Influencia de los valores locales en los diseños cD-óptimos para el modelo logístico

En el diseño de experimentos es común el no uso de criterios para determinar los tratamientos y el número de réplicas que se deben realizar para la obtención de una buena estimación de los parámetros del modelo, debido principalmente al desconocimiento de estos y en muchas otras ocasiones por la dif...

Full description

Autores:
López-Ríos, Víctor Ignacio
Sosa-Palacio, David Felipe
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Instituto Tecnológico Metropolitano
Repositorio:
Repositorio ITM
Idioma:
spa
OAI Identifier:
oai:repositorio.itm.edu.co:20.500.12622/1067
Acceso en línea:
https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1062
http://hdl.handle.net/20.500.12622/1067
Palabra clave:
Regresión Logística
diseños óptimos compuestos
criterios de optimalidad
robusticidad
Logistic Regression
compound designs
optimality criteria
robustness
Rights
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:En el diseño de experimentos es común el no uso de criterios para determinar los tratamientos y el número de réplicas que se deben realizar para la obtención de una buena estimación de los parámetros del modelo, debido principalmente al desconocimiento de estos y en muchas otras ocasiones por la dificultad en implementarlos. Los diseños óptimos tratan de resolver esta falencia al dar condiciones experimentales óptimas y los niveles de los factores donde se debe medir la respuesta, con el fin de obtener una mejora en la calidad de la inferencia estadística a un menor costo. En la búsqueda de diseños óptimos se utilizan criterios de optimalidad, los cuales son función de la matriz de información de Fisher. Uno de los problemas de estimación más frecuente en los modelos no lineales es la especificación de los valores locales para los parámetros del modelo, necesarios para la optimización del criterio de optimalidad. En este artículo se realiza un estudio de robustez de los diseños óptimos obtenidos en el modelo logístico, al considerar perturbaciones en los valores locales de los parámetros, con el fin de proporcionar al investigador un rango de maniobrabilidad en la selección de los valores locales y garantizando que el diseño óptimo resultante no pierda una eficiencia considerable con respecto al valor de referencia. Para ello, a partir de los datos de un ejemplo, se encuentran las eficiencias de cada uno de los diseños obtenidos con relación al valor sin perturbar; se construyen los diseños cD-óptimos locales para la estimación de la varianza del logit, se determinó que la magnitud de la perturbación en los diseños cD-óptimos locales obtenidos alcanzan una eficiencia alrededor de un 70 %, con un radio de 0.04 de perturbación sobre el valor de referencia.