ingeniería; Vol 16 No 32 (2022); 27-34
Entre Ciencia e Ingeniería; Vol. 16 Núm. 32 (2022); 27-34
Entre ciencia e ingeniería; v. 16 n. 32 (2022); 27-34
2539-4169
1909-8367
institution Universidad Católica de Pereira
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844494707530399744