Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
Molecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger imm...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Católica de Pereira
- Repositorio:
- Repositorio Institucional - RIBUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.ucp.edu.co:10785/10037
- Acceso en línea:
- https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058
http://hdl.handle.net/10785/10037
- Palabra clave:
- Rights
- openAccess
- License
- Derechos de autor 2021 Entre Ciencia e Ingeniería
id |
RepoRIBUC2_9a07506bf960c682fc681c1fc8472994 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.edu.co:10785/10037 |
network_acronym_str |
RepoRIBUC2 |
network_name_str |
Repositorio Institucional - RIBUC |
repository_id_str |
|
spelling |
2022-06-01T19:09:07Z2022-06-01T19:09:07Z2020-12-31https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/205810.31908/19098367.2058http://hdl.handle.net/10785/10037Molecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger immobile target grain, with different impact velocities. The disadvantage of this method is the large computational cost due to a large number of particles being modeled. Machine Learning (ML) has the power to manipulate large data and build predictive models which could reduce MD simulation times. Using ML algorithms (Support Vector Machine and Random Forest) we are able to predict the outcome of MD simulations regarding fragment formation, after a number of steps smaller than in usual MD simulations. We achieved a time reduction of at least 46%, for 90% accuracy. These results show that SVM and RF can be powerful yet simple tools to reduce computational cost in collision fragmentation simulations.Las simulaciones de dinámica molecular (MD) en colisiones de granos permiten incorporar propiedades complejas de interacciones de polvo. Realizamos simulaciones de colisiones de granos porosos, cada uno con muchas partículas, utilizando el software LAMMPS de MD. Las simulaciones consistieron en un grano de proyectil que golpeó un grano objetivo inmóvil más grande, con diferentes velocidades de impacto. La desventaja de este método es el gran costo computacional debido a que se modela una gran cantidad de partículas. Machine Learning (ML) tiene el poder de manipular grandes datos y construir modelos predictivos que podrían reducir los tiempos de simulación MD. Usando algoritmos ML (Support Vector Machine y Random Forest) podemos predecir el resultado de las simulaciones MD con respecto a la formación de fragmentos, después de varios pasos más pequeños que en las simulaciones MD habituales. Logramos una reducción de tiempo de al menos un 46%, para una precisión del 90%. Estos resultados muestran que SVM y RF pueden ser herramientas poderosas pero simples para reducir el costo computacional en simulaciones de fragmentación de colisiones.application/pdfengUniversidad Católica de Pereirahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058/1914Derechos de autor 2021 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Entre ciencia e ingeniería; Vol 14 No 28 (2020); 81-86Entre Ciencia e Ingeniería; Vol. 14 Núm. 28 (2020); 81-86Entre ciencia e ingeniería; v. 14 n. 28 (2020); 81-862539-41691909-8367Cluster analysis for granular mechanics simulations using Machine Learning AlgorithmsAnálisis de clústeres para simulaciones de mecánica granular mediante algoritmos de aprendizaje automáticoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionRim, Daniela NoemiMillán, Emmanuel N.Planes, María BelénBringa, Eduardo M.Moyano, Luis G.Publication10785/10037oai:repositorio.ucp.edu.co:10785/100372025-01-27 18:59:28.69https://creativecommons.org/licenses/by-nc/4.0/deed.es_ESDerechos de autor 2021 Entre Ciencia e Ingenieríametadata.onlyhttps://repositorio.ucp.edu.coRepositorio Institucional de la Universidad Católica de Pereira - RIBUCbdigital@metabiblioteca.com |
dc.title.eng.fl_str_mv |
Cluster analysis for granular mechanics simulations using Machine Learning Algorithms |
dc.title.spa.fl_str_mv |
Análisis de clústeres para simulaciones de mecánica granular mediante algoritmos de aprendizaje automático |
title |
Cluster analysis for granular mechanics simulations using Machine Learning Algorithms |
spellingShingle |
Cluster analysis for granular mechanics simulations using Machine Learning Algorithms |
title_short |
Cluster analysis for granular mechanics simulations using Machine Learning Algorithms |
title_full |
Cluster analysis for granular mechanics simulations using Machine Learning Algorithms |
title_fullStr |
Cluster analysis for granular mechanics simulations using Machine Learning Algorithms |
title_full_unstemmed |
Cluster analysis for granular mechanics simulations using Machine Learning Algorithms |
title_sort |
Cluster analysis for granular mechanics simulations using Machine Learning Algorithms |
description |
Molecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger immobile target grain, with different impact velocities. The disadvantage of this method is the large computational cost due to a large number of particles being modeled. Machine Learning (ML) has the power to manipulate large data and build predictive models which could reduce MD simulation times. Using ML algorithms (Support Vector Machine and Random Forest) we are able to predict the outcome of MD simulations regarding fragment formation, after a number of steps smaller than in usual MD simulations. We achieved a time reduction of at least 46%, for 90% accuracy. These results show that SVM and RF can be powerful yet simple tools to reduce computational cost in collision fragmentation simulations. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-12-31 |
dc.date.accessioned.none.fl_str_mv |
2022-06-01T19:09:07Z |
dc.date.available.none.fl_str_mv |
2022-06-01T19:09:07Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058 10.31908/19098367.2058 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10785/10037 |
url |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058 http://hdl.handle.net/10785/10037 |
identifier_str_mv |
10.31908/19098367.2058 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058/1914 |
dc.rights.spa.fl_str_mv |
Derechos de autor 2021 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos de autor 2021 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Católica de Pereira |
dc.source.eng.fl_str_mv |
Entre ciencia e ingeniería; Vol 14 No 28 (2020); 81-86 |
dc.source.spa.fl_str_mv |
Entre Ciencia e Ingeniería; Vol. 14 Núm. 28 (2020); 81-86 |
dc.source.por.fl_str_mv |
Entre ciencia e ingeniería; v. 14 n. 28 (2020); 81-86 |
dc.source.none.fl_str_mv |
2539-4169 1909-8367 |
institution |
Universidad Católica de Pereira |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica de Pereira - RIBUC |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1831929577325199360 |