Routing in wireless sensor networks using bio-inspired algorithms

We present a solution to the problem of routing in a wireless sensor network based on Swarm Intelligence, which has been applied successfully to other routing problems, for example, the traveling salesman problem and others. Routing in a wireless sensor network can be understood as an optimization p...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Católica de Pereira
Repositorio:
Repositorio Institucional - RIBUC
Idioma:
spa
OAI Identifier:
oai:repositorio.ucp.edu.co:10785/9730
Acceso en línea:
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/182
http://hdl.handle.net/10785/9730
Palabra clave:
Rights
openAccess
License
Derechos de autor 2019 Entre Ciencia e Ingeniería
id RepoRIBUC_cda0c4feaf057133efaa1938d1b9e407
oai_identifier_str oai:repositorio.ucp.edu.co:10785/9730
network_acronym_str RepoRIBUC
network_name_str Repositorio Institucional - RIBUC
repository_id_str
dc.title.none.fl_str_mv Routing in wireless sensor networks using bio-inspired algorithms
Enrutamiento en redes de sensores inalámbricos usando algoritmos bioinspirados
Roteamento de redes de sensor sem fi o usando algoritmos bioinspirados
title Routing in wireless sensor networks using bio-inspired algorithms
spellingShingle Routing in wireless sensor networks using bio-inspired algorithms
title_short Routing in wireless sensor networks using bio-inspired algorithms
title_full Routing in wireless sensor networks using bio-inspired algorithms
title_fullStr Routing in wireless sensor networks using bio-inspired algorithms
title_full_unstemmed Routing in wireless sensor networks using bio-inspired algorithms
title_sort Routing in wireless sensor networks using bio-inspired algorithms
description We present a solution to the problem of routing in a wireless sensor network based on Swarm Intelligence, which has been applied successfully to other routing problems, for example, the traveling salesman problem and others. Routing in a wireless sensor network can be understood as an optimization problem. In the solution presented, there are both source and destination node. The problem is focused on fi nding a path that allows optimally connecting both nodes. The search space is the complete set of possible paths that connect these two nodes. Two swarm algorithms were implemented for routing: ant—based algorithm, and bee—based algorithm. The results show that swarm intelligence improves the routing in a wireless sensor network when it is considering aspects such as the amount of energy available in the nodes. The simulations show that it produces an improvement in the lifetime of the network.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-30
2022-06-01T19:08:21Z
2022-06-01T19:08:21Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/182
10.31908/19098367.3823
http://hdl.handle.net/10785/9730
url https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/182
http://hdl.handle.net/10785/9730
identifier_str_mv 10.31908/19098367.3823
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/182/178
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/182/1177
dc.rights.none.fl_str_mv Derechos de autor 2019 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2019 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.none.fl_str_mv Universidad Católica de Pereira
publisher.none.fl_str_mv Universidad Católica de Pereira
dc.source.none.fl_str_mv Entre ciencia e ingeniería; Vol 12 No 24 (2018); 130-137
Entre Ciencia e Ingeniería; Vol. 12 Núm. 24 (2018); 130-137
Entre ciencia e ingeniería; v. 12 n. 24 (2018); 130-137
2539-4169
1909-8367
institution Universidad Católica de Pereira
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844494483610140672
spelling Routing in wireless sensor networks using bio-inspired algorithmsEnrutamiento en redes de sensores inalámbricos usando algoritmos bioinspiradosRoteamento de redes de sensor sem fi o usando algoritmos bioinspiradosWe present a solution to the problem of routing in a wireless sensor network based on Swarm Intelligence, which has been applied successfully to other routing problems, for example, the traveling salesman problem and others. Routing in a wireless sensor network can be understood as an optimization problem. In the solution presented, there are both source and destination node. The problem is focused on fi nding a path that allows optimally connecting both nodes. The search space is the complete set of possible paths that connect these two nodes. Two swarm algorithms were implemented for routing: ant—based algorithm, and bee—based algorithm. The results show that swarm intelligence improves the routing in a wireless sensor network when it is considering aspects such as the amount of energy available in the nodes. The simulations show that it produces an improvement in the lifetime of the network.Se presenta una solución para el problema de enrutamiento en una red de sensores inalámbricos utilizando inteligencia de enjambres, lo cual ha sido aplicado satisfactoriamente a otros problemas de enrutamiento, por ejemplo, el problema del agente viajero, entre otros. El enrutamiento en una red de sensores inalámbricos puede ser entendido como un problema de optimización. En la solución presentada, existe un nodo origen y un nodo destino. El problema está enfocado en encontrar las rutas que permita conectar un par de nodos de manera óptima. El espacio de búsqueda es el conjunto de posibles rutas que conectan esos dos nodos. Se implementaron dos algoritmos bioinspirados para el enrutamiento: un algoritmo basado en hormigas y otro algoritmo basado en abejas. Los resultados muestran que los algoritmos Bioinspirados mejoran el rendimiento en una red de sensores inalámbricos, considerando aspectos como la cantidad de energía disponible en los nodos. Las simulaciones muestran que se produce una mejora en el tiempo de vida de la red.É apresentada uma solução para o problema de roteamento em uma rede de sensores sem fi o usando inteligência de enxame, que foi aplicada com sucesso a outros problemas de roteamento, por exemplo, o problema do agente viajante, entre outros. O roteamento em uma rede de sensores sem fi o pode ser entendido como um problema de otimização. Na solução apresentada, há um nó de origem e um nó de destino. O problema está focado em encontrar as rotas que permitem 131que alguns nós se conectem de maneira ideal. O espaço de busca é o conjunto de rotas possíveis que conectam esses dois nós. Dois algoritmos bioinspirados foram implementados para o roteamento: um algoritmo baseado em formigas e outro algoritmo baseado em abelhas. Os resultados mostram que os algoritmos Bioinspirados melhoram o desempenho em uma rede de sensores sem fio considerando aspectos como a quantidade de energia disponível nos nós. As simulações mostram que há uma melhora no tempo de vida da rede.Universidad Católica de Pereira2022-06-01T19:08:21Z2022-06-01T19:08:21Z2019-05-30Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1application/pdfapplication/xmlhttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/18210.31908/19098367.3823http://hdl.handle.net/10785/9730Entre ciencia e ingeniería; Vol 12 No 24 (2018); 130-137Entre Ciencia e Ingeniería; Vol. 12 Núm. 24 (2018); 130-137Entre ciencia e ingeniería; v. 12 n. 24 (2018); 130-1372539-41691909-8367spahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/182/178https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/182/1177Derechos de autor 2019 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Blandón A., Juan CarlosLópez, Jesus AlfonsoTobón Llano, Luis Eduardooai:repositorio.ucp.edu.co:10785/97302025-01-28T00:00:24Z