Español

Autoclaves are vital equipment in the hospital sterilization processes. They are so important in any hospital center that a failure in the equipment can result in the total suspension of surgical activity, as they represent the main tool when it comes to prevent the spread of infections to which med...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Católica de Pereira
Repositorio:
Repositorio Institucional - RIBUC
Idioma:
spa
OAI Identifier:
oai:repositorio.ucp.edu.co:10785/13723
Acceso en línea:
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2880
http://hdl.handle.net/10785/13723
Palabra clave:
Rights
openAccess
License
Derechos de autor 2023 Entre Ciencia e Ingeniería
id RepoRIBUC_0953ac923040909d156175e28462f1e3
oai_identifier_str oai:repositorio.ucp.edu.co:10785/13723
network_acronym_str RepoRIBUC
network_name_str Repositorio Institucional - RIBUC
repository_id_str
spelling EspañolIdentificación de Fallas en bombas de vacío mediante sonidoAutoclaves are vital equipment in the hospital sterilization processes. They are so important in any hospital center that a failure in the equipment can result in the total suspension of surgical activity, as they represent the main tool when it comes to prevent the spread of infections to which medical procedures are exposed [1]. Vacuum pumps are essential elements in the operation of autoclaves, since a successful sterilization process depends on their performance. This article intends to introduce a method to automatically detect the failure condition of an autoclave's vacuum pump, based on the characteristics of the acoustic signal produced by the equipment during its operation. Initially, the acoustic signals emitted by the pump in both normal and failure conditions were captured. The results obtained by different signal analysis methods were compared, and it was determined which of them ended up being more suitable in order to perform a diagnosis of the equipment's operating condition. The results obtained showed that, in order to identify the specific type of failure analyzed, the analysis within the time domain ended up being more suitable than the analysis within the frequency domain. Finally, an algorithm that detects the presence or absence of water in the vacuum pump of the autoclave was obtained.Las autoclaves son equipos fundamentales en los procesos de esterilización hospitalaria, y son tan importantes en un centro hospitalario que una falla en el equipo puede ocasionar la suspensión total de la actividad quirúrgica, ya que constituyen la principal herramienta en la prevención de la propagación de las infecciones a las que están expuestos los procedimientos médicos [1]. Un elemento vital en la operación de una autoclave es su bomba de vacío, pues de su desempeño depende el éxito del proceso de esterilización. En el presente artículo, se presenta un método para detectar automáticamente el estado de falla de la bomba de vacío de una autoclave a partir de las características de la señal sonora producida por el equipo durante su operación. Inicialmente, se capturaron las señales sonoras emitidas por la bomba tanto en condición normal como en condición de falla, se compararon los resultados obtenidos por diferentes métodos de análisis de las señales, y se determinó cuál de ellos resultó más adecuado para hacer un diagnóstico del estado de operación del equipo, los resultados obtenidos mostraron que, para identificar el tipo particular de falla analizado, el análisis en el dominio del tiempo resultó más adecuado que el análisis en el dominio de la frecuencia. Finalmente, se obtuvo un algoritmo que detecta la presencia o ausencia de agua en la bomba de vacío de la autoclave.Universidad Católica de Pereira2023-08-29T03:49:44Z2023-08-29T03:49:44Z2023-07-04Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1application/pdfhttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/288010.31908/19098367.2880http://hdl.handle.net/10785/13723Entre ciencia e ingeniería; Vol 17 No 33 (2023); 24-30Entre Ciencia e Ingeniería; Vol. 17 Núm. 33 (2023); 24-30Entre ciencia e ingeniería; v. 17 n. 33 (2023); 24-302539-41691909-8367spahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2880/2616Derechos de autor 2023 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Padilla Aguilar, Jhon JairoRestrepo Agudelo, RaúlMayorga, Jann Nicolásoai:repositorio.ucp.edu.co:10785/137232025-01-27T23:59:05Z
dc.title.none.fl_str_mv Español
Identificación de Fallas en bombas de vacío mediante sonido
title Español
spellingShingle Español
title_short Español
title_full Español
title_fullStr Español
title_full_unstemmed Español
title_sort Español
description Autoclaves are vital equipment in the hospital sterilization processes. They are so important in any hospital center that a failure in the equipment can result in the total suspension of surgical activity, as they represent the main tool when it comes to prevent the spread of infections to which medical procedures are exposed [1]. Vacuum pumps are essential elements in the operation of autoclaves, since a successful sterilization process depends on their performance. This article intends to introduce a method to automatically detect the failure condition of an autoclave's vacuum pump, based on the characteristics of the acoustic signal produced by the equipment during its operation. Initially, the acoustic signals emitted by the pump in both normal and failure conditions were captured. The results obtained by different signal analysis methods were compared, and it was determined which of them ended up being more suitable in order to perform a diagnosis of the equipment's operating condition. The results obtained showed that, in order to identify the specific type of failure analyzed, the analysis within the time domain ended up being more suitable than the analysis within the frequency domain. Finally, an algorithm that detects the presence or absence of water in the vacuum pump of the autoclave was obtained.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-29T03:49:44Z
2023-08-29T03:49:44Z
2023-07-04
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2880
10.31908/19098367.2880
http://hdl.handle.net/10785/13723
url https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2880
http://hdl.handle.net/10785/13723
identifier_str_mv 10.31908/19098367.2880
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2880/2616
dc.rights.none.fl_str_mv Derechos de autor 2023 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2023 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Católica de Pereira
publisher.none.fl_str_mv Universidad Católica de Pereira
dc.source.none.fl_str_mv Entre ciencia e ingeniería; Vol 17 No 33 (2023); 24-30
Entre Ciencia e Ingeniería; Vol. 17 Núm. 33 (2023); 24-30
Entre ciencia e ingeniería; v. 17 n. 33 (2023); 24-30
2539-4169
1909-8367
institution Universidad Católica de Pereira
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844494483637403648