Metodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificial
La convergencia de la Industria 4.0, especialmente la Inteligencia Artificial (IA) y el Internet de las Cosas (IoT), con la Agricultura en Ambiente Controlado (CEA) está transformando la producción de cultivos de alto valor. Esta sinergia es fundamental en el cultivo de Cannabis sativa medicinal, do...
- Autores:
-
Morales Guerra, Juan Carlos
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Instituto Tecnológico Metropolitano
- Repositorio:
- Repositorio ITM
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.itm.edu.co:20.500.12622/8001
- Acceso en línea:
- https://hdl.handle.net/20.500.12622/8001
https://repositorio.itm.edu.co
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Programación orientada a objetos
Instrumentalizacion
Formulacion de proyectos
Industria de drogas vegetales
Automatización
Cannabis sativa
Aprendizaje Automático
Agricultura en ambiente controlado
Modelado predictivo del crecimiento
IIuminación LED
Internet de las Cosas
Cultivo
2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
| id |
RepoITM2_04253e69bdf684d32506eb7d443d2c08 |
|---|---|
| oai_identifier_str |
oai:repositorio.itm.edu.co:20.500.12622/8001 |
| network_acronym_str |
RepoITM2 |
| network_name_str |
Repositorio ITM |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Metodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificial |
| title |
Metodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificial |
| spellingShingle |
Metodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificial 620 - Ingeniería y operaciones afines Programación orientada a objetos Instrumentalizacion Formulacion de proyectos Industria de drogas vegetales Automatización Cannabis sativa Aprendizaje Automático Agricultura en ambiente controlado Modelado predictivo del crecimiento IIuminación LED Internet de las Cosas Cultivo 2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles |
| title_short |
Metodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificial |
| title_full |
Metodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificial |
| title_fullStr |
Metodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificial |
| title_full_unstemmed |
Metodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificial |
| title_sort |
Metodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificial |
| dc.creator.fl_str_mv |
Morales Guerra, Juan Carlos |
| dc.contributor.advisor.none.fl_str_mv |
Reyes Vera, Erick Estefen Botero Valencia, Juan Sebastian |
| dc.contributor.author.none.fl_str_mv |
Morales Guerra, Juan Carlos |
| dc.contributor.corporatename.none.fl_str_mv |
Institución Universitaria ITM |
| dc.contributor.researchgroup.none.fl_str_mv |
Ingenierías::Automática, Electrónica y Ciencias Computacionales |
| dc.contributor.jury.none.fl_str_mv |
Montoya Cardona, Jorge Andres Ospina Rojas, Elizabet Rico Garcia, Mateo |
| dc.subject.ddc.none.fl_str_mv |
620 - Ingeniería y operaciones afines |
| topic |
620 - Ingeniería y operaciones afines Programación orientada a objetos Instrumentalizacion Formulacion de proyectos Industria de drogas vegetales Automatización Cannabis sativa Aprendizaje Automático Agricultura en ambiente controlado Modelado predictivo del crecimiento IIuminación LED Internet de las Cosas Cultivo 2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles |
| dc.subject.lemb.none.fl_str_mv |
Programación orientada a objetos Instrumentalizacion Formulacion de proyectos Industria de drogas vegetales |
| dc.subject.armarc.none.fl_str_mv |
Automatización |
| dc.subject.proposal.spa.fl_str_mv |
Cannabis sativa Aprendizaje Automático Agricultura en ambiente controlado Modelado predictivo del crecimiento IIuminación LED Internet de las Cosas Cultivo |
| dc.subject.ocde.none.fl_str_mv |
2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática |
| dc.subject.ods.none.fl_str_mv |
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles |
| description |
La convergencia de la Industria 4.0, especialmente la Inteligencia Artificial (IA) y el Internet de las Cosas (IoT), con la Agricultura en Ambiente Controlado (CEA) está transformando la producción de cultivos de alto valor. Esta sinergia es fundamental en el cultivo de Cannabis sativa medicinal, donde el control preciso de las variables ambientales es indispensable para garantizar la estandarización del producto y cumplir con las rigurosas demandas de calidad y consistencia del mercado farmacéutico. A pesar de que la literatura científica ha demostrado que la modulación de la luz optimiza el rendimiento, las investigaciones actuales se han limitado a aplicar regímenes de iluminación y estudiar el crecimiento de la planta. Por lo tanto, existe una brecha crítica en el conocimiento sobre cómo las modulaciones de alta frecuencia y a escala diurna del espectro (SPD) y la intensidad (PPFD) pueden utilizarse para dirigir la el crecimiento de la planta de manera específica. Además, carecemos de modelos predictivos que puedan vincular estos complejos patrones lumínicos con trayectorias de crecimiento, considerando la variabilidad genotípica entre cultivares. El objetivo de esta investigación fue desarrollar y evaluar modelos de aprendizaje automático capaces de predecir el crecimiento de plantas de Cannabis sativa en su etapa vegetativa, en función de la modulación lumínica y las variables microclimáticas. Para ello, se diseñó e implementó un sistema de monitoreo basado en IoT que registró de forma continua datos fotométricos (PPFD, DLI), ambientales y fisiológicos de plantas sometidas a diferentes tratamientos de iluminación artificial. Posteriormente, se entrenaron y compararon cuatro modelos predictivos —ElasticNet, Huber Regressor, Random Forest y XGBoost— para determinar su precisión, robustez e interpretabilidad en la estimación de la altura de la planta en un horizonte de 20 días. Los resultados demostraron una clara superioridad de los modelos lineales regularizados frente a los ensambles de árboles. Específicamente, el modelo ElasticNet alcanzó el desempeño más alto, logrando un error absoluto medio (MAE) de 3.27\,mm y un coeficiente de determinación ($R^2$) de 0.9412, explicando más del 94\,\% de la variabilidad en el crecimiento. El análisis de interpretabilidad (SHAP y Permutación) reveló de manera consistente que las variables fotométricas, PPFD y DLI, fueron los predictores más influyentes, alineando los hallazgos del modelo con los principios fisiológicos de la fotosíntesis. Este estudio propone una metodología robusta que integra el monitoreo IoT con la inteligencia artificial para modelar y predecir el crecimiento vegetativo de Cannabis sativa. El trabajo no solo identifica los factores lumínicos como motores clave del crecimiento, sino que también proporciona un modelo predictivo validado que constituye una herramienta de gran potencial para optimizar los protocolos de iluminación y mejorar la toma de decisiones en la agricultura de precisión |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-19T19:10:50Z |
| dc.date.issued.none.fl_str_mv |
2025-09-05 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12622/8001 |
| dc.identifier.instname.none.fl_str_mv |
Institución Universitaria ITM |
| dc.identifier.reponame.none.fl_str_mv |
Reponame: Repositorio Institucional Institución Universitaria ITM |
| dc.identifier.repourl.none.fl_str_mv |
https://repositorio.itm.edu.co |
| url |
https://hdl.handle.net/20.500.12622/8001 https://repositorio.itm.edu.co |
| identifier_str_mv |
Institución Universitaria ITM Reponame: Repositorio Institucional Institución Universitaria ITM |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
129 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Institución Universitaria ITM |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
| dc.publisher.program.none.fl_str_mv |
Maestría en Automatización y Control Industrial |
| dc.publisher.department.none.fl_str_mv |
Departamento de Electrónica y Telecomunicaciones::Maestría en Automatización y Control Industrial |
| dc.publisher.place.none.fl_str_mv |
Medellín |
| dc.publisher.branch.none.fl_str_mv |
Campus Fraternidad |
| publisher.none.fl_str_mv |
Institución Universitaria ITM |
| institution |
Instituto Tecnológico Metropolitano |
| bitstream.url.fl_str_mv |
https://repositorio.itm.edu.co/bitstreams/6ca5b289-0a2b-454e-89ac-ddfa26aa0d58/download https://repositorio.itm.edu.co/bitstreams/ecabfcb6-08cb-4ae3-abb2-d59f3d593b73/download https://repositorio.itm.edu.co/bitstreams/c3a3d926-2827-4134-bd2d-df8683deae2f/download https://repositorio.itm.edu.co/bitstreams/bd577d9e-0632-4c9b-b3e7-b0280e7e31fa/download https://repositorio.itm.edu.co/bitstreams/70c44bc5-36cb-47b7-a41c-9ecc357a1465/download https://repositorio.itm.edu.co/bitstreams/a4fdfab2-2970-4bd5-bc04-467879363d8c/download https://repositorio.itm.edu.co/bitstreams/c711417c-36c5-4911-9e6d-69052220a16c/download |
| bitstream.checksum.fl_str_mv |
3cd10fc339d4a1e8f9b4576271db7d5a 5f416219a3a103aa6eb01717f5a5a031 7734e4171dd7ba1c98e697a13b9e06eb 94a7db8ecc4ae91ce0c5c2018376f40a 667c178a443bc4115ae1f352d0c088f7 dc5d6a0b877ea84176d8a92f3852f4d6 4bf20def044c2ec1f8865990978bfc0b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Instituto Tecnológico Metropolitano de Medellín |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851051110305890304 |
| spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Vera, Erick EstefenBotero Valencia, Juan SebastianMorales Guerra, Juan CarlosInstitución Universitaria ITMIngenierías::Automática, Electrónica y Ciencias ComputacionalesMontoya Cardona, Jorge AndresOspina Rojas, ElizabetRico Garcia, Mateo2025-11-19T19:10:50Z2025-09-05https://hdl.handle.net/20.500.12622/8001Institución Universitaria ITMReponame: Repositorio Institucional Institución Universitaria ITMhttps://repositorio.itm.edu.coLa convergencia de la Industria 4.0, especialmente la Inteligencia Artificial (IA) y el Internet de las Cosas (IoT), con la Agricultura en Ambiente Controlado (CEA) está transformando la producción de cultivos de alto valor. Esta sinergia es fundamental en el cultivo de Cannabis sativa medicinal, donde el control preciso de las variables ambientales es indispensable para garantizar la estandarización del producto y cumplir con las rigurosas demandas de calidad y consistencia del mercado farmacéutico. A pesar de que la literatura científica ha demostrado que la modulación de la luz optimiza el rendimiento, las investigaciones actuales se han limitado a aplicar regímenes de iluminación y estudiar el crecimiento de la planta. Por lo tanto, existe una brecha crítica en el conocimiento sobre cómo las modulaciones de alta frecuencia y a escala diurna del espectro (SPD) y la intensidad (PPFD) pueden utilizarse para dirigir la el crecimiento de la planta de manera específica. Además, carecemos de modelos predictivos que puedan vincular estos complejos patrones lumínicos con trayectorias de crecimiento, considerando la variabilidad genotípica entre cultivares. El objetivo de esta investigación fue desarrollar y evaluar modelos de aprendizaje automático capaces de predecir el crecimiento de plantas de Cannabis sativa en su etapa vegetativa, en función de la modulación lumínica y las variables microclimáticas. Para ello, se diseñó e implementó un sistema de monitoreo basado en IoT que registró de forma continua datos fotométricos (PPFD, DLI), ambientales y fisiológicos de plantas sometidas a diferentes tratamientos de iluminación artificial. Posteriormente, se entrenaron y compararon cuatro modelos predictivos —ElasticNet, Huber Regressor, Random Forest y XGBoost— para determinar su precisión, robustez e interpretabilidad en la estimación de la altura de la planta en un horizonte de 20 días. Los resultados demostraron una clara superioridad de los modelos lineales regularizados frente a los ensambles de árboles. Específicamente, el modelo ElasticNet alcanzó el desempeño más alto, logrando un error absoluto medio (MAE) de 3.27\,mm y un coeficiente de determinación ($R^2$) de 0.9412, explicando más del 94\,\% de la variabilidad en el crecimiento. El análisis de interpretabilidad (SHAP y Permutación) reveló de manera consistente que las variables fotométricas, PPFD y DLI, fueron los predictores más influyentes, alineando los hallazgos del modelo con los principios fisiológicos de la fotosíntesis. Este estudio propone una metodología robusta que integra el monitoreo IoT con la inteligencia artificial para modelar y predecir el crecimiento vegetativo de Cannabis sativa. El trabajo no solo identifica los factores lumínicos como motores clave del crecimiento, sino que también proporciona un modelo predictivo validado que constituye una herramienta de gran potencial para optimizar los protocolos de iluminación y mejorar la toma de decisiones en la agricultura de precisiónResumen i 1. Introducción 1 1.1. Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Marco teórico 5 2.1. Biología y fisiología de Cannabis sativa . . . . . . . . . . . . . . . . . . . . . 5 2.2. Principios del cultivo hidropónico . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3. Tecnologías de monitoreo y control . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1. Internet de las cosas (IoT) . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2. Protocolos de comunicación . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3. Automatización y lógica de control . . . . . . . . . . . . . . . . . . . 21 2.3.4. Sensores en agricultura controlada . . . . . . . . . . . . . . . . . . . . 22 2.3.5. Infraestructura en la nube . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4. Iluminación en la fase vegetativa temprana . . . . . . . . . . . . . . . . . . 24 2.4.1. Fotomorfogénesis inducida por espectros lumínicos . . . . . . . . . . . 27 2.5. Bases fisiológicas del crecimiento vegetal . . . . . . . . . . . . . . . . . . . . 28 2.5.1. Panorama actual de modelos de crecimiento aplicados a Cannabis sativa 32 2.5.2. Vacios identificados y contribución esperada . . . . . . . . . . . . . . 35 3. Arquitectura IoT de monitoreo 36 3.1. Sistema de adquisición de datos . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1. Sensores ambientales . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.1.1. Sensirion SCD40 Humedad y Temperatura . . . . . . . . . . 39 3.1.1.2. Sensor multiespectral (AS7265x) . . . . . . . . . . . . . . . 41 3.1.1.3. Modelo de ajuste de datos . . . . . . . . . . . . . . . . . . . 43 3.1.1.4. Conversión y despliegue del modelo MLP con TFLite . . . . 44 3.1.2. Diseño físico del sistema: torre de sensores . . . . . . . . . . . . . . . 45 3.1.3. Sensores de calidad del agua . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.3.1. Sensor de pH . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.3.2. Sensor de conductividad eléctrica . . . . . . . . . . . . . . . 48 3.1.3.3. Sensor de temperatura del agua . . . . . . . . . . . . . . . . 50 3.2. Lógica de control embebida . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.1. Control de variables ambientales . . . . . . . . . . . . . . . . . . . . . 51 3.2.1.1. Actuadores . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2. Control de calidad del agua . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.1. Dispositivos de dosificación y ajuste . . . . . . . . . . . . . 58 3.2.2.2. Resultados del control . . . . . . . . . . . . . . . . . . . . . 61 3.3. Infraestructura de Borde (Edge Computing) . . . . . . . . . . . . . . . . . . 64 3.3.1. Módulos de comunicación . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3.2. Plataforma de backend y frontend . . . . . . . . . . . . . . . . . . . . 67 3.3.3. Base de datos e interfaz gráfica . . . . . . . . . . . . . . . . . . . . . 68 4. Evaluación espectral y crecimiento en Cannabis sativa 71 4.1. Diseño experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.1. Configuración espectral de luz . . . . . . . . . . . . . . . . . . . . . . 72 4.1.2. Condiciones de cultivo e infraestructura . . . . . . . . . . . . . . . . . 75 4.1.3. Material vegetal y manejo agronómico . . . . . . . . . . . . . . . . . 78 4.2. Variables registradas y mediciones . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3. Análisis de crecimiento y respuesta fisiológica . . . . . . . . . . . . . . . . . 81 4.3.1. Análisis estadístico (ANOVA) . . . . . . . . . . . . . . . . . . . . . . 85 4.3.2. Evaluación de correlaciones y colinealidad . . . . . . . . . . . . . . . 89 5. Modelado predictivo 92 5.1. Estructura y preprocesamiento del conjunto de datos . . . . . . . . . . . . . 92 5.2. Modelos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2.1. Modelos lineales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2.1.1. Elastic Net . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2.1.2. Huber Regressor . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.2. Modelos basados en árboles . . . . . . . . . . . . . . . . . . . . . . . 97 5.2.2.1. Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2.2.2. XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Análisis de resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.1. Comparación de desempeño global . . . . . . . . . . . . . . . . . . . 100 5.3.2. Evaluación de la robustez . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3.3. Selección del modelo final . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.4. Interpretabilidad del modelo . . . . . . . . . . . . . . . . . . . . . . 103 6. Conclusiones y perspectivas 107 Bibliografía 109Magíster en Automatización y Control IndustrialMaestríaIngenierías::Automática, Electrónica y Ciencias Computacionales::Sistemas de Control y Robótica129 páginasapplication/pdfspaInstitución Universitaria ITMFacultad de IngenieríasMaestría en Automatización y Control IndustrialDepartamento de Electrónica y Telecomunicaciones::Maestría en Automatización y Control IndustrialMedellínCampus Fraternidad620 - Ingeniería y operaciones afinesProgramación orientada a objetosInstrumentalizacionFormulacion de proyectosIndustria de drogas vegetalesAutomatizaciónCannabis sativaAprendizaje AutomáticoAgricultura en ambiente controladoModelado predictivo del crecimientoIIuminación LEDInternet de las CosasCultivo2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e InformáticaODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovaciónODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sosteniblesODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sosteniblesMetodología de caracterización del crecimiento de plantas de cannabis sativa en etapa vegetativa por distribución espectral de fotones mediante modelos predictivos de inteligencia artificialTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMhttp://purl.org/coar/version/c_970fb48d4fbd8a85TextEstudiantesDocentesInvestigadoresPublicationORIGINALTesis de maestríaTesis de maestríaapplication/pdf28651042https://repositorio.itm.edu.co/bitstreams/6ca5b289-0a2b-454e-89ac-ddfa26aa0d58/download3cd10fc339d4a1e8f9b4576271db7d5aMD51trueAnonymousREADCarta de autorizaciónCarta de autorizaciónapplication/pdf142684https://repositorio.itm.edu.co/bitstreams/ecabfcb6-08cb-4ae3-abb2-d59f3d593b73/download5f416219a3a103aa6eb01717f5a5a031MD53falseAdministratorREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81406https://repositorio.itm.edu.co/bitstreams/c3a3d926-2827-4134-bd2d-df8683deae2f/download7734e4171dd7ba1c98e697a13b9e06ebMD52falseAnonymousREADTEXTTesis de maestría.txtTesis de maestría.txtExtracted texttext/plain101849https://repositorio.itm.edu.co/bitstreams/bd577d9e-0632-4c9b-b3e7-b0280e7e31fa/download94a7db8ecc4ae91ce0c5c2018376f40aMD54falseAnonymousREADCarta de autorización.txtCarta de autorización.txtExtracted texttext/plain4412https://repositorio.itm.edu.co/bitstreams/70c44bc5-36cb-47b7-a41c-9ecc357a1465/download667c178a443bc4115ae1f352d0c088f7MD56falseAdministratorREADTHUMBNAILTesis de maestría.jpgTesis de maestría.jpgGenerated Thumbnailimage/jpeg7554https://repositorio.itm.edu.co/bitstreams/a4fdfab2-2970-4bd5-bc04-467879363d8c/downloaddc5d6a0b877ea84176d8a92f3852f4d6MD55falseAnonymousREADCarta de autorización.jpgCarta de autorización.jpgGenerated Thumbnailimage/jpeg12832https://repositorio.itm.edu.co/bitstreams/c711417c-36c5-4911-9e6d-69052220a16c/download4bf20def044c2ec1f8865990978bfc0bMD57falseAdministratorREAD20.500.12622/8001oai:repositorio.itm.edu.co:20.500.12622/80012025-11-20 03:00:27.63https://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.itm.edu.coRepositorio Instituto Tecnológico Metropolitano de Medellínbdigital@metabiblioteca.comRWwgSW5zdGl0dXRvIFRlY25vbMOzZ2ljbyBNZXRyb3BvbGl0YW5vIChJVE0pLCBkaWZ1bmRlIG1lZGlhbnRlIHN1IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgbG9zIHRyYWJham9zIGRlIGludmVzdGlnYWNpw7NuIHByb2R1Y2lkb3MgcG9yIGxvcyBtaWVtYnJvcyBkZWwgSW5zdGl0dXRvLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2xhcmEgcXVlIGVsIElUTSBubyB0aWVuZSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLiBMb3MgZGVyZWNob3MgZGUgYXV0b3Igc2UgZW5jdWVudHJhbiBwcm90ZWdpZG9zIHBvciBsYSBsZWdpc2xhY2nDs24gY29sb21iaWEgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW4gbGEgTGV5IDIzIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBEZWNpc2nDs24gYW5kaW5hIDM1MSBkZSAxOTkzLCBEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgIHV0aWxpY2UgeSB1c2UgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbi4gU2luIGVtYmFyZ28sIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvcihlcykgc29uIGFmZWN0YWRvcyBwb3IgbGEgcHJlc2VudGUgbGljZW5jaWEgZGUgdXNvLgoKU2UgYWNlcHRhIGxhIGRpZnVzacOzbiBww7pibGljYSBkZSBsYSBvYnJhLCBzdSBjb3BpYSB5IGRpc3RyaWJ1Y2nDs24gc2llbXByZSBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCuKAoiAgICAgICBFbCBuZWNlc2FyaW8gcmVjb25vY2ltaWVudG8gZGUgbGEgYXV0b3LDrWEgZGUgbGEgb2JyYSwgaWRlbnRpZmljYW5kbyBvcG9ydHVuYSB5IGNvcnJlY3RhbWVudGUgYSBsYSBwZXJzb25hIHF1ZSBwb3NlYSBkZXJlY2hvcyBkZSBhdXRvci4KCuKAoiAgICAgICBObyBlc3TDoSBwZXJtaXRpZG8gZWwgdXNvIGluZGViaWRvIGRlbCB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIGNvbiBmaW5lcyBkZSBsdWNybyBvIGN1YWxxdWllciB0aXBvIGRlIGFjdGl2aWRhZCBxdWUgcHJvZHV6Y2EgIGdhbmFuY2lhcyBhIGxhcyBwZXJzb25hcyBxdWUgbG8gZGlmdW5kZW4gc2luIGVsIGNvbnNlbnRpbWllbnRvIGRlbCBhdXRvcihlcykgbGVnYWwoZXMpLgoK4oCiICAgICAgIExvcyB0cmFiYWpvcyBxdWUgc2UgcHJvZHV6Y2FuIGEgcGFydGlyIGRlIGxhIG9icmEsIGRlYmUgcG9zZWVyIGxhIGNpdGFjacOzbiBwZXJ0aW5lbnRlIHRhbCBjb21vIGluZGljYW4gbGFzIE5vcm1hcyBBUEEuIENhc28gY29udHJhcmlvLCBzZSBpbmN1cnJpcsOhIGVuIGxhIGZpZ3VyYSBkZWwgcGxhZ2lvLgo= |
