Abiotic stress detection using spectral information for crop monitoring
Remote sensing is one of the technologies with the potential for precision agriculture ap plications. Remote sensing systems include passive sensors, such as multispectral and hy perspectral sensors, which measure the energy reflected or emitted by a surface along the electromagnetic spectrum. Remot...
- Autores:
-
Goez Mora, Manuel Mauricio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Instituto Tecnológico Metropolitano
- Repositorio:
- Repositorio ITM
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.itm.edu.co:20.500.12622/6633
- Acceso en línea:
- http://hdl.handle.net/20.500.12622/6633
- Palabra clave:
- Percepción remota
Respuesta espectral de vegetación
Aprendizaje automático
Reducción dimensional
Selección de bandas
Remote Sensing
Spectral Response of Vegetation
Machine Learning
Dimensionality Reduction
Band Selection.
- Rights
- License
- Acceso abierto
id |
RepoITM2_c1e47fa54e940c2a428d3eabdcea1d04 |
---|---|
oai_identifier_str |
oai:repositorio.itm.edu.co:20.500.12622/6633 |
network_acronym_str |
RepoITM2 |
network_name_str |
Repositorio ITM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Abiotic stress detection using spectral information for crop monitoring |
dc.title.english.none.fl_str_mv |
Abiotic stress detection using spectral information for crop monitoring |
title |
Abiotic stress detection using spectral information for crop monitoring |
spellingShingle |
Abiotic stress detection using spectral information for crop monitoring Percepción remota Respuesta espectral de vegetación Aprendizaje automático Reducción dimensional Selección de bandas Remote Sensing Spectral Response of Vegetation Machine Learning Dimensionality Reduction Band Selection. |
title_short |
Abiotic stress detection using spectral information for crop monitoring |
title_full |
Abiotic stress detection using spectral information for crop monitoring |
title_fullStr |
Abiotic stress detection using spectral information for crop monitoring |
title_full_unstemmed |
Abiotic stress detection using spectral information for crop monitoring |
title_sort |
Abiotic stress detection using spectral information for crop monitoring |
dc.creator.fl_str_mv |
Goez Mora, Manuel Mauricio |
dc.contributor.advisor.none.fl_str_mv |
Torres Madroñero, Maria Constanza |
dc.contributor.author.none.fl_str_mv |
Goez Mora, Manuel Mauricio |
dc.contributor.email.spa.fl_str_mv |
manuelgoez@itm.edu.co |
dc.subject.spa.fl_str_mv |
Percepción remota Respuesta espectral de vegetación Aprendizaje automático Reducción dimensional Selección de bandas |
topic |
Percepción remota Respuesta espectral de vegetación Aprendizaje automático Reducción dimensional Selección de bandas Remote Sensing Spectral Response of Vegetation Machine Learning Dimensionality Reduction Band Selection. |
dc.subject.keywords.spa.fl_str_mv |
Remote Sensing Spectral Response of Vegetation Machine Learning Dimensionality Reduction Band Selection. |
description |
Remote sensing is one of the technologies with the potential for precision agriculture ap plications. Remote sensing systems include passive sensors, such as multispectral and hy perspectral sensors, which measure the energy reflected or emitted by a surface along the electromagnetic spectrum. Remote sensing allows monitoring large areas in less time than regular soil analysis processes. Several studies have demonstrated the potential of spectral data to crop stress conditions. However, most of these studies are limited to spectral signatu res taken in situ. Some works estimate crop conditions from multispectral and hyperspectral images, but most use vegetation indeces, which do not take full advantage of the spatial and spectral data captured by spectral cameras. Despite the continuing development of precision agriculture based on remote sensing, there is still ample scope for further studies to meet the agricultural sector’s needs. This thesis focuses on the extracting information from spectral data to detect crop stress conditions. The study was developed in two scales. The first one seeks the spectral characterization of stressed crops from spectral signatures collected in situ. The second one studies the capacities and limitations of remotely captured spectral imagery for stress detection, considering spatial information. This work developed a framework for water and nutritional stress detection using crop signatures combining the capabilities of either band ratios, discriminative bands, or the full spectra with supervised classifiers to detect water and nutritional deficiencies from spectral signatures. In a second approach, this work studied the capabilities of spectral imaging for crop stress detection. The main objective of this stage was to integrate the spatial information provided by spectral imagery into the framework developed in the first stage. The proposed method was evaluated using images with various spatial and spectral resolutions. The results show that using the full spectral signature instead of vegetation indices significantly improves stress detection. Support vector machines or neural networks using complete spectral signatures obtained detection accura cies of up to 98% for common bean, 88% for maize, and 75% for avocado crops. These percentages vary according to type, stress level, and genotype. The main challenge in using spectral signatures is data collection since it requires extensive fieldwork. As an alternative, we evaluated a methodology with multispectral images of only ten bands, which facilitates data acquisition, achieving 88% and 70% stress detection accuracy in common beans and maize |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-28T19:23:27Z |
dc.date.available.none.fl_str_mv |
2024-08-28T19:23:27Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.local.spa.fl_str_mv |
Tesis doctoral |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12622/6633 |
dc.identifier.instname.spa.fl_str_mv |
instname:Instituto Tecnológico Metropolitano |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Instituto Tecnológico Metropolitano |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.itm.edu.co |
url |
http://hdl.handle.net/20.500.12622/6633 |
identifier_str_mv |
instname:Instituto Tecnológico Metropolitano reponame:Repositorio Institucional Instituto Tecnológico Metropolitano repourl:https://repositorio.itm.edu.co |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.creativecommons.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
rights_invalid_str_mv |
Acceso abierto Attribution-NonCommercial-NoDerivatives 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.grantor.spa.fl_str_mv |
Instituto Tecnológico Metropolitano |
institution |
Instituto Tecnológico Metropolitano |
dc.source.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
bitstream.url.fl_str_mv |
https://dspace-itm.metabuscador.org/bitstreams/041df9fc-57ac-405f-abac-459b55f005af/download https://dspace-itm.metabuscador.org/bitstreams/aa7cacac-9b60-4141-b9b5-b449076a3453/download https://dspace-itm.metabuscador.org/bitstreams/c1a73d9d-94dc-407e-9336-c2cf6c3daea5/download https://dspace-itm.metabuscador.org/bitstreams/ff34329d-ca8e-4054-82a5-d407e1b63b35/download https://dspace-itm.metabuscador.org/bitstreams/be12d102-d1c5-424a-b7e8-8d73f1faebaa/download https://dspace-itm.metabuscador.org/bitstreams/bd92992c-c266-427c-93a3-fab566248adf/download https://dspace-itm.metabuscador.org/bitstreams/6d62866f-3e64-4342-8aff-b94881d9b379/download |
bitstream.checksum.fl_str_mv |
0e490e5f783e4a83cd66f46b782df514 f5937546a6533c5795a5ea30fcff0ae0 7734e4171dd7ba1c98e697a13b9e06eb 595d18c78fc48774da4db68155581472 1265758dc01af6fdde8d266bc845c6b2 77bf745853522ab2f68e9216a44e1433 d8d20c982916b0552bf18a950c52cce0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Instituto Tecnológico Metropolitano de Medellín |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1837096909873872896 |
spelling |
Torres Madroñero, Maria ConstanzaGoez Mora, Manuel Mauriciomanuelgoez@itm.edu.co2024-08-28T19:23:27Z2024-08-28T19:23:27Z2024http://hdl.handle.net/20.500.12622/6633instname:Instituto Tecnológico Metropolitanoreponame:Repositorio Institucional Instituto Tecnológico Metropolitanorepourl:https://repositorio.itm.edu.coRemote sensing is one of the technologies with the potential for precision agriculture ap plications. Remote sensing systems include passive sensors, such as multispectral and hy perspectral sensors, which measure the energy reflected or emitted by a surface along the electromagnetic spectrum. Remote sensing allows monitoring large areas in less time than regular soil analysis processes. Several studies have demonstrated the potential of spectral data to crop stress conditions. However, most of these studies are limited to spectral signatu res taken in situ. Some works estimate crop conditions from multispectral and hyperspectral images, but most use vegetation indeces, which do not take full advantage of the spatial and spectral data captured by spectral cameras. Despite the continuing development of precision agriculture based on remote sensing, there is still ample scope for further studies to meet the agricultural sector’s needs. This thesis focuses on the extracting information from spectral data to detect crop stress conditions. The study was developed in two scales. The first one seeks the spectral characterization of stressed crops from spectral signatures collected in situ. The second one studies the capacities and limitations of remotely captured spectral imagery for stress detection, considering spatial information. This work developed a framework for water and nutritional stress detection using crop signatures combining the capabilities of either band ratios, discriminative bands, or the full spectra with supervised classifiers to detect water and nutritional deficiencies from spectral signatures. In a second approach, this work studied the capabilities of spectral imaging for crop stress detection. The main objective of this stage was to integrate the spatial information provided by spectral imagery into the framework developed in the first stage. The proposed method was evaluated using images with various spatial and spectral resolutions. The results show that using the full spectral signature instead of vegetation indices significantly improves stress detection. Support vector machines or neural networks using complete spectral signatures obtained detection accura cies of up to 98% for common bean, 88% for maize, and 75% for avocado crops. These percentages vary according to type, stress level, and genotype. The main challenge in using spectral signatures is data collection since it requires extensive fieldwork. As an alternative, we evaluated a methodology with multispectral images of only ten bands, which facilitates data acquisition, achieving 88% and 70% stress detection accuracy in common beans and maizeDoctor en IngenieríaDoctoradoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/Percepción remotaRespuesta espectral de vegetaciónAprendizaje automáticoReducción dimensionalSelección de bandasRemote SensingSpectral Response of VegetationMachine LearningDimensionality ReductionBand Selection.Abiotic stress detection using spectral information for crop monitoringAbiotic stress detection using spectral information for crop monitoringFacultad de IngenieríasInstituto Tecnológico MetropolitanoAcceso abiertoAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Tesis doctoralhttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisPublicationORIGINALManuelMauricio_GoezMora_2023.pdfManuelMauricio_GoezMora_2023.pdfTesis de doctoradoapplication/pdf39799326https://dspace-itm.metabuscador.org/bitstreams/041df9fc-57ac-405f-abac-459b55f005af/download0e490e5f783e4a83cd66f46b782df514MD55trueAnonymousREADCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdfCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdfcarta de autorizaciónapplication/pdf147667https://dspace-itm.metabuscador.org/bitstreams/aa7cacac-9b60-4141-b9b5-b449076a3453/downloadf5937546a6533c5795a5ea30fcff0ae0MD56falseAnonymousREAD2080-12-31LICENSElicense.txtlicense.txttext/plain; charset=utf-81406https://dspace-itm.metabuscador.org/bitstreams/c1a73d9d-94dc-407e-9336-c2cf6c3daea5/download7734e4171dd7ba1c98e697a13b9e06ebMD54falseAnonymousREADTHUMBNAILManuelMauricio_GoezMora_2023.pdf.jpgManuelMauricio_GoezMora_2023.pdf.jpgGenerated Thumbnailimage/jpeg4615https://dspace-itm.metabuscador.org/bitstreams/ff34329d-ca8e-4054-82a5-d407e1b63b35/download595d18c78fc48774da4db68155581472MD57falseAnonymousREADCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdf.jpgCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdf.jpgGenerated Thumbnailimage/jpeg7068https://dspace-itm.metabuscador.org/bitstreams/be12d102-d1c5-424a-b7e8-8d73f1faebaa/download1265758dc01af6fdde8d266bc845c6b2MD58falseAnonymousREADTEXTManuelMauricio_GoezMora_2023.pdf.txtManuelMauricio_GoezMora_2023.pdf.txtExtracted texttext/plain100236https://dspace-itm.metabuscador.org/bitstreams/bd92992c-c266-427c-93a3-fab566248adf/download77bf745853522ab2f68e9216a44e1433MD59falseAnonymousREADCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdf.txtCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdf.txtExtracted texttext/plain5247https://dspace-itm.metabuscador.org/bitstreams/6d62866f-3e64-4342-8aff-b94881d9b379/downloadd8d20c982916b0552bf18a950c52cce0MD510falseAnonymousREAD2080-12-3120.500.12622/6633oai:dspace-itm.metabuscador.org:20.500.12622/66332025-06-24 09:29:56.604open.accesshttps://dspace-itm.metabuscador.orgRepositorio Instituto Tecnológico Metropolitano de Medellínbdigital@metabiblioteca.comRWwgSW5zdGl0dXRvIFRlY25vbMOzZ2ljbyBNZXRyb3BvbGl0YW5vIChJVE0pLCBkaWZ1bmRlIG1lZGlhbnRlIHN1IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgbG9zIHRyYWJham9zIGRlIGludmVzdGlnYWNpw7NuIHByb2R1Y2lkb3MgcG9yIGxvcyBtaWVtYnJvcyBkZWwgSW5zdGl0dXRvLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2xhcmEgcXVlIGVsIElUTSBubyB0aWVuZSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLiBMb3MgZGVyZWNob3MgZGUgYXV0b3Igc2UgZW5jdWVudHJhbiBwcm90ZWdpZG9zIHBvciBsYSBsZWdpc2xhY2nDs24gY29sb21iaWEgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW4gbGEgTGV5IDIzIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBEZWNpc2nDs24gYW5kaW5hIDM1MSBkZSAxOTkzLCBEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgIHV0aWxpY2UgeSB1c2UgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbi4gU2luIGVtYmFyZ28sIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvcihlcykgc29uIGFmZWN0YWRvcyBwb3IgbGEgcHJlc2VudGUgbGljZW5jaWEgZGUgdXNvLgoKU2UgYWNlcHRhIGxhIGRpZnVzacOzbiBww7pibGljYSBkZSBsYSBvYnJhLCBzdSBjb3BpYSB5IGRpc3RyaWJ1Y2nDs24gc2llbXByZSBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCuKAoiAgICAgICBFbCBuZWNlc2FyaW8gcmVjb25vY2ltaWVudG8gZGUgbGEgYXV0b3LDrWEgZGUgbGEgb2JyYSwgaWRlbnRpZmljYW5kbyBvcG9ydHVuYSB5IGNvcnJlY3RhbWVudGUgYSBsYSBwZXJzb25hIHF1ZSBwb3NlYSBkZXJlY2hvcyBkZSBhdXRvci4KCuKAoiAgICAgICBObyBlc3TDoSBwZXJtaXRpZG8gZWwgdXNvIGluZGViaWRvIGRlbCB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIGNvbiBmaW5lcyBkZSBsdWNybyBvIGN1YWxxdWllciB0aXBvIGRlIGFjdGl2aWRhZCBxdWUgcHJvZHV6Y2EgIGdhbmFuY2lhcyBhIGxhcyBwZXJzb25hcyBxdWUgbG8gZGlmdW5kZW4gc2luIGVsIGNvbnNlbnRpbWllbnRvIGRlbCBhdXRvcihlcykgbGVnYWwoZXMpLgoK4oCiICAgICAgIExvcyB0cmFiYWpvcyBxdWUgc2UgcHJvZHV6Y2FuIGEgcGFydGlyIGRlIGxhIG9icmEsIGRlYmUgcG9zZWVyIGxhIGNpdGFjacOzbiBwZXJ0aW5lbnRlIHRhbCBjb21vIGluZGljYW4gbGFzIE5vcm1hcyBBUEEuIENhc28gY29udHJhcmlvLCBzZSBpbmN1cnJpcsOhIGVuIGxhIGZpZ3VyYSBkZWwgcGxhZ2lvLgo= |