Cluster analysis for granular mechanics simulations using Machine Learning Algorithms

Molecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger imm...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Católica de Pereira
Repositorio:
Repositorio Institucional - RIBUC
Idioma:
eng
OAI Identifier:
oai:repositorio.ucp.edu.co:10785/10037
Acceso en línea:
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058
http://hdl.handle.net/10785/10037
Palabra clave:
Rights
openAccess
License
Derechos de autor 2021 Entre Ciencia e Ingeniería
id RepoRIBUC_9a07506bf960c682fc681c1fc8472994
oai_identifier_str oai:repositorio.ucp.edu.co:10785/10037
network_acronym_str RepoRIBUC
network_name_str Repositorio Institucional - RIBUC
repository_id_str
spelling Cluster analysis for granular mechanics simulations using Machine Learning AlgorithmsAnálisis de clústeres para simulaciones de mecánica granular mediante algoritmos de aprendizaje automáticoMolecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger immobile target grain, with different impact velocities. The disadvantage of this method is the large computational cost due to a large number of particles being modeled. Machine Learning (ML) has the power to manipulate large data and build predictive models which could reduce MD simulation times. Using ML algorithms (Support Vector Machine and Random Forest) we are able to predict the outcome of MD simulations regarding fragment formation, after a number of steps smaller than in usual MD simulations. We achieved a time reduction of at least 46%, for 90% accuracy. These results show that SVM and RF can be powerful yet simple tools to reduce computational cost in collision fragmentation simulations.Las simulaciones de dinámica molecular (MD) en colisiones de granos permiten incorporar propiedades complejas de interacciones de polvo. Realizamos simulaciones de colisiones de granos porosos, cada uno con muchas partículas, utilizando el software LAMMPS de MD. Las simulaciones consistieron en un grano de proyectil que golpeó un grano objetivo inmóvil más grande, con diferentes velocidades de impacto. La desventaja de este método es el gran costo computacional debido a que se modela una gran cantidad de partículas. Machine Learning (ML) tiene el poder de manipular grandes datos y construir modelos predictivos que podrían reducir los tiempos de simulación MD. Usando algoritmos ML (Support Vector Machine y Random Forest) podemos predecir el resultado de las simulaciones MD con respecto a la formación de fragmentos, después de varios pasos más pequeños que en las simulaciones MD habituales. Logramos una reducción de tiempo de al menos un 46%, para una precisión del 90%. Estos resultados muestran que SVM y RF pueden ser herramientas poderosas pero simples para reducir el costo computacional en simulaciones de fragmentación de colisiones.Universidad Católica de Pereira2022-06-01T19:09:07Z2022-06-01T19:09:07Z2020-12-31Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1application/pdfhttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/205810.31908/19098367.2058http://hdl.handle.net/10785/10037Entre ciencia e ingeniería; Vol 14 No 28 (2020); 81-86Entre Ciencia e Ingeniería; Vol. 14 Núm. 28 (2020); 81-86Entre ciencia e ingeniería; v. 14 n. 28 (2020); 81-862539-41691909-8367enghttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058/1914Derechos de autor 2021 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rim, Daniela NoemiMillán, Emmanuel N.Planes, María BelénBringa, Eduardo M.Moyano, Luis G.oai:repositorio.ucp.edu.co:10785/100372025-01-27T23:59:28Z
dc.title.none.fl_str_mv Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
Análisis de clústeres para simulaciones de mecánica granular mediante algoritmos de aprendizaje automático
title Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
spellingShingle Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_short Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_full Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_fullStr Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_full_unstemmed Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_sort Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
description Molecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger immobile target grain, with different impact velocities. The disadvantage of this method is the large computational cost due to a large number of particles being modeled. Machine Learning (ML) has the power to manipulate large data and build predictive models which could reduce MD simulation times. Using ML algorithms (Support Vector Machine and Random Forest) we are able to predict the outcome of MD simulations regarding fragment formation, after a number of steps smaller than in usual MD simulations. We achieved a time reduction of at least 46%, for 90% accuracy. These results show that SVM and RF can be powerful yet simple tools to reduce computational cost in collision fragmentation simulations.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-31
2022-06-01T19:09:07Z
2022-06-01T19:09:07Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058
10.31908/19098367.2058
http://hdl.handle.net/10785/10037
url https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058
http://hdl.handle.net/10785/10037
identifier_str_mv 10.31908/19098367.2058
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058/1914
dc.rights.none.fl_str_mv Derechos de autor 2021 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2021 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Católica de Pereira
publisher.none.fl_str_mv Universidad Católica de Pereira
dc.source.none.fl_str_mv Entre ciencia e ingeniería; Vol 14 No 28 (2020); 81-86
Entre Ciencia e Ingeniería; Vol. 14 Núm. 28 (2020); 81-86
Entre ciencia e ingeniería; v. 14 n. 28 (2020); 81-86
2539-4169
1909-8367
institution Universidad Católica de Pereira
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844494706775425024