Cluster analysis for granular mechanics simulations using Machine Learning Algorithms

Molecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger imm...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Católica de Pereira
Repositorio:
Repositorio Institucional - RIBUC
Idioma:
eng
OAI Identifier:
oai:repositorio.ucp.edu.co:10785/10037
Acceso en línea:
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058
http://hdl.handle.net/10785/10037
Palabra clave:
Rights
openAccess
License
Derechos de autor 2021 Entre Ciencia e Ingeniería
id RepoRIBUC2_9a07506bf960c682fc681c1fc8472994
oai_identifier_str oai:repositorio.ucp.edu.co:10785/10037
network_acronym_str RepoRIBUC2
network_name_str Repositorio Institucional - RIBUC
repository_id_str
spelling 2022-06-01T19:09:07Z2022-06-01T19:09:07Z2020-12-31https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/205810.31908/19098367.2058http://hdl.handle.net/10785/10037Molecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger immobile target grain, with different impact velocities. The disadvantage of this method is the large computational cost due to a large number of particles being modeled. Machine Learning (ML) has the power to manipulate large data and build predictive models which could reduce MD simulation times. Using ML algorithms (Support Vector Machine and Random Forest) we are able to predict the outcome of MD simulations regarding fragment formation, after a number of steps smaller than in usual MD simulations. We achieved a time reduction of at least 46%, for 90% accuracy. These results show that SVM and RF can be powerful yet simple tools to reduce computational cost in collision fragmentation simulations.Las simulaciones de dinámica molecular (MD) en colisiones de granos permiten incorporar propiedades complejas de interacciones de polvo. Realizamos simulaciones de colisiones de granos porosos, cada uno con muchas partículas, utilizando el software LAMMPS de MD. Las simulaciones consistieron en un grano de proyectil que golpeó un grano objetivo inmóvil más grande, con diferentes velocidades de impacto. La desventaja de este método es el gran costo computacional debido a que se modela una gran cantidad de partículas. Machine Learning (ML) tiene el poder de manipular grandes datos y construir modelos predictivos que podrían reducir los tiempos de simulación MD. Usando algoritmos ML (Support Vector Machine y Random Forest) podemos predecir el resultado de las simulaciones MD con respecto a la formación de fragmentos, después de varios pasos más pequeños que en las simulaciones MD habituales. Logramos una reducción de tiempo de al menos un 46%, para una precisión del 90%. Estos resultados muestran que SVM y RF pueden ser herramientas poderosas pero simples para reducir el costo computacional en simulaciones de fragmentación de colisiones.application/pdfengUniversidad Católica de Pereirahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058/1914Derechos de autor 2021 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Entre ciencia e ingeniería; Vol 14 No 28 (2020); 81-86Entre Ciencia e Ingeniería; Vol. 14 Núm. 28 (2020); 81-86Entre ciencia e ingeniería; v. 14 n. 28 (2020); 81-862539-41691909-8367Cluster analysis for granular mechanics simulations using Machine Learning AlgorithmsAnálisis de clústeres para simulaciones de mecánica granular mediante algoritmos de aprendizaje automáticoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionRim, Daniela NoemiMillán, Emmanuel N.Planes, María BelénBringa, Eduardo M.Moyano, Luis G.Publication10785/10037oai:repositorio.ucp.edu.co:10785/100372025-01-27 18:59:28.69https://creativecommons.org/licenses/by-nc/4.0/deed.es_ESDerechos de autor 2021 Entre Ciencia e Ingenieríametadata.onlyhttps://repositorio.ucp.edu.coRepositorio Institucional de la Universidad Católica de Pereira - RIBUCbdigital@metabiblioteca.com
dc.title.eng.fl_str_mv Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
dc.title.spa.fl_str_mv Análisis de clústeres para simulaciones de mecánica granular mediante algoritmos de aprendizaje automático
title Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
spellingShingle Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_short Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_full Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_fullStr Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_full_unstemmed Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
title_sort Cluster analysis for granular mechanics simulations using Machine Learning Algorithms
description Molecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger immobile target grain, with different impact velocities. The disadvantage of this method is the large computational cost due to a large number of particles being modeled. Machine Learning (ML) has the power to manipulate large data and build predictive models which could reduce MD simulation times. Using ML algorithms (Support Vector Machine and Random Forest) we are able to predict the outcome of MD simulations regarding fragment formation, after a number of steps smaller than in usual MD simulations. We achieved a time reduction of at least 46%, for 90% accuracy. These results show that SVM and RF can be powerful yet simple tools to reduce computational cost in collision fragmentation simulations.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12-31
dc.date.accessioned.none.fl_str_mv 2022-06-01T19:09:07Z
dc.date.available.none.fl_str_mv 2022-06-01T19:09:07Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058
10.31908/19098367.2058
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10785/10037
url https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058
http://hdl.handle.net/10785/10037
identifier_str_mv 10.31908/19098367.2058
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2058/1914
dc.rights.spa.fl_str_mv Derechos de autor 2021 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2021 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Católica de Pereira
dc.source.eng.fl_str_mv Entre ciencia e ingeniería; Vol 14 No 28 (2020); 81-86
dc.source.spa.fl_str_mv Entre Ciencia e Ingeniería; Vol. 14 Núm. 28 (2020); 81-86
dc.source.por.fl_str_mv Entre ciencia e ingeniería; v. 14 n. 28 (2020); 81-86
dc.source.none.fl_str_mv 2539-4169
1909-8367
institution Universidad Católica de Pereira
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica de Pereira - RIBUC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1831929577325199360