Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data

Microarray analysis of gene expression is a current topic for the diagnosis and classification of human cancer. A gene expression data microarray consists of an array of thousands of features of which most are irrelevant for classifying patterns of gene expressions. Choosing a minimal subset of feat...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Católica de Pereira
Repositorio:
Repositorio Institucional - RIBUC
Idioma:
spa
OAI Identifier:
oai:repositorio.ucp.edu.co:10785/10031
Acceso en línea:
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2014
http://hdl.handle.net/10785/10031
Palabra clave:
Rights
openAccess
License
Derechos de autor 2021 Entre Ciencia e Ingeniería
id RepoRIBUC_d6f87b56e86e6611fa279d0bda2e5939
oai_identifier_str oai:repositorio.ucp.edu.co:10785/10031
network_acronym_str RepoRIBUC
network_name_str Repositorio Institucional - RIBUC
repository_id_str
spelling Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer DataAlgoritmos Evolutivos Multiobjetivo aplicados a la Selección de Características en Microarrays de Datos de CáncerMicroarray analysis of gene expression is a current topic for the diagnosis and classification of human cancer. A gene expression data microarray consists of an array of thousands of features of which most are irrelevant for classifying patterns of gene expressions. Choosing a minimal subset of features for classification is a difficult task. In this work, a comparison is made between two multi-objective evolutionary algorithms applied to sets of gene expressions popular in the literature (lymphoma, leukemia and colon). In order to remove the strongly correlated characteristics, a pre-processing stage is performed. An extensive and detailed analysis of the results obtained for the selected multi-objective algorithms is shown.El análisis de microarrays de expresión de genes es un tópico actual para el diagnóstico y clasificación del cáncer humano. Un microarray de datos de expresión de genes consiste en una matriz de miles de características de las cuales la mayoría es irrelevante para clasificar patrones de expresiones de genes. La elección de un subconjunto mínimo de características para clasificación es una tarea dificultosa. En este trabajo, se realiza una comparación entre dos algoritmos evolutivos multiobjetivo aplicados a conjuntos de expresiones de genes populares en la literatura (linfoma, leucemia y colon). Con el objetivo de remover las características con fuerte correlación se realiza una etapa de pre-procesamiento. Se muestra un análisis extenso y detallado de los resultados obtenidos para los algoritmos multiobjetivo seleccionados.Universidad Católica de Pereira2022-06-01T19:09:07Z2022-06-01T19:09:07Z2020-12-31Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1application/pdfhttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/201410.31908/19098367.2014http://hdl.handle.net/10785/10031Entre ciencia e ingeniería; Vol 14 No 28 (2020); 40-45Entre Ciencia e Ingeniería; Vol. 14 Núm. 28 (2020); 40-45Entre ciencia e ingeniería; v. 14 n. 28 (2020); 40-452539-41691909-8367spahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2014/1863Derechos de autor 2021 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dussaut, Julieta SolPonzoni, IgnacioOlivera, Ana CarolinaVidal, Pablo Javieroai:repositorio.ucp.edu.co:10785/100312025-01-27T23:59:40Z
dc.title.none.fl_str_mv Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
Algoritmos Evolutivos Multiobjetivo aplicados a la Selección de Características en Microarrays de Datos de Cáncer
title Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
spellingShingle Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
title_short Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
title_full Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
title_fullStr Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
title_full_unstemmed Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
title_sort Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
description Microarray analysis of gene expression is a current topic for the diagnosis and classification of human cancer. A gene expression data microarray consists of an array of thousands of features of which most are irrelevant for classifying patterns of gene expressions. Choosing a minimal subset of features for classification is a difficult task. In this work, a comparison is made between two multi-objective evolutionary algorithms applied to sets of gene expressions popular in the literature (lymphoma, leukemia and colon). In order to remove the strongly correlated characteristics, a pre-processing stage is performed. An extensive and detailed analysis of the results obtained for the selected multi-objective algorithms is shown.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-31
2022-06-01T19:09:07Z
2022-06-01T19:09:07Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2014
10.31908/19098367.2014
http://hdl.handle.net/10785/10031
url https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2014
http://hdl.handle.net/10785/10031
identifier_str_mv 10.31908/19098367.2014
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2014/1863
dc.rights.none.fl_str_mv Derechos de autor 2021 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2021 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Católica de Pereira
publisher.none.fl_str_mv Universidad Católica de Pereira
dc.source.none.fl_str_mv Entre ciencia e ingeniería; Vol 14 No 28 (2020); 40-45
Entre Ciencia e Ingeniería; Vol. 14 Núm. 28 (2020); 40-45
Entre ciencia e ingeniería; v. 14 n. 28 (2020); 40-45
2539-4169
1909-8367
institution Universidad Católica de Pereira
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844494731171594240