Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients

Spectral methods have been successfully applied to numerical simulation in a variety of fields, such as heat transfer, fluid dynamics, quantum mechanics and so on. They are powerful tools for the numerical solutions of differential equations, ordinary and partial. This paper presents a spec...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Católica de Pereira
Repositorio:
Repositorio Institucional - RIBUC
Idioma:
spa
OAI Identifier:
oai:repositorio.ucp.edu.co:10785/9876
Acceso en línea:
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688
http://hdl.handle.net/10785/9876
Palabra clave:
Rights
openAccess
License
Derechos de autor 2019 Entre Ciencia e Ingeniería
id RepoRIBUC_92983b9589868860de41059e44b62154
oai_identifier_str oai:repositorio.ucp.edu.co:10785/9876
network_acronym_str RepoRIBUC
network_name_str Repositorio Institucional - RIBUC
repository_id_str
spelling Applying a Spectral Method to Solve Second Order Differential Equations With Constant CoefficientsAplicación de un Método Espectral en la Solución de Ecuaciones Diferenciales de Segundo Orden con Coeficientes ConstantesSpectral methods have been successfully applied to numerical simulation in a variety of fields, such as heat transfer, fluid dynamics, quantum mechanics and so on. They are powerful tools for the numerical solutions of differential equations, ordinary and partial. This paper presents a spectral method based on polynomial interpolation nodes distributed according to Chebyshev grids, to solve a second order ordinary differential equation with constant coefficients. It demonstrates the accuracy of this method as compared to finite difference method and this advantage is theoretically explainedLos métodos espectrales han sido aplicados con éxito a las simulaciones numéricas en muchos campos, tales como conducción del calor, dinámica de fluidos, mecánica cuántica, entre otros. Son herramientas de gran alcance para hallar soluciones numéricas de ecuaciones diferenciales ordinarias y en derivadas parciales. Este artículo presenta un método espectral basado en la interpolación polinomial en nodos distribuidos según mallas de Chebyshev, para resolver una ecuación diferencial ordinaria de segundo orden con coeficientes constantes. Se evidencia la precisión de dicho método en comparación con el método de diferencias finitas y se fundamenta desde el punto de vista teórico esta superioridad.Universidad Católica de Pereira2022-06-01T19:08:45Z2022-06-01T19:08:45Z2019-07-27Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1application/pdfhttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688http://hdl.handle.net/10785/9876Entre ciencia e ingeniería; Vol 6 No 12 (2012); 58-63Entre Ciencia e Ingeniería; Vol. 6 Núm. 12 (2012); 58-63Entre ciencia e ingeniería; v. 6 n. 12 (2012); 58-632539-41691909-8367spahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688/692Derechos de autor 2019 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Paniagua, Juan GuillermoPérez, John AlexanderNaspirán Herrera, Luis Eduardooai:repositorio.ucp.edu.co:10785/98762025-01-28T00:00:55Z
dc.title.none.fl_str_mv Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
Aplicación de un Método Espectral en la Solución de Ecuaciones Diferenciales de Segundo Orden con Coeficientes Constantes
title Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
spellingShingle Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_short Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_full Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_fullStr Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_full_unstemmed Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_sort Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
description Spectral methods have been successfully applied to numerical simulation in a variety of fields, such as heat transfer, fluid dynamics, quantum mechanics and so on. They are powerful tools for the numerical solutions of differential equations, ordinary and partial. This paper presents a spectral method based on polynomial interpolation nodes distributed according to Chebyshev grids, to solve a second order ordinary differential equation with constant coefficients. It demonstrates the accuracy of this method as compared to finite difference method and this advantage is theoretically explained
publishDate 2019
dc.date.none.fl_str_mv 2019-07-27
2022-06-01T19:08:45Z
2022-06-01T19:08:45Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688
http://hdl.handle.net/10785/9876
url https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688
http://hdl.handle.net/10785/9876
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688/692
dc.rights.none.fl_str_mv Derechos de autor 2019 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2019 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Católica de Pereira
publisher.none.fl_str_mv Universidad Católica de Pereira
dc.source.none.fl_str_mv Entre ciencia e ingeniería; Vol 6 No 12 (2012); 58-63
Entre Ciencia e Ingeniería; Vol. 6 Núm. 12 (2012); 58-63
Entre ciencia e ingeniería; v. 6 n. 12 (2012); 58-63
2539-4169
1909-8367
institution Universidad Católica de Pereira
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844494697760817152