Abiotic stress detection using spectral information for crop monitoring

Remote sensing is one of the technologies with the potential for precision agriculture ap plications. Remote sensing systems include passive sensors, such as multispectral and hy perspectral sensors, which measure the energy reflected or emitted by a surface along the electromagnetic spectrum. Remot...

Full description

Autores:
Goez Mora, Manuel Mauricio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Instituto Tecnológico Metropolitano
Repositorio:
Repositorio ITM
Idioma:
eng
OAI Identifier:
oai:repositorio.itm.edu.co:20.500.12622/6633
Acceso en línea:
http://hdl.handle.net/20.500.12622/6633
Palabra clave:
Percepción remota
Respuesta espectral de vegetación
Aprendizaje automático
Reducción dimensional
Selección de bandas
Remote Sensing
Spectral Response of Vegetation
Machine Learning
Dimensionality Reduction
Band Selection.
Rights
License
Acceso abierto
id RepoITM2_c1e47fa54e940c2a428d3eabdcea1d04
oai_identifier_str oai:repositorio.itm.edu.co:20.500.12622/6633
network_acronym_str RepoITM2
network_name_str Repositorio ITM
repository_id_str
dc.title.none.fl_str_mv Abiotic stress detection using spectral information for crop monitoring
dc.title.english.none.fl_str_mv Abiotic stress detection using spectral information for crop monitoring
title Abiotic stress detection using spectral information for crop monitoring
spellingShingle Abiotic stress detection using spectral information for crop monitoring
Percepción remota
Respuesta espectral de vegetación
Aprendizaje automático
Reducción dimensional
Selección de bandas
Remote Sensing
Spectral Response of Vegetation
Machine Learning
Dimensionality Reduction
Band Selection.
title_short Abiotic stress detection using spectral information for crop monitoring
title_full Abiotic stress detection using spectral information for crop monitoring
title_fullStr Abiotic stress detection using spectral information for crop monitoring
title_full_unstemmed Abiotic stress detection using spectral information for crop monitoring
title_sort Abiotic stress detection using spectral information for crop monitoring
dc.creator.fl_str_mv Goez Mora, Manuel Mauricio
dc.contributor.advisor.none.fl_str_mv Torres Madroñero, Maria Constanza
dc.contributor.author.none.fl_str_mv Goez Mora, Manuel Mauricio
dc.contributor.email.spa.fl_str_mv manuelgoez@itm.edu.co
dc.subject.spa.fl_str_mv Percepción remota
Respuesta espectral de vegetación
Aprendizaje automático
Reducción dimensional
Selección de bandas
topic Percepción remota
Respuesta espectral de vegetación
Aprendizaje automático
Reducción dimensional
Selección de bandas
Remote Sensing
Spectral Response of Vegetation
Machine Learning
Dimensionality Reduction
Band Selection.
dc.subject.keywords.spa.fl_str_mv Remote Sensing
Spectral Response of Vegetation
Machine Learning
Dimensionality Reduction
Band Selection.
description Remote sensing is one of the technologies with the potential for precision agriculture ap plications. Remote sensing systems include passive sensors, such as multispectral and hy perspectral sensors, which measure the energy reflected or emitted by a surface along the electromagnetic spectrum. Remote sensing allows monitoring large areas in less time than regular soil analysis processes. Several studies have demonstrated the potential of spectral data to crop stress conditions. However, most of these studies are limited to spectral signatu res taken in situ. Some works estimate crop conditions from multispectral and hyperspectral images, but most use vegetation indeces, which do not take full advantage of the spatial and spectral data captured by spectral cameras. Despite the continuing development of precision agriculture based on remote sensing, there is still ample scope for further studies to meet the agricultural sector’s needs. This thesis focuses on the extracting information from spectral data to detect crop stress conditions. The study was developed in two scales. The first one seeks the spectral characterization of stressed crops from spectral signatures collected in situ. The second one studies the capacities and limitations of remotely captured spectral imagery for stress detection, considering spatial information. This work developed a framework for water and nutritional stress detection using crop signatures combining the capabilities of either band ratios, discriminative bands, or the full spectra with supervised classifiers to detect water and nutritional deficiencies from spectral signatures. In a second approach, this work studied the capabilities of spectral imaging for crop stress detection. The main objective of this stage was to integrate the spatial information provided by spectral imagery into the framework developed in the first stage. The proposed method was evaluated using images with various spatial and spectral resolutions. The results show that using the full spectral signature instead of vegetation indices significantly improves stress detection. Support vector machines or neural networks using complete spectral signatures obtained detection accura cies of up to 98% for common bean, 88% for maize, and 75% for avocado crops. These percentages vary according to type, stress level, and genotype. The main challenge in using spectral signatures is data collection since it requires extensive fieldwork. As an alternative, we evaluated a methodology with multispectral images of only ten bands, which facilitates data acquisition, achieving 88% and 70% stress detection accuracy in common beans and maize
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-28T19:23:27Z
dc.date.available.none.fl_str_mv 2024-08-28T19:23:27Z
dc.date.issued.none.fl_str_mv 2024
dc.type.local.spa.fl_str_mv Tesis doctoral
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12622/6633
dc.identifier.instname.spa.fl_str_mv instname:Instituto Tecnológico Metropolitano
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Instituto Tecnológico Metropolitano
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.itm.edu.co
url http://hdl.handle.net/20.500.12622/6633
identifier_str_mv instname:Instituto Tecnológico Metropolitano
reponame:Repositorio Institucional Instituto Tecnológico Metropolitano
repourl:https://repositorio.itm.edu.co
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.creativecommons.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
rights_invalid_str_mv Acceso abierto
Attribution-NonCommercial-NoDerivatives 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.grantor.spa.fl_str_mv Instituto Tecnológico Metropolitano
institution Instituto Tecnológico Metropolitano
dc.source.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
bitstream.url.fl_str_mv https://dspace-itm.metabuscador.org/bitstreams/041df9fc-57ac-405f-abac-459b55f005af/download
https://dspace-itm.metabuscador.org/bitstreams/aa7cacac-9b60-4141-b9b5-b449076a3453/download
https://dspace-itm.metabuscador.org/bitstreams/c1a73d9d-94dc-407e-9336-c2cf6c3daea5/download
https://dspace-itm.metabuscador.org/bitstreams/ff34329d-ca8e-4054-82a5-d407e1b63b35/download
https://dspace-itm.metabuscador.org/bitstreams/be12d102-d1c5-424a-b7e8-8d73f1faebaa/download
https://dspace-itm.metabuscador.org/bitstreams/bd92992c-c266-427c-93a3-fab566248adf/download
https://dspace-itm.metabuscador.org/bitstreams/6d62866f-3e64-4342-8aff-b94881d9b379/download
bitstream.checksum.fl_str_mv 0e490e5f783e4a83cd66f46b782df514
f5937546a6533c5795a5ea30fcff0ae0
7734e4171dd7ba1c98e697a13b9e06eb
595d18c78fc48774da4db68155581472
1265758dc01af6fdde8d266bc845c6b2
77bf745853522ab2f68e9216a44e1433
d8d20c982916b0552bf18a950c52cce0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Instituto Tecnológico Metropolitano de Medellín
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1837096909873872896
spelling Torres Madroñero, Maria ConstanzaGoez Mora, Manuel Mauriciomanuelgoez@itm.edu.co2024-08-28T19:23:27Z2024-08-28T19:23:27Z2024http://hdl.handle.net/20.500.12622/6633instname:Instituto Tecnológico Metropolitanoreponame:Repositorio Institucional Instituto Tecnológico Metropolitanorepourl:https://repositorio.itm.edu.coRemote sensing is one of the technologies with the potential for precision agriculture ap plications. Remote sensing systems include passive sensors, such as multispectral and hy perspectral sensors, which measure the energy reflected or emitted by a surface along the electromagnetic spectrum. Remote sensing allows monitoring large areas in less time than regular soil analysis processes. Several studies have demonstrated the potential of spectral data to crop stress conditions. However, most of these studies are limited to spectral signatu res taken in situ. Some works estimate crop conditions from multispectral and hyperspectral images, but most use vegetation indeces, which do not take full advantage of the spatial and spectral data captured by spectral cameras. Despite the continuing development of precision agriculture based on remote sensing, there is still ample scope for further studies to meet the agricultural sector’s needs. This thesis focuses on the extracting information from spectral data to detect crop stress conditions. The study was developed in two scales. The first one seeks the spectral characterization of stressed crops from spectral signatures collected in situ. The second one studies the capacities and limitations of remotely captured spectral imagery for stress detection, considering spatial information. This work developed a framework for water and nutritional stress detection using crop signatures combining the capabilities of either band ratios, discriminative bands, or the full spectra with supervised classifiers to detect water and nutritional deficiencies from spectral signatures. In a second approach, this work studied the capabilities of spectral imaging for crop stress detection. The main objective of this stage was to integrate the spatial information provided by spectral imagery into the framework developed in the first stage. The proposed method was evaluated using images with various spatial and spectral resolutions. The results show that using the full spectral signature instead of vegetation indices significantly improves stress detection. Support vector machines or neural networks using complete spectral signatures obtained detection accura cies of up to 98% for common bean, 88% for maize, and 75% for avocado crops. These percentages vary according to type, stress level, and genotype. The main challenge in using spectral signatures is data collection since it requires extensive fieldwork. As an alternative, we evaluated a methodology with multispectral images of only ten bands, which facilitates data acquisition, achieving 88% and 70% stress detection accuracy in common beans and maizeDoctor en IngenieríaDoctoradoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/Percepción remotaRespuesta espectral de vegetaciónAprendizaje automáticoReducción dimensionalSelección de bandasRemote SensingSpectral Response of VegetationMachine LearningDimensionality ReductionBand Selection.Abiotic stress detection using spectral information for crop monitoringAbiotic stress detection using spectral information for crop monitoringFacultad de IngenieríasInstituto Tecnológico MetropolitanoAcceso abiertoAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Tesis doctoralhttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisPublicationORIGINALManuelMauricio_GoezMora_2023.pdfManuelMauricio_GoezMora_2023.pdfTesis de doctoradoapplication/pdf39799326https://dspace-itm.metabuscador.org/bitstreams/041df9fc-57ac-405f-abac-459b55f005af/download0e490e5f783e4a83cd66f46b782df514MD55trueAnonymousREADCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdfCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdfcarta de autorizaciónapplication/pdf147667https://dspace-itm.metabuscador.org/bitstreams/aa7cacac-9b60-4141-b9b5-b449076a3453/downloadf5937546a6533c5795a5ea30fcff0ae0MD56falseAnonymousREAD2080-12-31LICENSElicense.txtlicense.txttext/plain; charset=utf-81406https://dspace-itm.metabuscador.org/bitstreams/c1a73d9d-94dc-407e-9336-c2cf6c3daea5/download7734e4171dd7ba1c98e697a13b9e06ebMD54falseAnonymousREADTHUMBNAILManuelMauricio_GoezMora_2023.pdf.jpgManuelMauricio_GoezMora_2023.pdf.jpgGenerated Thumbnailimage/jpeg4615https://dspace-itm.metabuscador.org/bitstreams/ff34329d-ca8e-4054-82a5-d407e1b63b35/download595d18c78fc48774da4db68155581472MD57falseAnonymousREADCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdf.jpgCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdf.jpgGenerated Thumbnailimage/jpeg7068https://dspace-itm.metabuscador.org/bitstreams/be12d102-d1c5-424a-b7e8-8d73f1faebaa/download1265758dc01af6fdde8d266bc845c6b2MD58falseAnonymousREADTEXTManuelMauricio_GoezMora_2023.pdf.txtManuelMauricio_GoezMora_2023.pdf.txtExtracted texttext/plain100236https://dspace-itm.metabuscador.org/bitstreams/bd92992c-c266-427c-93a3-fab566248adf/download77bf745853522ab2f68e9216a44e1433MD59falseAnonymousREADCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdf.txtCarta-de-autorizacion-de-divulgacion-ManuelGoez_2023.pdf.txtExtracted texttext/plain5247https://dspace-itm.metabuscador.org/bitstreams/6d62866f-3e64-4342-8aff-b94881d9b379/downloadd8d20c982916b0552bf18a950c52cce0MD510falseAnonymousREAD2080-12-3120.500.12622/6633oai:dspace-itm.metabuscador.org:20.500.12622/66332025-06-24 09:29:56.604open.accesshttps://dspace-itm.metabuscador.orgRepositorio Instituto Tecnológico Metropolitano de Medellínbdigital@metabiblioteca.comRWwgSW5zdGl0dXRvIFRlY25vbMOzZ2ljbyBNZXRyb3BvbGl0YW5vIChJVE0pLCBkaWZ1bmRlIG1lZGlhbnRlIHN1IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgbG9zIHRyYWJham9zIGRlIGludmVzdGlnYWNpw7NuIHByb2R1Y2lkb3MgcG9yIGxvcyBtaWVtYnJvcyBkZWwgSW5zdGl0dXRvLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2xhcmEgcXVlIGVsIElUTSBubyB0aWVuZSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLiBMb3MgZGVyZWNob3MgZGUgYXV0b3Igc2UgZW5jdWVudHJhbiBwcm90ZWdpZG9zIHBvciBsYSBsZWdpc2xhY2nDs24gY29sb21iaWEgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW4gbGEgTGV5IDIzIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBEZWNpc2nDs24gYW5kaW5hIDM1MSBkZSAxOTkzLCBEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgIHV0aWxpY2UgeSB1c2UgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbi4gU2luIGVtYmFyZ28sIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvcihlcykgc29uIGFmZWN0YWRvcyBwb3IgbGEgcHJlc2VudGUgbGljZW5jaWEgZGUgdXNvLgoKU2UgYWNlcHRhIGxhIGRpZnVzacOzbiBww7pibGljYSBkZSBsYSBvYnJhLCBzdSBjb3BpYSB5IGRpc3RyaWJ1Y2nDs24gc2llbXByZSBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCuKAoiAgICAgICBFbCBuZWNlc2FyaW8gcmVjb25vY2ltaWVudG8gZGUgbGEgYXV0b3LDrWEgZGUgbGEgb2JyYSwgaWRlbnRpZmljYW5kbyBvcG9ydHVuYSB5IGNvcnJlY3RhbWVudGUgYSBsYSBwZXJzb25hIHF1ZSBwb3NlYSBkZXJlY2hvcyBkZSBhdXRvci4KCuKAoiAgICAgICBObyBlc3TDoSBwZXJtaXRpZG8gZWwgdXNvIGluZGViaWRvIGRlbCB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIGNvbiBmaW5lcyBkZSBsdWNybyBvIGN1YWxxdWllciB0aXBvIGRlIGFjdGl2aWRhZCBxdWUgcHJvZHV6Y2EgIGdhbmFuY2lhcyBhIGxhcyBwZXJzb25hcyBxdWUgbG8gZGlmdW5kZW4gc2luIGVsIGNvbnNlbnRpbWllbnRvIGRlbCBhdXRvcihlcykgbGVnYWwoZXMpLgoK4oCiICAgICAgIExvcyB0cmFiYWpvcyBxdWUgc2UgcHJvZHV6Y2FuIGEgcGFydGlyIGRlIGxhIG9icmEsIGRlYmUgcG9zZWVyIGxhIGNpdGFjacOzbiBwZXJ0aW5lbnRlIHRhbCBjb21vIGluZGljYW4gbGFzIE5vcm1hcyBBUEEuIENhc28gY29udHJhcmlvLCBzZSBpbmN1cnJpcsOhIGVuIGxhIGZpZ3VyYSBkZWwgcGxhZ2lvLgo=